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Abstract

Fluorescent calcium indicators are an indispensable tools for monitoring the spiking activity of large
neuronal populations in animal models. However, despite the plethora of algorithms developed over
the last decades, accurate spike time inference methods for rates greater than 20 Hz are lacking.
More importantly, little attention has been devoted to the quantification the statistical uncertainties
in spike time estimation, which is essential for assigning a confidence in the inference for a particular
recording. To address these challenges, we introduce an auto-regressive generative model that accounts
for bursting neuronal activity and baseline fluorescence modulation, and it also applies recent sequential
Monte Carlo approaches to obtain joint posterior distributions of static and dynamic model parameters.
We show that our inference method is competitive with state-of-the-art algorithms by analysing the
CASCADE benchmark datasets. We also show that spike time intervals as short as five milliseconds can
be inferred from fluorescence transients recorded using a state-of-the-art genetically encoded indicator.
Overall, our study describes a Bayesian inference method to detect neuronal spiking patterns and their
uncertainty. The use of particle Gibbs samplers allows for unbiased estimates of all model parameters
and it provides a statistical framework to test more specific models of calcium indicators.

1 Introduction

Fluorescence indicators of calcium activity allow us to monitor the dynamics of neuronal populations both in vivo
and in vitro. In the last decade there has been a proliferation of new methods to identify single spikes from fluores-
cence time series using template matching[1–4], linear deconvolution[5–8], finite rate of innovation[9, 10], independent
component analysis[11], non model-based signal processing[12], supervised learning[13–17], constrained non-negative
matrix factorization[18–20], active set methods[21, 22], convex and non-convex optimization methods[23–27], interior
point method[28]. Model-based approaches allow to frame the problem of spike inference in a Bayesian context and
use maximum-a-posteriori estimates[29–32].

Optimization methods provide a single estimate of spike times by maximizing a cost function defined by the
underlying model and constraints. This approach does not provide information about the statistical uncertainty
associated to our estimates. To address this issue, previous works have proposed Bayesian inference methods[33–44]
which, as opposed to optimization techniques, give access to the full probability distribution of the unknowns given
the data. However, the statistical models used in these approaches do not take into account the possibility of burst
firing and slow changes in the fluorescence baseline, which is known to be an important issue for the analysis of in-vivo
recordings. Moreover, current Bayesian methods do not treat static model parameters (e.g. kinetic constants) and
dynamic variables equally. Instead, they require additional optimization procedures to calibrate model parameters,
thus neglecting how the uncertainty about model parameters propagates to spike times.

A common approach in spike inference is to use Markov models in discrete-time (e.g. autoregressive models[45])
to describe the link between spikes and fluorescence. These models are known in the statistical literature as “state-
space models” and they are used in time series analysis to describe the probabilistic dependence between data and
unobserved variables (latent state). Inference on non-linear and non-Gaussian state-space models is analytically
intractable, requiring the application of Monte Carlo methods to obtain unbiased approximations of the posterior
distributions. Because the number of unknowns in these models is of the order of the number of the observations
(time steps), the analysis of long time series requires efficient strategies to sample from high-dimensional spaces.
A major breakthrough in the analysis of state-space models has been the introduction of sequential Monte Carlo
methods[46]. These algorithms can sample efficiently from the latent space by approximating sequentially the target
posterior distribution by combining importance sampling and resampling techniques. In particular, the particle Gibbs
algorithm can be used to obtain unbiased estimates the joint distribution of static model parameters and dynamical
variables but it has never been applied in the context of spike inference.

In this work we employ the particle Gibbs (PG) sampler on a bursting autoregressive (BAR) model of fluorescence
time series. Our generative model accounts for periods of high firing rates between periods of baseline (lower) firing
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rate. By quantifying the performance of our method (PGBAR) on the CASCADE benchmark dataset[13] we have
shown that our approach is competitive with existing techniques. Finally we tested PGBAR on in-vitro recordings of
cerebellar granule cells using ultrafast GCaMP8f calcium indicator, showing that our method allows to detect spikes
reliably even for high firing rates (∼ 200Hz).

2 Results

2.1 The model

In this section we introduce a generative model of fluorescence time series with an underlying spiking process that
accounts for periods of increased firing rate, separated by periods of baseline (lower) firing rate. The normalized
fluorescence trace F1:T is described as the sum of a calcium-dependent fluorescence level ct (hereinafter referred to as
calcium level for brevity), a time-varying baseline bt and noise ηt

Ft = ct + bt + ηt, t = 1, · · · , T (1)

where the fluorescence noise ηt is normally distributed with zero mean and variance σ2. To describe bursts of calcium
transients, we introduce firing states qt = 0, 1, associated respectively with low and high firing rates, r0 and r1. We
allow for stochastic transitions between these two states with rates w0→1 and w1→0. The probability of switching from
q to q′ within a sampling period ∆ is given by the transition matrix

W =

[
1− w0→1∆ w0→1∆
w1→0∆ 1− w1→0∆

]
(2)

The number of spikes at time t, st, is modeled by a Poisson distribution with rate r1 when qt = 1 otherwise with
baseline firing rate r0 when qt = 0. The dynamics of the calcium level in response to a spike train is modeled as a
second order autoregressive process

ct =

 c0 +As1 t = 1
γ1c1 +As2 t = 2
γ2ct−2 + γ1ct−1 +Ast t > 2

(3)

where c0 is the initial calcium level and A controls the calcium increase upon single action potential. Note that in
Eq. (3) the calcium level at time t depends on the previous calcium levels up to ct−2. The dynamics of ct in response
to a single spike (kernel response) is characterized by a finite rise time (time to peak response) and exponential decay
(see Section 4.4 for a derivation). To be able to employ statistical inference methodologies developed for state-space
models (particle Gibbs), we need to recast this model in the form of a first order Markov process, where the state at
time t only depends on the state at time t − 1. This can be done by introducing a calcium vector and a spike count
vector (see S2.2.3 in Ref. [20])

Ct =

[
ct
ct−1

]
, St =

[
st
0

]
, (4)

where in particular the calcium vector at time t is constructed by combining the calcium levels at current and previous
time. With this definition, the calcium vector Ct satisfies the first-order Markov dynamics

