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Thomas Sabaté 1,2,3,*, Benoı̂t Lelandais1,4, Edouard Bertrand2,† and Christophe Zimmer1,*,†
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F-75015 Paris, France

Received June 02, 2022; Revised December 03, 2022; Editorial Decision January 03, 2023; Accepted January 25, 2023

ABSTRACT

Genome-wide chromosome conformation capture
(Hi-C) has revealed the organization of chromatin into
topologically associating domains (TADs) and loops,
which are thought to help regulate genome func-
tions. TADs and loops are understood as the result
of DNA extrusion mediated by the cohesin complex.
However, despite recent efforts, direct visualization
and quantification of this process in single cells re-
mains an open challenge. Here, we use polymer sim-
ulations and dedicated analysis methods to explore
if, and under which conditions, DNA loop extrusion
can be detected and quantitatively characterized by
imaging pairs of fluorescently labeled loci located
near loop or TAD anchors in fixed or living cells. We
find that under realistic conditions, extrusion can be
detected and the frequency of loop formation can be
quantified from fixed cell images alone, while the life-
time of loops and the speed of extrusion can be es-
timated from dynamic live-cell data. Our delineation
of appropriate imaging conditions and the proposed
analytical methods lay the groundwork for a system-
atic quantitative characterization of loop extrusion in
fixed or living cells.

INTRODUCTION

Over the last decade, much progress has been made in un-
derstanding the three-dimensional organization of chro-
matin, thanks to powerful genomic techniques such as Hi-
C (1), which provides genome-wide maps of DNA–DNA
contact frequencies (2,3). A notable milestone was the dis-
covery of topologically associating domains (TADs) (4,5),
sub-megabase scale regions of enhanced chromatin contacts
that appear as blocks on the diagonal of Hi-C maps and
that are believed to help regulate gene expression by facili-

tating - or on the contrary impeding - enhancer-promoter
interactions (6–15). TADs are often associated with off-
diagonal peaks (or ‘corner dots’) in the Hi-C maps, reflect-
ing enriched contacts between the two distant loci that de-
fine the TAD boundaries (hereafter called ‘anchors’), and
which are interpreted as chromatin loops. TAD or loop an-
chors are typically binding sites for the insulator protein
CTCF (1) (with convergent orientation of the CTCF mo-
tifs) and TADs with corner dots (also called loop domains)
depend on the ring-like cohesin complex, as they disappear
upon cohesin removal (16). The formation of TADs and
corner dots is now understood as the result of DNA loop
extrusion mediated by the cohesin complex (2,3,17–20). In
this process, the cohesin ring complex binds to DNA and
progressively pulls out a loop of chromatin, until the com-
plex unbinds or stops extruding at obstacles such as CTCF-
bound anchor loci. At this point, the loop is temporarily
stabilized until the cohesin complex or CTCF dissociate and
the anchors detach from each other (21,22). This extrusion
mechanism is supported by several lines of evidence, includ-
ing polymer modeling (19,20,23), Hi-C studies where co-
hesin (16), CTCF or other regulators of the cohesin com-
plex are experimentally depleted (18,24,25), as well as direct
visualization of cohesin-mediated DNA extrusion in vitro
(17,26). The dynamic nature of TADs and loops is further
supported by multiplexed DNA FISH studies, which under-
lined the high cell-to-cell heterogeneity in chromatin struc-
ture within TADs or loops (27–32), and by single-molecule
tracking of CTCF and the cohesin subunit RAD21, which
showed that these factors have residence times on chromatin
orders of magnitude shorter than the cell cycle (1–2 min for
CTCF and 22 min for RAD21) (33).

Despite these studies, visualizing and characterizing the
dynamic process of loop extrusion directly in single living
cells remains a largely unaddressed challenge (34), except
for two very recent reports (35,36). A seemingly straight-
forward experimental approach to visualize loop extru-
sion in living cells is to track two loop anchors with light
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microscopy, using distinct fluorescent reporters located at
or near each anchor, and to monitor the progressive de-
crease of the reporter-reporter distance that is expected to
result from extrusion (37). Fluorescent labeling of anchors
can be achieved using DNA FISH probes in fixed cells (28),
while arrays of repeats (38), dead Cas9 (39–41) or parS-
parB (42) can be used to label loci both in fixed and living
cells. In practice, however, direct visualization of extrusion
by tracking fluorescent loci is complicated by several biolog-
ical and experimental sources of uncertainty. These include:
(i) unavoidable errors in computing spatial coordinates and
distances between genomic loci from noisy imaging data,
(ii) photobleaching, which limits the number of time points
over which loci can be tracked with sufficient signal inten-
sity for accurate localization, (iii) the size of fluorescent la-
bels and the distance of fluorescent reporters to the an-
chors (hereafter called reporter–anchor separation), (iv) the
stochastic movements of chromatin, which can bring to-
gether genomically distant loci in space even in absence of
any active process such as loop extrusion, (v) the potential
rarity of extrusion events and by consequence the poten-
tially large number of cells that must be analyzed to accu-
rately characterize statistical parameters such as the average
lifetime of loops. Because of these complicating factors, it is
not a priori evident whether loop extrusion can be unam-
biguously visualized by imaging at all, and if it can, under
what experimental conditions, and whether key biophysical
parameters of loop extrusion can be quantified. Here, we
aim to clarify these requirements considering basic expecta-
tions from polymer dynamics, taking into account available
Hi-C data, and considering various technical limitations of
imaging techniques. We approach this by (i) simulating re-
alistic distributions and time series of anchor–anchor dis-
tances, (ii) proposing analytical methods to characterize
loop extrusion from these data and (iii) quantitatively test-
ing these methods on the simulations. Our results will guide
future experimental work aiming to quantify loop extrusion
and its dynamics in fixed and living cells.

