Skip to Main content Skip to Navigation
Journal articles

Bioengineered Human Organ-on-Chip Reveals Intestinal Microenvironment and Mechanical Forces Impacting Shigella Infection

Abstract : Intestinal epithelial cells are constantly exposed to pathogens and mechanical forces. However, the impact of mechanical forces on infections leading to diarrheal diseases remains largely unknown. Here, we addressed whether flow and peristalsis impact the infectivity of the human pathogen Shigella within a 3D colonic epithelium using Intestine-Chip technology. Strikingly, infection is significantly increased and minimal bacterial loads are sufficient to invade enterocytes from the apical side and trigger loss of barrier integrity, thereby shifting the paradigm about early stage Shigella invasion. Shigella quickly colonizes epithelial crypt-like invaginations and demonstrates the essential role of the microenvironment. Furthermore, by modulating the mechanical forces of the microenvironment, we find that peristalsis impacts Shigella invasion. Collectively, our results reveal that Shigella leverages the intestinal microenvironment by taking advantage of the microarchitecture and mechanical forces to efficiently invade the intestine. This approach will enable molecular and mechanistic interrogation of human-restricted enteric pathogens.
Complete list of metadatas

Cited literature [29 references]  Display  Hide  Download

https://hal-pasteur.archives-ouvertes.fr/pasteur-02579884
Contributor : Anna Sartori-Rupp <>
Submitted on : Wednesday, June 3, 2020 - 11:08:00 AM
Last modification on : Wednesday, September 23, 2020 - 4:33:53 AM

File

Grassartetal04072019mergefigur...
Files produced by the author(s)

Identifiers

Collections

Citation

Alexandre Grassart, Valérie Malardé, Samy Gobaa, Anna Sartori-Rupp, Jordan Kerns, et al.. Bioengineered Human Organ-on-Chip Reveals Intestinal Microenvironment and Mechanical Forces Impacting Shigella Infection. Cell Host and Microbe, Elsevier, 2019, 26 (3), pp.435-444.e4. ⟨10.1016/j.chom.2019.09.007⟩. ⟨pasteur-02579884⟩

Share

Metrics

Record views

111

Files downloads

235