Ct =

{
[c0 +As1, 0] t = 1
M · Ct−1 +ASt t > 1

, M =

[
γ1 γ2

1 0

]
. (5)

Note that the calcium level trace is deterministic given the spike counts s1:T .
Bayesian inference requires the design of prior distributions on model parameters. However, it would be difficult

to assign priors directly to γ1,2 and A as they are not directly measurable. Instead, we will reparameterize the
model using peak response (A(max)), rise time (time to peak response, τr) and decay time (τd) of unitary fluorescence
response, for which empirical estimates have been reported in previous works[49]. A(max), τr and τd, referred to as
kernel parameters in the upcoming sections, can be derived from γ1,2 and A as (see Section 4.5 for a derivation)

A(max) = A · gA, gA ≡
(
g+

g−

) g+
g−
(

1− g+

g−

)
(eg+ − eg−)

−1
(6)

τr =
log
(
g+
g−

)
g− − g+

, g± = log

(
γ1 ±

√
γ1 + 4γ2

2

)
(7)

τd = − 1

g+
, (8)
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Figure 1: Generative model of fluorescence time series. (A) Graphical representation of the generative
model described in the main text. White circles denote unknown variables, grey circles denote measurements and bare
variables are fixed prior hyperparameters. Plates denote groups of variables. (B) List of parameters and corresponding
priors.

Finally, the fluorescence baseline Bt is described by a Gaussian random walk with normally distributed initial condition{
Bt ∼ N (0, 1) t = 1
Bt ∼ N (Bt−1, σ

2
B∆) t > 1

(9)

where ∆ is the sampling period of the time series.
In the language of state-space models, the latent state of our model is the combination of the bursting state

qt, the spike count st, the calcium vector Ct and the baseline bt, whereas the fluorescence Ft, defined in Eq. (1) is
our observation. The static parameters of our model are the firing rate constants r0,1, the transition rates of the
2-state bursting process W0→1,W1→0, the kernel parameters of the calcium indicators (peak amplitude, rise and decay
constants), the initial calcium level c0 and the fluorescence noise σ. To simplify the notatation we will denote the
latent space as X = {qt, st, Ct, bt} and the combination of static parameters as θ.

2.2 State-space model formulation

The joint probability of the latent state trajectory X1:T and the fluorescence observations F1:T conditional to the
static parameters θ can be expressed as

P (X1:T , F1:T |θ) = µθ(X1) ·
T∏
t=2

fθt (Xt|Xt − 1)gθt (Ft|Xt) (10)

where fθt (Xt|Xt−1) is the transition probability of the latent state, gθt (Ft|Xt) is the probability of the observed
fluorescence conditional to the latent state at time t and µθ(X1) is the probability distribution of the initial latent
state. The latent state transition probability can be expressed in terms of calcium level and firing state and baseline
transitions and the Poisson probability of spike counts, namely

fθt (Xt|Xt−1) =

deterministic calcium︷ ︸︸ ︷
δ(2)(Ct −M · Ct−1 −ASt) ·

firing state︷ ︸︸ ︷
Wqt−1qt ·

Poisson spikes︷ ︸︸ ︷
(rqt∆)st

st!
e−rqt∆ ·

baseline︷ ︸︸ ︷
(2π∆σ2

b )−1/2 exp

(
− 1

2∆σ2
b

(bt − bt−1)2

)
.

(11)

By assuming the fluorescence noise to be normally distributed we have

gθt (Ft|Xt) = (2πσ2)−1/2 · exp

[
− 1

2σ2
(Ft − ct − bt)2

]
. (12)

In order to infer latent states and static parameters from fluorescence observations we need to compute the posterior
probability

P (X1:T , θ|Ft) =
P (θ) · P (X1:T , F1:T |θ)

P (F1:T )
, (13)
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where P (θ) denotes the prior probability on model parameters and P (F1:T ) is the normalization factor of the posterior
distribution, also known as marginal likelihood. This distribution encodes all the information about the statistics of
the latent state trajectory and the model parameters. We can use it to compute point estimates but also to quantify
uncertainties. Unfortunately, the posterior distribution for general state-space models is not analytically tractable.
However we can use Monte Carlo methods, which rely on the ability to generate random samples from the posterior
distribution, to obtain unbiased approximations of any statistical average with respect to the target distribution.

2.3 Sequential Monte Carlo

In this work we use sequential Monte Carlo methods to approximate the posterior distribution in Eq. (13). Suppose
to have generated N samples X(n), n = 1, · · · , N from a target distribution P (X). For any random variable V (X),
the empirical average of V over the Monte Carlo samples

〈V 〉 ≈ 1

N

∑
n

V (X(n)) (14)

provides un unbiased estimator of the expectation of V with respect to P (X). There are two critical issues that arise
when applying such method to time series models: first, the high dimensionality of the latent space and, second,
the joint inference of model parameters and latent state trajectory. In a state-space model the number of unknowns
typically scales linearly with number of observations. This is a problem for standard sampling methods, such as Markov
Chain Monte Carlo, which suffer from the so-called “curse of dimensionality” as their performance rapidly decreases
at high dimensions. Sequential Monte Carlo (SMC) methods allow to address the dimensionality issue by providing
efficient strategies to sample from the latent space. The typical approach is to construct a sequential approximation
of the posterior distribution where observations are accounted iteratively. SMCs provide a solution to the so-called
“filtering” problem of estimating latent states at fixed model parameters.

In a highly influential work, Andrieu et al[47] introduced the particle Gibbs algorithm as a method to sample both
static and dynamic variables in a state-space model. This algorithm alternates the sampling of model parameters
and latent trajectories as in the Gibbs sampler, with the difference that latent states are sampled from a SMC-based
transition kernel that leaves the filtering distribution P (X1:T |F1:T , θ) invariant. In this work we employ a version of
the particle Gibbs algorithm developed by Lindsten et al[48], named particle Gibbs with ancestor sampling (PGAS),
with better mixing properties (see Algorithm 2 and the Methods section).

To carry out inference of static and dynamical variables for our model, we employed Algorithm 1 which alternates
the two steps mentioned above: first we sample a new latent state trajectory by running the PGAS transition kernel,
then we sample new model parameters according to their full conditional distributions (when available analytically)
or a Metropolis-Hastings kernel.