MATERIALS AND METHODS

Our study involves (i) numerical simulations of polymers
undergoing loop extrusion, (ii) analytical models of proba-
bility distributions of anchor–anchor vectors and distances,
(iii) analyses of simulated data, and (iv) analysis of experi-
mental data from Hi-C, ChIP-seq or imaging. The following
provides details on these four methodological parts.

Polymer simulations with loop extrusion

Langevin dynamics simulations. We used polymer simu-
lations to model the dynamics of a chromatin fiber seg-
ment subjected or not to loop extrusion. The simulated
polymer consisted of 600 beads, and polymer motions
were simulated with Langevin dynamics in fixed boundary
conditions using LAMMPS (43). Consecutive beads were
connected by a harmonic bond with a potential Ebond =
30(r − 1)2, where r is the distance between bead centers.

The polymer stiffness was modeled using a harmonic po-
tential Ebending = K0 (θ − θ0)2, where K0 is the stiffness
parameter (set to K0 = 0.1), θ is the angle between three

consecutive beads and θ0 = 180◦ is the equilibrium value
(corresponding to three aligned beads). We verified that
the contact frequencies did not strongly depend on the ex-
act value of K0 (see section ‘Simulated contact frequency
maps’ below). By default, the polymer was confined in a
sphere of radius 18 bead diameters using the energy poten-
tial Ewall = 4[( σ

R)12 − ( σ
R)6] for R < Rc, where R is the dis-

tance between the surface of the confining sphere and the
center of a bead, σ is a size factor set to 0.5 bead diame-
ters and Rc is the cutoff distance set to 0.5 bead diameters
(for R ≥ Rc, Ewall = 0). This confinement implied a volume
occupancy ratio of the polymer of � = 1.3%. While this is
much lower than estimates of chromatin volume occupancy
in vivo (∼10–15%) (44–46), this discrepancy is not critical
given the consistency of our simulation predictions with Hi-
C and imaging data (see Results sections ‘Comparing poly-
mer simulations to Hi-C data’ and ‘Comparing polymer
simulations to imaging data’). We considered the polymer
to be equilibrated when its radius of gyration and end-to-
end distance were both stabilized, which was the case after
∼7.5 million time steps (Supplementary Figure S1A, B). Af-
ter this, we recorded the positions of each bead every 1000
time steps until the end of the simulation (≈12 million time
steps). Polymer coordinates were imported for further anal-
ysis in Python using MDAnalysis (47).

In order to convert simulation time and space dimensions
to physical units, we compared Mean Squared Displace-
ment (MSD) from simulations to experimental MSD curves
of chromatin loci tracked by live-cell microscopy (40,41,48).
This comparison led to the conversion of 1000 simulation
time steps to 0.3 s and of 1 bead diameter to 2r0 = 50 nm.
Assuming a chromatin compaction of C = 60 bp/nm (49),
as previously estimated by comparing simulation predic-
tions to experimental data in yeast, this implies that 1 bead
corresponds to g = 2r0C = 3 kb and the entire 600 bead
polymer to 1800 kb of chromatin.

Simulating loop extrusion. To model loop extrusion, we
forced the formation of a harmonic bond between non-
consecutive beads. We assumed that loop extrusion ini-
tially occurs bidirectionally (17,26), i.e. that if beads i and
j (i < j ) are bonded at time t, then beads i − 1 and j +
1 are bonded at time t + �t (while the bond between beads
i and j is deleted), where �t is the time needed to ex-
trude two beads (Supplementary Figure S2A). The speed
of loop extrusion (in base pairs per seconds) is thus defined
as V0 = 2g/�t. By default, our simulations assumed that
extrusion started at a random location between the beads
representing the anchors (extrusion barriers) and proceeded
bidirectionally at V0 = 1 kb/s (17,26) until reaching an an-
chor. Thereafter, loop extrusion proceeded unidirectionally,
at the halved speed V0/2 = 0.5 kb/s until reaching the sec-
ond anchor (18,50–52), whereupon extrusion stopped (Sup-
plementary Figure S2A). By default, we then maintained
the bond between the two anchor beads until the end of
the simulation. However, for simulations used in the Re-
sults sections ‘Quantifying closed loop lifetimes from live-
cell trajectories’ and ‘Quantifying the speed of loop extru-
sion from live-cell trajectories’, the time spent in the closed
state (i.e. when the anchors are maintained in contact by
a bond) was drawn from a truncated exponential distribu-
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tion. At the end of the closed state, the bond linking the two
anchors was deleted and the polymer was allowed to relax
without loops until the end of the simulation. We simulated
loops ranging from 150 kb to 990 kb in size, and defined the
positions of the anchor beads using the following bead in-
dexes: 150 kb loops: {275, 324}, 228 kb loops: {262, 337},
300 kb loops: {250, 349}, 450 kb loops: {225, 374}, 504 kb
loops: {216, 383}, 600 kb loops: {200, 399}, 702 kb loops:
{183, 416}, 798 kb loops: {167, 432}, 990 kb loops: {135,
464}.

