Plasmodium vivax genetic diversity and heterozygosity in blood samples and resulting oocysts at the Thai–Myanmar border - Archive ouverte HAL Access content directly
Journal Articles Malaria Journal Year : 2017

Plasmodium vivax genetic diversity and heterozygosity in blood samples and resulting oocysts at the Thai–Myanmar border

(1) , (1, 2) , (3) , (2, 1) , (1, 2) , (2, 1) , (1)
1
2
3

Abstract

Background Polyclonal blood-stage infections of Plasmodium vivax are frequent even in low transmission settings, allowing meiotic recombination between heterologous parasites. Empirical data on meiotic products are however lacking. This study examined microsatellites in oocysts derived by membrane feeding of mosquitoes from blood-stage P. vivax infections at the Thai–Myanmar border. Methods Blood samples from patients presenting with vivax malaria were fed to Anopheles cracens by membrane feeding and individual oocysts from midguts were obtained by dissection after 7 days. DNA was extracted from oocysts and parental blood samples and tested by microsatellite analysis. Results A focused study of eight microsatellite markers was undertaken for nine blood stage infections from 2013, for which derived oocysts were studied in six cases. One or more alleles were successfully amplified for 131 oocysts, revealing high levels of allelic diversity in both blood and oocyst stages. Based on standard criteria for defining minor alleles, there was evidence of clear deviation from random mating (inbreeding) with relatively few heterozygous oocysts compared to variance across the entire oocyst population (FIT = 0.89). The main explanation appeared to be natural compartmentalisation at mosquito (FSC = 0.27) and human stages (FCT = 0.68). One single human case produced a total of 431 successfully amplified loci (across 70 oocysts) that were homozygous and identical to parental alleles at all markers, indicating clonal infection and transmission. Heterozygous oocyst alleles were found at 15/176 (8.5%) successfully amplified loci in the other five cases. There was apparently reduced oocyst heterozygosity in individual oocysts compared to diversity within individual mosquitoes (FIS = 0.55), but this may simply reflect the difficulty of detecting minor alleles in oocysts, given the high rate of amplification failure. Inclusion of minor allele peaks (irrespective of height) when matching peaks were found in related blood or oocyst samples, added 11 minor alleles for 9 oocysts, increasing the number of heterozygous loci to 26/176 (14.8%; p = 0.096). Conclusion There was an apparently low level of heterozygous oocysts but this can be explained by a combination of factors: relatively low complexity of parental infection, natural compartmentalisation in humans and mosquitoes, and the methodological challenge of detecting minor alleles.
Fichier principal
Vignette du fichier
s12936-017-2002-x.pdf (1.52 Mo) Télécharger le fichier
Origin : Publication funded by an institution

Dates and versions

pasteur-03660904 , version 1 (06-05-2022)

Licence

Attribution - CC BY 4.0

Identifiers

Cite

Ingfar Soontarawirat, Chiara Andolina, Richard E. Paul, Nicholas P. J. Day, Francois Nosten, et al.. Plasmodium vivax genetic diversity and heterozygosity in blood samples and resulting oocysts at the Thai–Myanmar border. Malaria Journal, 2017, 16 (1), pp.355. ⟨10.1186/s12936-017-2002-x⟩. ⟨pasteur-03660904⟩

Collections

PASTEUR CNRS
14 View
7 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More