Algorithm 1 Gibbs sampler

1: Set θ(1) and X
(1)
1:T

2: for n > 1 do
3: draw X

(n)
1:T ∼ KNθ(n−1)(X

(n−1), ·) (PGAS kernel)

4: draw θ(n) ∼ P (θ|X(n)
1:T , F1:T )

2.4 Validation and performance of PGBAR on simulated data

To test the performance of our inference method we generated latent state variables and fluorescence time series from
our model and compared the spikes inferred using our sampling algorithm against the ground truth simulations. In
Fig. 2A we show a fluorescence time series simulated from our model. The firing patter displays periods of increased
firing rate separated by quiet time windows. By using this trace as input to Algorithm 1, we can generate a latent
state trajectory X1:T = {qt, st, Ct, bt}Tt=1 and a set of model parameters at each iteration. In Fig. 2B we show 1000
samples of spike counts obtained by fitting the normalized fluorescence in Fig. 2A. The average spike counts over the
random samples at each time frame (Fig. 2C) can be interpreted as the instantaneous firing rate multiplied by the
sampling period. In order to illustrate the accuracy of our method, we calculated the spike counts within 1s time
intervals for each random sample, providing the posterior distribution of the number of spikes in each time bin. As
shown in Fig. 2D, the ground-truth spike counts are well within the range of the posterior. Our method allows us to
infer not only spike times but also the time windows of high and low firing state (qt = 0, 1 in the model) of the neuron.
In particular, the probability of burst firing state (q = 1) can be obtained by averaging the firing state across the
Monte Carlo samples. As shown in Fig. 2E, this probability is close to one during the ground-truth bursting periods
and zero otherwise, with some degree of uncertainty at the onset and offset of the bursting period. Fig. 2F shows the
comparison between the ground-truth baseline and the sample average. One of the key advantages of our sampling
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algorithm is the joint estimation of latent states and static model parameters. Figure 2G illustrates the posterior
distributions associated to peak amplitude, noise level, decay and rise time of the fluorescence probe. The ground
truth parameters used to simulate the testing time series are always close to the peak of the corresponding posterior
distributions, showing the identifiability of our model.

To quantify the importance of having two firing states on the accuracy of the inference we compared the performance
of our method against a variant with only one global firing rate. We simulated fluorescence traces at different signal-
to-noise (SNR) levels (1.1, 2 and 10), defined as the ratio between peak response A(max) and the fluorescence noise
parameter σ, and the burst firing frequency parameter, r1 (5Hz, 10Hz, 20Hz, 50Hz). Then we used our algorithm
and its non-bursting variant to infer spikes from the fluorescence trace. To quantify the inference performance, we
calculated the correlation between ground-truth and estimated spikes (downsampled at 7.5 Hz for consistency with
other analyses in this work), the average absolute error and the bias (average error) per time point (see Methods).

The top panel of Figure 3A shows two example traces at 5Hz and 50Hz. For the 5Hz firing trace the bursting
model did not improve the inference accuracy compared to the variant with single firing rate(Fig. 3A, middle and
bottom). The two analyses produced comparable correlations, errors and biases (Fig. 3C-E). In contrast, the single
firing rate model induced a systematic underestimate in the number of spikes for the 50 Hz trace, whereas the original
model captures reliably the ground-truth spikes.

The lower performance of the non-bursting version of the model is due to the bias induced by forcing a single firing
rate across the time series. While for all conditions of noise and frequency, inference using the bursting model gives
unbiased spike counts (Fig. 3E), in the case of the non-bursting model, the single Poisson firing rate leads necessarily
to an underestimation of the spike count during bursting time windows and an overestimation during low activity
windows.

At increasing noise level and firing frequency, the performance difference between bursting and non-bursting versions
of our algorithm becomes more pronounced (Fig. 3D), with a clear advantage of our original bursting model in
increasing correlation with ground-truth and reducing error.

2.5 Validation of PGBAR on the CASCADE benchmark data and comparison to pre-
vious methods

In order to test our method on experimental data we analyzed neuronal recordings from the CASCADE benchmark
dataset[13], which allowed us to quantify the performance of our algorithm on different calcium indicators. In Figure 4
we illustrate the application of our method on GCaMP6f fluorescence data from a pyramidal neuron in the mouse visual
cortex (CASCADE dataset 9[49]). The comparison between ground-truth spikes and the ones inferred using PGBAR
in Fig. 4A shows differences outside the 1st-3rd interquartile range in 30% of the 1s time intervals. This statistical
discrepancy between the posterior distributions and the ground-truth can be attributed to the model constraints (for
instance the fixed peak response along the recording) or to experimental errors in estimating the ground-truth.

The estimated bursting pattern shown in Fig. 4A captures the overall periods of increased neuronal activity. The
posterior distributions of model parameters are shown in Fig. 4B. Some of these distributions (burst firing rate and the
rise time) shift significantly from their corresponding priors. This mismatch between prior information and data can
arise when using the prior to penalize certain regions. Figure 5 summarizes our analysis of the CASCADE datasets.
To quantify the performance or PGBAR and allow direct comparison with previous analyses in Ref. [13] we used
the Pearson’s correlation coefficient between ground-truth spikes and predicted spikes both filtered with a Gaussian
kernel with 200 ms bandwith. We did not find a particular condition where our method performed better or worse
by analysing different calcium indicators (Fig. 5A). The overall correlation averaged across cells and datasets is 0.75,
however, consistently with previous studies, we observed a large variability of performance across cells and indicators.
In Ref. [13], Rupprecht et al introduced the notion of standardized noise level as the ratio between the standard
deviation of the normalized fluorescence and the square root of the sampling frequency. As shown in Fig. 5B, we found
that the performance of PGBAR is robust across standardized noise levels.

We compared the performance of our method to CASCADE[13], MLSpike[29], Peeling[50], CaImAn[51], Suite2p[52]
and JewellWitten[23] by using their previously benchmarked performance on the same datasets obtained from extensive
parameter optimization[13] (Fig. 5C). The performance distribution of PGBAR across the available recordings in the
CASCADE database was comparable to previous methodologies. Among model-based approaches, our method was
slightly underperformed with respect to MLSpike, likely due to its use of a more accurate description of the calcium
indicator. The top performance is achieved by the supervised CASCADE method, however it cannot be used to obtain
statistical uncertainties.