For Supplementary Figure S11, and unlike elsewhere in
the paper, we performed simulations where extrusion always
started in the middle of the loop and proceeded bidirec-
tionally at constant speed, until both anchors were reached
simultaneously. This was done to ensure that extrusion
started and ended at the same time in all cases, which fa-
cilitated the comparison of simulations with the theoretical
linear model (see Eq. (3) and Supplementary Figure S10B,
green dashed line). For each value of these parameters, four
hundred synchronized time series were averaged together.
We simulated loops of 150 kb, 300 kb, and 600 kb extrud-
ing at speeds of 0.2, 1 and 5 kb/s, and loops of 990 kb ex-
truding at speeds of 1 and 5 kb/s. We also repeated these
simulations with much weaker confinement (using a sphere
of radius 150 rather than 18 bead diameters).

Analytical models

Anchor–anchor vector distributions. In the Results sec-
tion ‘Estimating the fraction of loop states from static
imaging data’, we used an analytical model to estimate
the fractions of loops in open vs extruding vs closed
states (these states correspond respectively to absence
of loops, loops whose size increases with time, and to
a stable loop with the two anchors in contact) based
on the measured coordinates of anchor–anchor vectors.
This model is based on the basic properties of an ideal
polymer chain, for which the anchor–anchor vector �R =
(δx; δy; δz) is a random variable that obeys the normal prob-

abilitydensity: P
(

�R; σ
)

= Px (δx; σ ) Py (δy; σ ) Pz (δz; σ )

with: Pw(δw; σ ) = (
√

2πσ )
−1

exp(− δw2

2σ 2 ) for each coordi-
nate w ∈ {x, y, z} and where the variance σ 2 is proportional
to the number Nb of Kuhn lengths b separating the anchors
and is given by σ 2 = Nbb2/3. This implies that : P( �R; σ ) =
(2πσ 2)

− 3
2 exp(− R2

2σ 2 ) and the mean squared anchor–anchor
distance (MSAAD) is given by:

〈
R2

〉 = Nbb2, where the
brackets denote statistical averaging. In presence of a loop,
we assume that the parts of the polymer outside the loop be-
have as if the part within the loop was absent, thereby short-
ening the number of Kuhn lengths between the anchors.
Note that in the absence of bending stiffness (K0 = 0), the
Kuhn length coincides with the bead diameter (b = 2r0 =
50 nm), which for an anchor–anchor separation of 150 kb,
corresponding to 150/g = 50 beads and 49 Kuhn lengths

would imply σopen =
√

Nbb2

3 ≈ 202 nm. However, because
of the bending potential Ebending assumed above, the vari-
ance measured on simulated data is slightly larger, namely
σopen = 216 nm, implying a slightly larger Kuhn length of

b = 53.5 nm. Also note that the finite bead radius of r0 = 25
nm used in our simulations affects anchor-to-anchor vec-
tors in the closed state and at the end of the extruding phase,
since distances between anchors fluctuate around 2r0 = 50
nm. To avoid this bias, which is not accounted for by the
above analytical model, we shortened the anchor–anchor
distances predicted by the simulations in the closed state by
50 nm, and between 0 and up to 50 nm for the last 60 time
points of the extruding state. After this correction, in the
closed state, measurement of the MSAAD led to a small
value of σclosed ≈ 7 nm.

The number of Kuhn lengths Nb between the two anchors
depends on the loop state. It is largest (Nb = N0) when the
loop is open, equals zero when the loop is closed, and as-
sumes intermediate values during extrusion.

The above model for anchor–anchor vectors applies to
the open state with σ 2

open = N0b2/3 and to the closed state
with σ 2

closed 
 σ 2
open. Hence:⎧⎪⎨

⎪⎩
Popen

w (δw) = 1

(2π )
1
2 σopen

exp
(
− δw2

2σ 2
open

)
Pclosed

w (δw) = 1

(2π )
1
2 σclosed

exp
(
− δw2

2σ 2
closed

)
In the extruding state, the number of Kuhn lengths con-

tinuously varies from N0 to 0. As a result, the probability
density Pextruding

w (δw) is an integral over σ 2 varying from
σ 2

closed up to σ 2
open. If the speed of extrusion was constant,

then loops of all sizes (from Nb = 0 to Nb = N0) would be
represented equally in the integral, such that:

Pextruding
w (δw) =

σ 2
open∫

σ 2
closed

Pw(δw; s)ds2

= 1

(2π )
1
2

σ 2
open∫

σ 2
closed

1
s

exp(−δw2

2s2
)ds2.

A complication arises from the fact that the speed of ex-
trusion is halved once the extrusion complex reaches one of
the two anchors and extrusion switches from bidirectional
to unidirectional. As a consequence, extruding states with
unidirectional extrusion are twice more frequent than states
with bidirectional extrusion, leading to twice more frequent
cases where Nb = 0 than where Nb = N0. To take this into
account, we introduce a weighting factor D(σ ) in the inte-
gral, such that:

Pextruding
w (δw) =

σ 2
open∫

σ 2
closed

D(s)Pw(δw; s)ds2

= 1

(2π )
1
2

σ 2
open∫

σ 2
closed

D(s)
s

exp(−δw2

2s2
)ds2.

