Skip to Main content Skip to Navigation
Journal articles

The genetic control of immunity to Plasmodium infection

Abstract : Malaria remains a major worldwide public health problem with ~207 million cases and ~627,000 deaths per year, mainly affecting children under five years of age in Africa. Recent efforts at elaborating a genetic architecture of malaria have focused on severe malaria, leading to the identification of two new genes and confirmation of previously known variants in HBB, ABO and G6PD, by exploring the whole human genome in genome-wide association (GWA) studies. Molecular pathways controlling phenotypes representing effectiveness of host immunity, notably parasitemia and IgG levels, are of particular interest given the current lack of an efficacious vaccine and the need for new treatment options. Results: We propose a global causal framework of malaria phenotypes implicating progression from the initial infection with Plasmodium spp. to the development of the infection through liver and blood-stage multiplication cycles (parasitemia as a quantitative trait), to clinical malaria attack, and finally to severe malaria. Genetic polymorphism may control any of these stages, such that preceding stages act as mediators of subsequent stages. A biomarker of humoral immunity, IgG levels, can also be integrated into the framework, potentially mediating the impact of polymorphism by limiting parasitemia levels. Current knowledge of the genetic basis of parasitemia levels and IgG levels is reviewed through key examples including the hemoglobinopathies, showing that the protective effect of HBB variants on malaria clinical phenotypes may partially be mediated through parasitemia and cytophilic IgG levels. Another example is the IgG receptor FcγRIIa, encoded by FCGR2A, such that H131 homozygotes displayed higher IgG2 levels and were protective against high parasitemia and onset of malaria symptoms as shown in a causal diagram. Conclusions: We thus underline the value of parasitemia and IgG levels as phenotypes in the understanding of the human genetic architecture of malaria, and the need for applying GWA approaches to these phenotypes.
Complete list of metadatas

Cited literature [35 references]  Display  Hide  Download

https://hal-pasteur.archives-ouvertes.fr/pasteur-01402406
Contributor : Marie Nguyen - de Bernon <>
Submitted on : Thursday, November 24, 2016 - 4:07:03 PM
Last modification on : Wednesday, June 3, 2020 - 10:40:08 AM

File

12865_2015_Article_78.pdf
Publication funded by an institution

Licence


Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Identifiers

Collections

Citation

Audrey V Grant, Christian Roussilhon, Richard Paul, Anavaj Sakuntabhai. The genetic control of immunity to Plasmodium infection. BMC Immunology, BioMed Central, 2015, 16, pp.14. ⟨10.1186/s12865-015-0078-z⟩. ⟨pasteur-01402406⟩

Share

Metrics

Record views

241

Files downloads

450