Figure 6A shows two simulated fluorescence traces with two spikes 20ms apart at low (1.4) and high (3.4) SNR
levels. By running our algorithm on these simulated data we extracted the posterior distribution of total number of
spikes (Fig. 6B), showing the correct identification of two spikes at both SNR levels. The posterior ISI distribution
conditional to 2 spikes (Fig. 6C) showed a narrow spike distribution (SD ≈ 1ms) centered on the ground truth interval
of 20 ms for low noise, while the higher noise trace resulted in a spike interval distribution that was broader (SD ≈
1.6 ms) and whose mode ws shifted from the ground truth by -1.6 ms.
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Figure 2: Validation of the spike inference approach with simulated data. (A) Example trajectory simulated
from the model (solid, black) with ground-truth spike times shown underneath (grey vertical lines). (B) Raster plot
representing spike times for a thousand Monte Carlo samples. (C) Average spike counts over the Monte Carlo samples
at each time frame. (D) Comparison between ground-truth counts over 1s bins (black dots, from the example trace
in A) and the corresponding posterior distributions (red boxes). (E-F) Comparison of ground-truth firing state and
baseline (solid, black) to estimated ones (blue). Shading indicates one standard deviation from posterior averages.
(G) Posterior distributions of peak response upon single spike, decay time, rise time and noise level compared with
true value (vertical lines in green).
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Figure 3: Dependency of inference performance on noise and firing frequency and the bias of non-
bursting models. (A) Example fluorescence time series simulated at 5Hz and 50Hz bursting frequencies (top). The
analysis of these traces using bursting and non-bursting variant of the model highlights the large bias generated by the
non-bursting model at high frequency (bottom). (B-D) Quantification of correlation with true spikes, average error
and bias at different levels of SNR and frequency. At increasing firing frequency, the correlation with ground-truth
spikes generally increases. This is an effect of calculating correlations at fixed temporal resolution. The average error
was quantified as the sum of the absolute deviation from the true spike counts divided by the number of time steps.
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Figure 4: Analysis of GCaMP6f recordings from the CASCADE dataset. (A) example ∆F/F from the
CASCADE dataset (#DS09, GCaMP6f, mouse visual cortex) with ground-truth spikes shown underneath fluorescence
(top), comparison of spike counts within 1s time intervals (middle) and burst probability (bottom). Shading denotes
uncertainty within one standard deviation. (B) Comparison between posterior distributions of the model parameters
(histograms) and priors (continuous densities): maximal calcium response to single spikes (Amax), initial calcium level
(c0), decay and rise time, noise level (σ2), bursting (r1) and baseline (r0) firing rates, transition rates between firing
states (w0→1, w1→0).
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Figure 5: Analysis of CASCADE benchmark data and comparison with existing methods. (A) Correlation
between estimated and ground-truth firing rates from CASCADE datasets. The color code represents the different
calcium indicators employed in each dataset.(B) Correlation with ground-truth spikes as a function of the standardized
noise level[13]. (C-D) Comparison with existing methods. Correlation averaged across datasets and neurons (C).

To examine the spike discrimination performance for multiple intervals (3-20 ms) and noise levels (SNR 1-3.8), we
calculated the ISI posterior probability evaluated at the ground-truth ISI and displayed in the contour plot in Fig. 6D
as a function of ISI and SNR. When this probability is higher than 0.5, the peak of the posterior coincides with the
ground truth value. The SNR level at which the ground-truth probability is larger than 0.5 depends weakly on the
ISI. Figure 6E shows the posterior ISI distributions obtained from ten independent simulations with ground-truth ISI
of 5ms at different SNR levels. At low SNR the posterior distributions have large variance while at higher SNR levels
they shrink around the ground-truth value. This analysis reflects the degree of variability expected when analyzing
multiple recordings of the same neuron.

2.6 PGBAR spike inference from fluoresence transients recorded using the fast calcium
indicator GCaMP8f

We tested our approach on the fast calcium indicator GCaMP8f by performing high-speed (≈3.3kHz) 2-photon linescan
calcium imaging of cerebellar granule cells in vitro. We used adeno-associated viruses (AAV) to express GCaMP8f in
Lobe X of the cerebellum (Fig. 7A). Fluorescence was recorded at granule cell somata and ground truth spikes were
evoked by extracellular stimulation of granule cell axons in the molecular layer (Fig. 7B).

In order to constrain our inference, we quantified the amplitude and kinetics (rise and decay times) of single AP-
evoked GCaMP8f fluorescence transients. Analyzing these recordings using our approach allowed us to build prior
distributions on kinetic parameters of unitary fluorescence responses (Fig. 7C). Next, we recorded granule cell activity
in response to a 20 Hz Poisson stimulation protocols (Fig. 7E). Figure 7F shows the average spike count obtained from
PGBAR by analyzing each trial independently. The spike patterns obtained using our method are very similar across
trials, showing that PGBAR can reliably detect single trial action potentials.