Assuming that extrusion is initiated at uniformly random
locations between the two anchors, D(σ ) increases linearly
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with σ 2 between σ 2
open and σ 2

closed, such that:

D (σ ) = 2σ 2
open − σ 2

closed − σ 2

3
2σ 4

open + 3
2σ 4

closed − 3σ 2
closedσ

2
open

This equation can be derived by considering a linear func-
tion that equals 2 when σ = σclose and 1 when σ = σopen and
whose integral between σ 2

close and σ 2
open equals 1 (to ensure

that it is a probability density).
In practice, the coordinates of anchors (or nearby fluo-

rescent reporters) are not perfectly known, but are com-
puted from noisy images. Because of noise, these coordi-
nates are estimated with a finite precision, which is usually
different along the axial and lateral directions of the micro-
scope. To reflect this, we assumed that coordinates are per-
turbed by random, normally distributed anisotropic errors
(hereafter called localization errors), with standard devia-
tions σw along each axis w ∈ {x, y, z}. This leads to the fol-
lowing modified equations for the probability densities of
anchor–anchor coordinate differences in each of the three
loop states:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Popen
w (δw) = 1

(2π)
1
2
√

σ 2
open+2σ 2

w

exp
(
− δw2

2σ 2
open+4σ 2

w

)
Pclosed

w (δw) = 1

(2π)
1
2
√

σ 2
closed+2σ 2

w

exp
(
− δw2

2σ 2
closed+4σ 2

w

)

Pextruding
w (δw) = 1

(2π )
1
2

σ 2
open∫

σ 2
closed

D(s)√
s2+2σ 2

w

exp
(
− δw2

2s2+4σ 2
w

)
ds2

(1)

For a combination of the three states with fractions
Aclosed, Aopen and Aextruding = 1 − Aclosed − Aopen, the full
probability density of anchor–anchor coordinate differ-
ences reads:

Pw (δw) = Aclosed Pclosed
w (δw) + Aopen Popen

w (δw)

+ Aextruding Pextruding
w (δw) (2)

Mean anchor–anchor distance as function of time. In the
Results section ‘Quantifying the speed of loop extru-
sion from live-cell trajectories’, we analyzed time series of
anchor–anchor distances using an analytical model of the
MSAAD

〈
R2

〉
(t) as function of time. For a given time series,

we defined t = 0 as the time point when extrusion stops,
i.e. the start of the closed state. We further assumed, as
above, that the MSAAD obeys the properties of an ideal
polymer chain whose length (i.e. its number of monomers) is
diminished by the length of the loop. Accordingly, if extru-
sion proceeded at a constant speed V0, then the number of
Kuhn lengths between the two anchors would decay linearly
with time as Nb(t) = N0(V0/s0)(−t) for t ∈ [− s0

V0
, 0], where

N0 is the number of Kuhn lengths in the open state and s0
is the genomic distance between the anchors, in base pairs.

Under the assumptions above, and ignoring localization
errors, we have

〈
R2

〉
(t) = Nb(t)b2=Nb(t)/N0 R2

0, where R2
0 is

the MSAAD in the open state (before extrusion starts). Be-
cause of random localization errors, the measured MSAAD
is

〈
R2

〉
(t) = Nb(t)/N0 R2

0 + R2
loc, where R2

loc = 4σ 2
x,y + 2σ 2

z is
the contribution of random localization errors.

Thus, for a constant extrusion speed V0, the MSAAD
obeys the following linear law:〈

R2〉 (t) = R2
0 (V0/s0) (−t) + R2

loc (3)

However, we assumed that loop extrusion switches from
bidirectional to unidirectional, and the speed of extrusion
changes from V0 to V0

2 , which leads to a non-linear depen-
dence of the MSAAD with time (Supplementary Figure
S10A). For any given set of time series with the same ex-
trusion initiation site, the MSAAD is bounded by R2

0 and
d2

1 = R2
0

V0(−t)
2s0

for times t ≤ − s0
V0

, whereas it is bounded by

d2
1 and d2

2 = R2
0

V0(−t)
s0

for times t ≥ − s0
V0

(Supplementary
Figure S10B).

We now denote as
〈〈

R2
〉〉

(t) the ensemble average of the
MSAAD (EMSAAD) over many time series, still assum-
ing that t = 0 is the start of the closed state for all time se-
ries. The theoretical EMSAAD can be derived under the
assumption that extrusion is initiated with uniform ran-
dom probability between the two anchors. With this as-
sumption, for times t ≤ − s0

V0
, the MSAAD equals R2

0 with

probability p1(t) = − 3V0t
4s0

− 1
2 and equals d2

1 with proba-
bility 1 − p1(t) (Supplementary Figure S10C). Thus, for
t ≤ − s0

V0
, we have:

〈〈
R2

〉〉
(t) = p1(t)R2

0 + (1 − p1(t))d2
1 . For

times t ≥ − s0
V0

, the MSAAD equals d2
2 with probability

p2(t) = − V0t
4s0

and equals d2
1 with probability 1 − p2(t) (Sup-

plementary Figure S10C), hence
〈〈

R2
〉〉

(t) = p2(t) d2
2 + (1 −

p2(t))d2
1 . This leads to a complete, parameter-free model for

the EMSAAD at all times:

〈〈
R2〉〉 (t) =

⎧⎨
⎩

−R2
0

(
3V0t
2s0

(
V0t
4s0

+ 1
)

+ 1
2

)
+ R2

loc if t < t0

R2
0

V0t
2s0

(
V0t
4s0

− 1
)

+ R2
loc if t0 ≤ t ≤ 0

(4)

where t0 = −s0/V0 . Note that for t = t0, the EMSAAD
is:

〈〈
R2

〉〉
(t = t0) = 5

8 R2
0 + R2

loc.