To illustrate the temporal accuracy of PGBAR we focused on the short interval between the first two spikes
(Fig. 7G). In spite of the relatively low SNR (A(max)/σ ≈ 2.4), we could reliably identify the two spikes in each
single trial. Figure 7H shows the posterior distribution of the inter spike interval obtained by analysing each trial
independently. The ground-truth inter spike interval of 5.3 ms is well within each posterior distribution obtained from
single trials. In addition, the posterior modes across trials are distributed symmetrically around the ground-truth ISI
of 5.3 ms with a trial-averaged standard deviation of 2.5 ms, highlighting the unbiaseness of our analysis.
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Figure 6: Sensitivity of spike detection to sampling frequency and SNR level. (A) Examples of simulated
fluorescence traces with two spikes separated by 20ms (vertical lines) at low (1.4) and high (3.4) SNR. Here the
sampling frequency was set to 600Hz. Ribbon lines display denoised fits (calcium level plus baseline) within one
standard deviation. (B) Posterior distribution of the total number of detected spikes. (C) Posterior distribution of
the inter-spike interval (ISI). (D) Raster plot of the probability of the true ISI at different SNR levels and ISI. (E)
Comparison of ISI posterior distributions generated from the analysis of 12 fluorescence traces with two spikes 5ms
apart and sampling frequency of 3kHz. Density plots have been smoothed with 1ms bandwith. In all simulated traces
we used τr = 3.7ms and τd = 40ms.
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Figure 7: High-speed 2-photon linescan calcium imaging. (A) GCaMP8f virus injection in the cerebellar
vermis. (B) Induction of action potentials to cerebellar granule cells by direct stimulation of the parallel fibers. (C)
Use of single pulse stimulation to extract kinetic model parameters of GCaMP8f indicator. (D-E) High-speed (3kHz)
2-photon linescan calcium imaging of granule cell bodies. Single trial fluorescence (D) and denoised fit (calcium level
plus baseline). (F) Spike detection for each trial. (G) 100 ms time window highlighting the first four stimulation-
induced action potentials. Normalized fluorescence and denoised fit (top), average spike count (bottom). Orange
vertical lines denote stimulation time points. (H) Comparison of the posterior distributions of the interval between
the first two detected spikes across experimental trials. The solid vertical line at 5.3 ms denotes the time interval
between the first two stimulation.
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3 Discussion

Fluorescence indicators provide essential tools for monitoring the activity of neuronal populations in model organisms.
However, the extraction of underlying firing patterns from fluorescence time series is challenging due to low signal-
to-noise ratio, incomplete knowledge of the indicator dynamics, complex firing statistics and unknown fluorescence
modulation. In spite of the proliferation of methodologies developed to address this issue, limited attention has been
devoted to the estimation of the statistical uncertainties associated to spike inference. The vast majority of the spike
detection algorithms are indeed based on optimization techniques, providing only point estimates of the detected
spikes. Quantifying statistical uncertainties is key to compare firing patterns across neurons[53] and establish their
causal relationships. The works from Pnevmatikakis et al[34] and Vogelstein et al[37], addressed this issue by using
Monte Carlo methods to approximate the full posterior distributions of spiking patterns. Building upon their work,
here we improve the generative model used to link spiking patterns to fluorescence time series and provide efficient
Monte Carlo strategies to infer spike times and their statistical uncertainties.

Bursting dynamics and baseline modulation. Neural activity patterns are not always well described by a simple
Poisson spiking process. Unlike existing model-based approaches, including Monte Carlo methods[34, 37, 40], our
statistical inference is based on a model that accounts for non homogeneous Poisson firing statistics and baseline
modulation. In particular, PGBAR uses a two-state process to enable transitions between low and high firing rates.
This feature is used to mimic the alternation between periods of low baseline firing and bursting activity transients
where the firing rate is significantly increased. We have shown that not taking into account bursting activity in the
model used for inference can lead to biased results especially at low SNR levels and high firing frequency. By esplicitely
modeling the bursting dynamics, PGBAR produced unbiased results at all levels of noise and frequency when tested
on simulated data (Figure 3).

Although the model used by Pnevmatikakis et al[34] did not account for fluorescence baseline modulation, they
highlighted its importance for in vivo recordings. PGBAR uses a Gaussian random walk (analogously to MLSpike[29])
to describe slow changes in baseline fluorescence across the recording. This is the simplest Markov model of fluorescence
baseline but it generates noisy baselines. To avoid this effect, it is possible to employ alternative baseline models,
such as the integrated random walk, which allows to reduce the additional noise introduced by the baseline stochastic
process.

Joint estimation of static parameters and dynamic variables. The estimation of static model parameters is
a well known issue in spike detection algorithms, requiring ad-hoc calibration procedures and manual settings. In
particular, unknown firing rate and peak amplitude (in response to a single action potential) can lead to unidenti-
fiable parameters. PGBAR employs a fully Bayesian approach where model parameters and dynamic variables are
treated equally. This enables users to constrain the detection of action potential by controlling mean and variance
of phenomenological parameters (e.g. rise and decay constants, firing rates, bursting frequencies) by setting their
corresponding prior distributions. We employed for the first time state-of-the-art particle Gibbs algorithms to infer
spikes from noisy fluorescence. This is a key novelty compared to previous SMC-based methods[37, 40], allowing for
a joint estimation of static parameters and dynamic variables.

Comparison with benchmark datasets. The proliferation of spike inference methodologies led to the development
of community-based initiatives[14, 54] to rank the performance of available methods. We applied our approach on
the CASCADE dataset[13] which provides a curated database of neuronal recordings from mouse and zebrafish using
different calcium indicators. The performance of PGBAR is comparable to existing unsupervised approaches. In
addition, it provides information about the statistical uncertainty associated to spike detection that is not available
through state-of-the-art techniques.

PGBAR detection of short high-frequency bursts using an ultrafast calcium indicator PGBAR employs a
second-order autoregressive process to link spiking activity to fluorescence. This simple model accounts for the basic
qualitative aspects of calcium transients and it is well-suited for linear indicators. For this reason we have tested the
performance of PGBAR on the ultrafast GCaMP8f[55] with improved linearity in comparison to previous calcium
probes. We showed that the combination of PGBAR with the GCaMP8f enables the detection of inter spike intervals
of 5 ms with an accuracy of 2.5 ms from single trials, thus offering a statistical tool for estimating high-frequency
neural activity patterns.

PGBAR limitations and future perspectives. Although full Bayesian inference is known to be computationally
expensive, SMC algorithms are highly parallelizable. Posterior distributions are represented by particles that are
simultaneously propagated through time. In particular, GPU parallelization of SMC methods is an active field of
research in computational statistics. Future advances might boost dramatically these methods and offering tools for
online processing of fluorescence time series.

Many commonly used indicators are nonlinear in the peak amplitude[49]. This type of behavior is not accounted
by the autoregressive model employed in this study, which assumes that action potentials generate an invariant
increase in fluorescence. This work provides a statistical framework generalizable to more specific biophysical models
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of calcium indicators to account for non-linear effects. Accurate descriptions of the calcium probe are likely to increase
the number of parameters, which might introduce issues of model identifiability. Our Bayesian framework offers a
systematic approach to address this issues by integrating current and future data on the kinetics of calcium indicators
into informative priors constraining the Monte Carlo sampler within biophysically relevant parametric regions.

4 Materials and Methods

4.1 Particle Gibbs with ancestor sampling

The PGAS step used in Algorithm 1 to sample latent state trajectories was introduced by Lindsten et al in Ref. [48]
to improve the performance of the original particle Gibbs sampler[47]. We refer to their original works for details on
convergence and mixing properties of the method. The PGAS step is a SMC algorithm that generate a new latent
state trajectory starting from a reference trajectory and the model parameters. We initialize the algorithm with a set
of N latent states (particles) at time t = 1,

X
(i)
1 = {q(i)

1 , s
(i)
1 , C

(i)
1 , b

(i)
1 } i = 1, · · · , N (15)

where the first N − 1 are sampled from a proposal distribution equal to the probability of the initial state µθ(X1)

µθ(X1) = ρ1(X1) =
(rq1∆)s1

s1!
e−rq1∆ · e

−b21/2
√

2π
δ2(C1 − Ĉ1) (16)

where bursting and baseline firing states q1 = 0, 1 have equal probability and the calcium vector is constrained by the
initial condition of Eq. (5), Ĉ1 ≡ (c0 + AS1, 0) and the model parameter c0. The last particle is constrained by the

reference trajectory X ′. To conclude the initialization stage, we assign importance weights w
(i)
1 to all particles

w
(i)
1 = µθ(X

(i)
1 )gθ(F1|X(i)

1 )/ρ1(X(i)), i = 1, · · · , N. (17)

Next, for t > 1, we evolve the particle system through time by assigning ancestor particles {X̃(i)
t−1}Ni=1, propagate these

to time t to get a new set of particles {X(i)
1:t}Ni=1 and assigning weights w

(i)
t . For the first N − 1 particles the ancestors

are obtained by multinomial resampling from the particle system at time t − 1 with probability proportional to the

importance weights w
(i)
t−1. The ancestor J of the last particle is drawn from the distribution

P(J = i) =
w

(i)
t−1f

θ
t (X ′t|X

(i)
t−1)∑N

k=1 w
(k)
t−1f

θ
t (X ′t|X

(k)
t−1)

(18)

exploiting the fact that we know its state at time t.
In order to evolve the particle system through time we need to set a proposal distribution ρt(Xt|Xt−1) to sample new

latent states. This proposal is then taken into account in the reweighting stage. Although the choice of the proposal
distribution is arbitrary, it can be shown that the conditional distribution P (Xt|Xt−1, Ft) reduces the variance of the
importance weights. We can express this optimal proposal as

P (Xt|Ft, Xt−1) =
P (Xt, Ft|Xt−1)∫
Xt
P (Xt, Ft|Xt−1)

=
fθt (Xt|Xt−1)gθt (Ft|Xt)

Zθ(Xt−1, Ft)
(19)

where Zθ(Xt−1, Ft) is the normalization factor as a function of the latent state at time t− 1 and current fluorescence
Ft. We can now use the expressions of fθt and gθt in Eqs. (11,12) for our model to compute the optimal proposal
distribution. To do so we decompose P (Xt|Xt−1, Ft) as the product

P (Xt = {qt, st, Ct, bt}|Xt−1, Ft) = P (qt, st|Xt−1, Ft) · P (Ct|Ct−1, st) · P (bt|qt, st, Ct, Xt−1, Ft) (20)

where we used the fact that Ct is deterministic and only depends on Ct−1 and the spike count at time t. The idea is
to use this chain decomposition to sample first the firing state qt and the spike count st, then calculate Ct from its
deterministic evolution and finally sample the baseline bt from its distribution conditional to the other variables. The
first term P (qt, st|Xt−1) can be obtained by integrating the product fθt (Xt|Xt−1)gθt (Ft|Xt) over bt and Ct and then
normalizing the result. The integration over bt and Ct leads to∫

dbtdCt f
θ
t (Xt|Xt−1)gθt (Ft|Xt) =

∫
dbtdCtδ

(2)(Ct −M · Ct−1 −ASt) ·Wqt−1qt

(rqt∆)st

st!
e−rqt∆·

· (2π∆σ2
b )−1/2 exp

(
− 1

2∆σ2
b

(bt − bt−1)2

)
· (2πσ2)−1/2 · exp

[
− 1

2σ2
(Ft − ct − bt)2

]
= Wqt−1qt

(rqt∆)st

st!
e−rqt∆ · I(bt−1, Ft − ct,∆σ2

b , σ
2) (21)
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where we introduced the function I(y1, y2, σ
2
1 , σ

2
2) as the integral

I(y1, y2, σ
2
1 , σ

2
2) = (2πσ2

1)−1/2(2πσ2
2)−1/2

∫
dxe
− (x−y1)2

2σ21
− (x−y2)2

2σ22 =
exp

[
− 1

2
(y1−y2)2

σ2
1+σ2

2

]
√

2π(σ2
1 + σ2

2)
(22)

The normalization factor Zθ(Xt−1, Ft) is obtained by taking the sum of Eq. (21) over firing state and spike count:

Zθ(Xt−1, Ft) =
∑

q′∈{0,1}

∞∑
s′=0

Wqt−1q′
(rq′∆)s

′

s′!
e−rq′∆ · I(bt−1, Ft − ct,∆σ2

b , σ
2). (23)

To draw a combination of qt and st from this distribution we applied a cutoff to the number of spikes per time step
S(max) = 20 and constructed a probability matrix of size 2 × S(max) for all combinations of firing state and spike
count.