Analysis of simulated data

Simulated contact frequency maps. To predict chromatin
contact frequency maps for comparison with Hi-C data,
we used ensembles of simulated polymer conformations as
follows. For simulations of 300 kb loops or larger, we gen-
erated 2500 independent simulations and randomly picked
80 polymer conformations per trajectory, yielding 200 000
single conformations in total. For 150 and 228 kb loops,
we randomly picked 50 conformations from 4000 indepen-
dent simulations, also resulting in 200 000 single conforma-
tions in total. Predicting a contact map from an ensemble
of polymer conformations requires to define a capture ra-
dius (i.e. a threshold for the spatial distance between bead
centers below which any pair of beads generates a contact
event). To determine this radius, we first computed contact
maps at 3 kb resolution for various radii, then calculated
the average contact frequency along each diagonal of the
contact map as function of genomic separation, P(s). We
compared simulated P(s) curves to the experimental Hi-C
counterpart over the range s ∈ [5, 300] kb. We achieved the
best match for a capture radius of 3 beads (150 nm) (Sup-
plementary Figure S2B). This radius agrees with distance
thresholds used in previous studies to reproduce Hi-C maps
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from distances between pairs of loci measured by DNA
FISH (30,31). As mentioned above (section ‘Langevin dy-
namicssimulations’ above), we also verified that changes in
the stiffness parameter K0 around its assumed default value
of 0.1 did not strongly affect simulated P(s) (Supplementary
Figure S2D). Contact frequency maps were normalized by
the total number of conformations.

Contact peak scores. In order to quantitatively compare
the strength of loops in simulated contact maps and Hi-
C data, we defined a peak score as the contact frequency
between the two anchors divided by a background contact
frequency (Figure 2B). For this purpose, the simulated con-
tact maps and the selected Hi-C contact maps (see section
‘Analysis of ChIP-Seq and Hi-C data’ below), with genomic
resolutions of 3 and 5 kb, respectively, were re-binned to a
common resolution of 15 kb and were normalized to a sum
of 1. The background frequency was defined as the average
contact frequency inside a 30 × 30 kb (i.e. 2 × 2 bin) win-
dow located at 30 kb from each anchor and inside the loop
domain (Figure 2B). Peak scores of simulated or experimen-
tal (Hi-C) contact frequency maps were compared using a
one-sample t-test.

Quantification of loop extrusion detectability. The abil-
ity to detect loop extrusion from anchor–anchor distances
measured in fluorescence microscopy images depends on
different parameters that include loop size, extrusion speed,
localization precision, reporter–anchor separation, frac-
tions of loop states (open, extruding and closed) and the
sample size. To assess the ability to detect loop extrusion for
a given set of parameters, we randomly picked N anchor–
anchor distances from 1000 independent simulation tra-
jectories, each containing 3400 time points, with or with-
out extrusion (Figure 3A). We compared cumulative dis-
tance distributions with and without extrusion (F(x) and
G(x), respectively) using one-sided Kolmogorov–Smirnov
tests (with the alternative hypothesis F(x)<G(x)). This test
was repeated on 5000 independent random samples of the
two distance distributions. We defined detectability of loop
extrusion as the percentage of Kolmogorov–Smirnov tests
revealing significant differences (P < 0.05 after Benjamini–
Hochberg correction) (53) (Figure 3B).

To mimic reporter–anchor separation (Figure 3C), we
measured the distances between beads that were shifted rel-
ative to the beads representing loop anchors. To mimic lo-
calization errors (Figure 3D), we shifted the (x, y, z) coor-
dinates of the tracked bead centers using random normally
distributed displacements (δx, δy, δz) of mean 0 and stan-
dard deviations σx = σy = σx,y and σz = 2σx,y, respectively,
where the factor 2 reflects the typical anisotropy due to the
axial elongation of widefield or confocal point spread func-
tions (54). To model different loop extrusion speeds (Fig-
ure 3H), we modified the time interval �t after which new
bonds were created during loop extrusion (see section ‘Sim-
ulating loop extrusion’ above).

Fitting theoretical distance models. In the Results section
‘Estimating the fraction of loop states from static imag-
ing data’, we used the theoretical model from (Eq. 2)
above to estimate the three state fractions Aclosed, Aopen

and Aextruding = 1 − Aclosed − Aopen from simulated anchor–
anchor vectors. We randomly picked N anchor–anchor
vectors from 4000 independent simulation trajectories,
each containing 3000 time points and fitted the analyti-
cal model to these data. Because the covariance of P( �R) =
Px(δx)Py(δy)Pz(δz) is zero, rather than fitting this 3D func-
tion to the anchor–anchor vectors �R, we simultaneously fit-
ted the three 1D probability densities Px(δx), Py(δy) and
Pz(δz) (Eq. 2) to the three axial projections of anchor–
anchor vectors (δx,δy and δz), respectively. We performed
these fits using a Python script that employs the curve fit
function of the scipy package (55), with the three propor-
tions initialized to 1/3 each (Aclosed = Aopen = Aextruding =
1
3 ). Note that to perform this fit we assumed the values of
σ 2

open and σ 2
closed defined in section ‘Anchor–anchor vector

distributions’ above to be known (see Discussion).