To obtain the full conditional distribution of bt we consider again the product fθt (Xt|Xt−1)gθt (Ft|Xt) and by keeping
only terms in bt and normalizing we obtained a Gaussian distribution with mean µprop and variance σprop given by

µprop =
bt−1σ

2 + (Ft − ct)σ2
b∆

σ2 + σ2
b∆

(24)

σ2
prop =

(
1

σ2
+

1

σ2
b∆

)−1

. (25)

The final step is to reweight all particles according using the importance weight

w
(i)
t = fθt (X

(i)
t |X̃

(i)
t−1)gθt (Ft|X(i)

t )/ρt(X
(i)
t |X̃

(i)
t−1) (26)

However, due to the form of the optimal proposal in Eq. (19) the importance weights reduce to the normalization
factor calculated in Eq. (23)

w(i) = Zθ(X
(i)
t−1, Ft) (27)

Algorithm 2 PGAS kernel

Input: reference trajectory X ′1:T , and model parameters θ

1: Draw X
(i)
1 from the poposal distribution ρ1 for i = 1, · · · , N − 1

2: Set X
(N)
1 = X ′1

3: Set importance weights w
(n)
1 = µθ(X

(n)
1 )gθ(F1|X(n)

1 )/ρ1(X(n)) for n = 1, · · · , N
4: for t in 2:T do

// Resampling and ancestor sampling

5: Resample N − 1 particles {X̃(i)
1:t−1}

N−1
i=1 with probabilities proportional to the importance weights {w(i)

t−1}Ni=1

6: Draw J with probability P(J = i) ∝ w(i)
t−1f

θ
t (X ′t|X

(i)
t−1) and set X̃

(N)
1:t−1 = X

(J)
1:t−1

// Particle propagation

7: Draw X
(i)
t from the proposal distribution ρt(Xt|X̃(i)

t−1) for i = 1, · · · , N − 1

8: Set X
(N)
t = X ′t

9: Set X
(i)
1:t = (X̃

(i)
1:t−1, X

(i)
t ) for i = 1, · · · , N

// Weighting

10: Set w
(i)
t = fθt (X

(i)
t |X̃

(i)
t−1)gθt (Ft|X(i)

t )/ρt(X
(i)
t |X̃

(i)
t−1) for i = 1, · · · , N

11: Draw k with P(k = i) ∝ w(i)
T

Output: X
(k)
1:T

4.2 Prior distributions

As discussed in the text, we use a reparameterization of the autoregressive model in terms of the maximal amplitude
A(max), rise and decay times τr and τd, for which it is easier to design realistic prior distributions based on previous
empirical estimates of the kinetics of calcium indicators. We have used truncated normal priors for the maximal
amplitude, the initial condition of the autoregressive model c0, rise and decay time. In order to calculate the full
conditional distributions on bursting/baseline firing rates r0,1 and the transition matrix parameters wq→q′ we have
used a gamma distribution, whereas for the noise level σ2 an inverse gamma distribution.
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4.3 Sampling rules for static parameters

In Algorithm 1, after a new latent state trajectory is sampled from the PGAS kernel, we draw static model parameters
from the conditional distribution P (θi|X1:T , F1:T ). We use a mixed approach where the parameters r0,1, wq→q′ and
σ2 are sampled from their full conditional distribution, which can be obtained analytically by using gamma priors,
while kernel parameters, A(max) and τr,d, are sampled using the Metropolis-Hastings acceptance rule.

The full conditional distribution of a given parameter can be obtained from the joint probability of model param-
eters, latent state and fluorescence trajectories

P (θ) · Pθ(X1:T , F1:T |θ) (28)

where P (θ) is the prior distribution. We will now calculate the full conditionals for firing rates rq, transition parameters
wq→q′ and noise variance σ2. For simplicity we will use the same symbols for shape, α, and rate, β of all prior
distributions, although they differ numerically for each parameter. By combining the expressions in Eqs.(10), (11)
and (12) with the gamma prior gamma(α, β) and by keeping only terms proportional to r0,1 we obtain

P (rq| · · · ) ∝ rα−1
q e−βrq−rq∆T r

∑
t:qt=q

st
q (29)

therefore the full conditional is a gamma distribution with updated parameters

α′ = α+
∑
t:qt=q

st (30)

β′ = β + ∆T (31)

By applying the same method to the transition rates wq→q′ we have

P (wq→q′ | · · · ) ∝ wα−1
q→q′e

−βwq→q′w
Nqq′

q→q′(1−∆wq→q′)
Nqq ≈ wα+Nqq′−1

q→q′ e−(β+∆Nqq)wq→q′ (32)

where the approximation holds when the transition rate between firing states is much slower than the sampling
frequency (wq→q′ � ∆−1). Therefore the full conditional is again a gamma distribution with parameters

α′ = α+Nqq′ (33)

β′ = β + ∆Nqq (34)

For the noise variance parameter we used an inverse gamma prior and by applying the same method we can compute
the full conditional as

P (σ2| · · · ) ∝ (σ2)−α−1−T/2 exp

(
− β

σ2
− 1

2σ2

∑
t

(Ft − ct − bt)2

)
(35)

therefore the updated shape and rate of the inverse gamma are

α′ = α+ T/2 (36)

β′ = β +
1

2

∑
t

(Ft − ct − bt)2 (37)

4.4 Response kernel

The response to a single spike can be obtained by writing Eq. (3) in the form of a first order Markov process in terms
of the new variables Ct ≡ [ct, ct−1] and St ≡ [st, 0] so that

Ct = M · Ct−1 +ASt, M =

[
γ1 γ2

1 0

]
(38)

with the initial condition C1 = [c0 +AS1, 0]. We can now write the solution at time t as

Ct = M t−1C1 +A
t∑

k=2

M t−kSk. (39)

If st = δt,1 and c0 = 0 then Eq. (39) simplifies to

Ct = AM t−1

[
1
0

]
. (40)
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By introducing eigenvectors and eigenvalues of M

γ± ≡
γ1 ±

√
γ2

1 + 4γ2

2
, e± ≡

[
γ±
1

]
(41)

we can express Eq. (40) as

Ct = AM t−1

(
e+ − e−
γ+ − γ−

)
= A

(
γt−1

+ e+ − γt−1
− e−

γ+ − γ−

)
(42)

therefore we have

ct = A

(
γt+ − γt−
γ+ − γ−

)
. (43)

By setting the time derivative of ct to zero we obtain the time to reach the maximal response τr as

τr =
log
(
g+
g−

)
g− − g+

, g± = log γ± (44)

whereas if we take the long time limit of Eq. (40) we obtain

ct = Aγt+[1− (γ−/γ+)t] ≈ Aet/τd , τd = − 1

g+
(45)