Segmentation of time series into closed states. In the Re-
sults section ‘Quantifying closed loop lifetimes from live-
cell trajectories’, we analyzed time series of anchor–anchor
distances to estimate the duration of closed states. To do
this, we segmented these time series into intervals of (in-
ferred) closed states based on a spatial and a temporal
threshold (Supplementary Figure S8A). Our procedure to
detect closed states in simulated time series of anchor–
anchor distances as function of time is as follows. First, we
defined the spatial threshold as the 99.9% quantile of the
anchor–anchor distances in the closed state (assumed to be
known independently, see Discussion). The anchor–anchor
distance in the closed state fluctuates around the diameter of
1 bead (50 nm). This is similar to the ∼40 nm diameter of the
cohesin ring (56,57), which may enclose the two anchors in
the closed state (17,26,58,59). Second, from time series ob-
tained in simulations without extrusion, we measured the
duration of time intervals during which the anchor–anchor
distance was always below the spatial threshold (ignoring
intervals reduced to a single time point). We then defined the
temporal threshold as the 99.9% quantile of these time in-
tervals. Within a time series, all time intervals with anchor–
anchor distances below the spatial threshold and with dura-
tions exceeding this temporal threshold were segmented as
closed state intervals. This resulted in binary time series with
values of 1 for inferred closed states and 0 otherwise (i.e. for
open or extruding states). In order to reduce the number of
false negatives in closed state detections due to brief fluctu-
ations of the distance above the spatial threshold, we then
applied a rolling average to this binary time series (with a
temporal window equal to the temporal threshold), and re-
labelled as closed states all timepoints with values above 0.5.

Estimation of the mean closed state lifetime. In the Results
section ‘Quantifying closed loop lifetimes from live-cell tra-
jectories’, we analyzed the segmented time series to esti-
mate the mean lifetime of closed states assuming an expo-
nential distribution of closed states (Figure 5C). This was
done by fitting a 2-parameter linear function to the loga-
rithm of the histogram of the durations of segmented closed
state intervals. In order to reduce the influence of spurious
closed states, we used a robust least-squares fit combined
with a ‘soft L1’ loss function from scipy (55), and the f scale
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parameter set to 0.002. We assessed the quality of the fit
with 4000 bootstrapped samples of 1000 simulations each,
drawn from a total of 10 000 independent simulations (Sup-
plementary Figure S9A).

Estimation of extrusion speed. In the Results section
‘Quantifying the speed of loop extrusion from live-cell tra-
jectories’, we estimated the extrusion speed by fitting an an-
alytical function to

〈〈
R2

〉〉
(t), the ensemble average of the

MSAAD (EMSAAD) over many time series, where t = 0
is the start of the closed state for all aligned time series.
As described above (section ‘Mean anchor–anchor distance
as function of time’), the theoretical EMSAAD follows a
quadratic dependence with time, given by (Eq. 4). Neverthe-
less, for simplicity, and because the theoretical EMSAAD is
close to a linear function for t > −s0/V0 (Supplementary
Figure S10), we fitted a linear curve as function of time,
whose slope defines an effective extrusion speed Veff :〈〈

R2〉〉 (t) ≈ R2
0 (Veff/s0) (−t) + R2

loc (5)

After segmentation of closed state intervals (see section
‘Segmentation of time series into closed states’ above), we de-
fined a window size of 150 s, which is the minimal duration
of extrusion for a 150 kb loop with V0= 1 kb/s. In general,
the minimal duration of extrusion is unknown, but it can
be estimated in experimental data by choosing the window
size with the highest estimated extrusion speed (see Results
section ‘Quantifying the speed of loop extrusion from live-
cell trajectories’; Supplementary Figure S9B). We removed
all intervals shorter than this time window. We then com-
puted the EMSAAD as function of time and fitted a lin-
ear function using least square from scipy (55) (Figure 5D,
Supplementary Figure S9B–F).

Analysis of experimental data

Analysis of ChIP-Seq and Hi-C data. For all genomic
analyses, we used the hg19 reference genome. For ChIP-
Seq data of CTCF, SMC1 and RAD21, we used publicly
available data from Rao et al. (16). Raw reads were quality-
checked with FastQC (60). Reads from different replicates
were first mapped independently using bowtie2 v2.2.6.2
(61) with default parameters, and the correlation between
replicates was computed using wigCorrelate (62). Repli-
cates with correlations larger than 0.9 were pooled together
and mapped again. We removed blacklisted regions (63)
and called peaks using MACS2 v2.1 (64) with default pa-
rameters. CTCF motifs were identified genome-wide using
FIMO (65) with the flags -max-stored-scores 50 000 000 and
–thresh 0.001. We then mapped CTCF sites identified with
a P-value < 1 × 10−5 onto CTCF ChIP-Seq peaks.

For Hi-C data of HCT-116 cells, we used publicly avail-
able contact maps at 5 kb resolution from Rao et al.
(16). To call contact frequency peaks genome-wide, we
used HICCUPS from Juicer 1.19.02 (66) with the flags -r
5000, 10 000 -k KR -f 0.1 -p 4,2 -I 7,5 -t 0.02,1.5,1.75,2
and -d 20 000, 20 000. ChIP-Seq peaks of CTCF, SMC1
and RAD21 were intersected with 20 kb regions cen-
tered around the loop anchors using pgltools (67) inter-
sect1D. For comparison with simulation predictions, we se-
lected experimental loops with at least one pair of CTCF-

bound convergent CTCF sites, SMC1 and RAD21 ChIP-
Seq peaks at both anchors and genomic lengths ±10% of
the simulated loop size.

From the experimental Hi-C maps at 5 kb resolution, we
extracted the count matrices of selected loop domains using
the dump function of Juicer 1.19.02 (66) (with the flags ‘Ob-
served’ and ‘NONE’). We then converted them to full ma-
trices using the sparse2full function of HiCcompare (68).
To identify contact frequency peaks in experimental Hi-C
maps re-binned at 15 kb, we searched for the coordinates of
the maximum intensity value in a 75 × 75 kb box centered
on peak locations identified by Juicer (66). We removed ex-
perimental Hi-C maps that had a peak score above 5 since
they were found to originate from artifacts (either bins with
unusually low signal in the 30 kb × 30 kb background win-
dow or extremely high peak signal) and were outliers of the
peak score distribution.

To build aggregated maps (Figure 2C), we extracted a
150 × 150 kb window around the loop anchors in each sin-
gle Hi-C map. We summed these cropped Hi-C maps to-
gether and normalized by the number of maps used. We
then binned the aggregated map to 15 kb resolution.

Analysis of imaging data. In the Results section ‘Compar-
ing polymer simulations to imaging data’, we considered
data from two experimental studies (Supplementary Figure
S4). First, we used multiplexed DNA FISH data in mouse
embryonic stem cells (mESC) from replicates 1 and 2 of
Takei et al. (31). This dataset covered one genomic region on
each of the 20 chromosomes at 25 kb resolution, each region
comprising 60 consecutive loci and spanning at least 1.5
Mb, from which we extracted pairs of genomic loci. We re-
moved from the analysis all cells where more than two iden-
tical chromosomes were detected. The pair-wise distances
from all chromosomes were pooled together. Second, we
considered live-cell imaging data from Gabriele et al. (35).
From this study, we used data from the C36 clone without
auxin treatment or with 4 h auxin treatment (which leads to
RAD21 depletion).

From the simulations used for comparisons with these
data, and for each considered genomic distance between
pairs of loci, we computed the distributions of anchor–
anchor distances assuming mean fractions of loop states
consistent with experimental Hi-C data (as in Figure 2). We
subsequently added random localization errors (σx,y = 41
nm, σz = 65 nm) consistent with Takei et al. (31).

RESULTS

Overview of simulation and analysis workflow

Our goal is to examine, using simulations, if, how and to
what extent loop extrusion can be detected and quantita-
tively characterized by imaging two fluorescently labeled
loop anchors. We considered two types of experiments: (i)
imaging fixed or living cells at a single time point (hereafter
called static imaging), which provides a snapshot of anchor–
anchor distances in a number of single cells and (ii) dy-
namic imaging of living cells, where the two anchors can be
tracked and the anchor–anchor distance can be measured
and followed as function of time (Figure 1A). Crucially, we
assumed that extrusion can be experimentally abolished,
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Figure 1. Overview of simulation and data analysis framework to characterize loop extrusion from imaging data. (A) Schematic of the assumed experi-
mental plan. We assumed that 3D imaging data are obtained from cells in which extrusion can be abolished, e.g. by depleting cohesin. The two anchors
of a loop are fluorescently labeled in two different colors (here, red and green) and imaged either at a fixed time point (static imaging) or tracked using
time-lapse microscopy (dynamic imaging). This allows to determine the approximate 3D coordinates of the two anchors and the anchor–anchor distances
(d) in a population of cells, either as a single snapshot or as function of time in single cells. Hi-C data shown on top are from Rao et al. (16). (B) Polymer
simulations were used to model the dynamics of a generic chromatin segment with or without loop extrusion. The chromatin loop was assumed to tran-
sition between three different states, in the following order: open (the polymer is free of loops), extruding (the loop is actively extended) and closed (the
loop is fully formed and the two anchors are kept close to each other). We used these simulations to generate 3D coordinates of each anchor as function
of time (trajectories in the middle). From these trajectories, we obtained simulated distributions of anchor–anchor distances in cell population snapshots
(static imaging) or simulated time series of anchor–anchor distances (dynamic imaging), either in absence (blue) or presence (red) of loop extrusion. We
then used dedicated analysis methods to detect the presence of extrusion (bottom left), to estimate the fractions of cells in each of the three loop states
(bottom center), or to determine the closed state lifetime and the speed of extrusion (bottom right). Based on the simulations, we determined the ranges
of biological and experimental parameters (here noted generically parameters 1 and 2) for which extrusion can or cannot be detected (yellow and black,
respectively) or for which loop state fractions or extrusion speed can be determined.

e.g. using an auxin-dependent degron (69,70) fused to
RAD21, thus providing an essential negative control with-
out loops in the genome (16) (Figure 1A).