4.5 Reparameterization

To reparameterize the autoregressive model in terms of kinetic parameters we need to find the inverse map τr,d → γ1,2

to obtain the original autoregressive parameters given rise and decay times. By combining the expressions of τr and
τd in terms of g± we have

τr
τd

=
log g−

g+
g−
g+
− 1

(46)

which shows that the ratio g−/g+ can be expressed as

g−
g+

= f−1

(
τr
τd

)
, f(x) =

log(x)

x− 1
(47)

where the inverse function f−1(x) can be determined by numerical interpolation in the range [0,1]. To obtain the
original autoregressive parameteres γ1,2 we first obtain g± as

g+ = − 1

τd
(48)

g− = g+ · f−1

(
τr
τd

)
(49)

and then

γ1 = eg+ + eg− (50)

γ2 = −eg++g− (51)

4.6 Experimental methods

GcaMP8f virus injection in the cerebellar vermis. Virus injection was targeted to Lobe X (6.75 mm posterior to
Bregma; 0 mm lateral to the midline; vertical depth 2.42 mm from pial surface) under deep isofluorane anesthesia. 100
nl of adeno-associated virus encoding GcaMP8f (AAV1-syn-GCaMP8f-WPRE, Janelia Research Campus) was injected
with Nanoject III (Drummond Scientific) using thin glass pipette (diameter ∼30 µm). Injection was made when the
C57BL/6J-Gabra6tm2(cre)Wwis Shank3tm1Tmb mouse is 5 months old. After injection mouse was returned to its
home cage for 8 weeks to allow time for expression.

Slice Preparation. Acute coronal slices (200 µm) of cerebellar vermis were prepared from adult CB6F1 mouse, aged
118 days. Following transcardial perfusion with an ice-cold solution containing (in mM): 2.5 KCl, 0.5 CaCl2, 4 MgCl2,
1.25 NaH2PO4, 24 NaHCO3, 25 glucose, 230 sucrose, and 0.5 ascorbic acid, the brains were removed and placed in
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the same solution. The solution was bubbled with 95% O2 and 5% CO2. Slices were cut from the dissected cerebellar
vermis using a vibratome (Leica VT1200S), and incubated at room temperature for 30 min in a solution containing
(in mM): 85 NaCl, 2.5 KCl, 0.5 CaCl2, 4 MgCl2, 1.25 NaH2PO4, 24 NaHCO3, 25 glucose, 75 sucrose and 0.5 ascorbic
acid. Slices were then transferred to an external recording solution containing (in mM): 125 NaCl, 2.5 KCl, 1.5 CaCl2,
1.5 MgCl2, 1.25 NaH2PO4, 24 NaHCO3, 25 glucose and 0.5 ascorbic acid, and maintained at room temperature for
up to 6 hr.

Cellular Imaging. The brain slices containing GCaMP8f expressing cells were identified with a 4x objective lens
(Olympus UplanFI 4x, 0.13 NA) using very brief illumination with 470 nm light to excite GcaMP8f fluorescence.
GCs were identified using infrared Dodt-gradient contrast and a QlClick digital CCD camera (QImaging, Surrey, BC,
Canada) mounted on an Ultima multiphoton microscopy system (Bruker Nano Surfaces Division, Middleton, WI, USA)
that was mounted on an Olympus BX61W1 microscope, equipped with a water-immersion objective (Olympus 60Ö,
1.1 NA). Two-photon excitation was performed with a Ti-sapphire laser (Spectraphysics). To visualize GCs expressing
GcaMP8f, two-photon excitation was performed at 920 nm. Infrared Dodt-gradiend contrast was used to position the
stimulation pipette in molecular layer targeting PF to directly activate GC bodies. Linescan imaging of GC bodies was
performed by scaning through the whole cell membrane marked by freehand linescan mode (Prairie View). Total laser
illumination per sweep lasted 2000 ms. Fluorescence was detected using both proximal epifluorescence and substage
photomultiplier tube gallium arsenide phosphide (H7422PA-40 SEL, Hamamatsu).
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Accurate spike estimation from noisy calcium signals for ultrafast three-dimensional imaging of large neuronal populations in vivo.
Nature communications, 7(1):1–17, 2016.

[30] Alyson K Fletcher and Sundeep Rangan. Scalable inference for neuronal connectivity from calcium imaging. arXiv preprint
arXiv:1409.0289, 2014.

[31] Abbas Kazemipour, Ji Liu, Krystyna Solarana, Daniel A Nagode, Patrick O Kanold, Min Wu, and Behtash Babadi. Fast and stable
signal deconvolution via compressible state-space models. IEEE Transactions on Biomedical Engineering, 65(1):74–86, 2017.

[32] Takamasa Tsunoda, Toshiaki Omori, Hiroyoshi Miyakawa, Masato Okada, and Toru Aonishi. Estimation of intracellular calcium ion
concentration by nonlinear state space modeling and expectation-maximization algorithm for parameter estimation. Journal of the
Physical Society of Japan, 79(12):124801, 2010.

[33] Yuriy Mishchencko, Joshua T Vogelstein, and Liam Paninski. A bayesian approach for inferring neuronal connectivity from calcium
fluorescent imaging data. The Annals of Applied Statistics, pages 1229–1261, 2011.

[34] Eftychios A Pnevmatikakis, Josh Merel, Ari Pakman, and Liam Paninski. Bayesian spike inference from calcium imaging data. In
2013 Asilomar Conference on Signals, Systems and Computers, pages 349–353. IEEE, 2013.

[35] Yuriy Mishchenko and Liam Paninski. Efficient methods for sampling spike trains in networks of coupled neurons. The Annals of
Applied Statistics, pages 1893–1919, 2011.

[36] Quentin JM Huys and Liam Paninski. Smoothing of, and parameter estimation from, noisy biophysical recordings. PLoS computational
biology, 5(5):e1000379, 2009.

[37] Joshua T Vogelstein, Brendon O Watson, Adam M Packer, Rafael Yuste, Bruno Jedynak, and Liam Paninski. Spike inference from
calcium imaging using sequential monte carlo methods. Biophysical journal, 97(2):636–655, 2009.
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