Our analysis comprises the following steps, sketched in
Figure 1B. First, we simulated the dynamics of polymers in
presence or absence of loop extrusion and assuming vari-
ous biological parameters, such as the loop size or the speed

of loop extrusion. We supposed that the loop can be found
in three different states hereafter called ‘open’, ‘extruding’
and ‘closed’. In the open state, the chromatin segment de-
limited by the two anchors is free of any loop, e.g. because
no extrusion complex is bound to it; in the extruding state,
a loop located in between the two anchors is progressively
enlarged by the action of an extrusion complex; in the closed
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state, the two anchors are brought in close proximity and the
loop is temporarily stabilized (the extrusion complex main-
tains the loop anchors together). Second, we compared sim-
ulated contact maps to available Hi-C data in order to de-
termine plausible ranges for the fractions of loops in each
state (open, extruding or closed) within a population of
cells. Third, we used the same simulations to predict distri-
butions of anchor–anchor distances for different biological
and experimental parameters. We then used a statistical test
to determine (for each set of parameters), whether and to
what extent the presence of loop extrusion can be detected
from distance distributions. Fourth, we proposed and tested
a method to estimate the fractions of the open, closed, or
extruding states based on distance distributions from static
imaging data. Fifth, we analyzed how live-cell anchor tra-
jectories can be used to estimate the duration (lifetime) of
closed states and the speed of loop extrusion. In the follow-
ing, we detail each of these steps and determine the condi-
tions under which extrusion can be detected and quantified.

Simulating polymer dynamics and loop extrusion

In the following, we considered a generic, 1.8 Mb long chro-
matin segment centered around two loop anchors separated
by 300 kb (unless otherwise stated). We modelled this chro-
matin segment as a polymer chain made of 600 beads linked
by harmonic bonds and subjected to Langevin dynamics.
We verified that mean squared displacements (MSD) of an
internal bead in a non-extruding polymer (i.e. in the ‘open’
state) obeyed the subdiffusive power law expected from
Rouse dynamics (MSD proportional to the square root of
time) at small time scales and saturated at long time scales
due to confinement (Supplementary Figure S1C).

To model loop extrusion, we assumed that a single loop
extrusion complex was loaded on the polymer at a random
position between the two anchors, whereafter both sides of
the polymer chain were extruded simultaneously (bidirec-
tional extrusion (26,71)). Unless stated otherwise, we as-
sumed that extrusion began at t = 333 s after the start of the
recorded simulation trajectories and proceeded at a nom-
inal speed of V0 = 1 kb/s (17). As soon as the extrusion
complex reached one of the two anchors, it stopped, and
the other side of the chain continued to be extruded uni-
directionally (18,50,51), at a speed of V0/2 (26), until the
extrusion complex reached the second anchor (Supplemen-
tary Figure S2A). At this point, extrusion stopped entirely,
and the two anchors were maintained in the closed state un-
til the end of the simulation, unless stated otherwise. For any
given set of biological or experimental parameters, we ran
at least 1000 independent simulation trajectories, with ≈12
million time steps each. From these simulations, we directly
extracted anchor coordinates as function of time, mimick-
ing live-cell tracking data, or computed the distributions of
anchor–anchor distances (and anchor–anchor vectors) in a
random ensemble of configurations, mimicking population
snapshots taken at a single time point.

Comparing polymer simulations to Hi-C data

Since TADs and loops were primarily defined from Hi-C
data (4,5,16), realistic simulations must be able to account

for these features in simulated contact frequency maps. In
order to generate contact frequency maps from simulations,
we used a capture radius of 150 nm, which provided the
best match between simulated and experimental P(s) curves
(Supplementary Figure S2B). We first verified that our sim-
ulations, in which extrusion was assumed to start at random
genomic locations between the anchors, can qualitatively re-
produce blocks of enriched contacts with corner peaks on
the contact map diagonal, consistent with TADs and loops
(Supplementary Figure S2C). Note that if extrusion was in-
stead initiated at one of the two anchors or at the mid-point
between them, the contact maps exhibited different features,
namely stripes (18,52,72), and hairpins (73) or jets (50), re-
spectively (Supplementary Figure S2C). However, we ex-
cluded such structures from our analyses to focus on canon-
ical TADs and loops instead.

The strength of contact blocks and/or corner peaks in
Hi-C data is expected to depend on the fractions of cells in
which the anchors are in an open, closed, or extruding state.
Obviously, these fractions also strongly determine the dy-
namics of tracked anchors and the expected distribution of
anchor–anchor distances, and therefore impact the feasibil-
ity of detecting and/or characterizing loop extrusion (37).
For example, a high fraction of cells in a closed state could
give rise to a bimodal distribution of anchor–anchor dis-
tances (one mode at small distances corresponding to closed
states and a second mode at larger distances corresponding
to open or extruding states), whereas a low fraction might
not. These fractions are poorly known - one aim of imaging-
based approaches is precisely to estimate them. Nonethe-
less, to determine a realistic range of state fractions, we pro-
ceeded to vary them in our polymer simulations and com-
pared simulated contact maps to a selection of experimen-
tal loops in Hi-C data (Figure 2, Supplementary Figures
S2E, F and S3). Below, we describe (i) the Hi-C data set
considered, (ii) the simulations and the range of parameters
explored, (iii) the metric we used to compare data to simu-
lation predictions and (iv) the results of this comparison.

We started from the Hi-C data (16) of RAD21-mAID-
GFP tagged HCT-116 cells, in which addition of auxin
depletes RAD21 (69). We computationally identified 4470
loops in the 5 kb resolution Hi-C maps of cells without
auxin treatment. We then narrowed down this data set to
229 loops that satisfied the following criteria: (i) a size of
300 ± 30 kb, for consistency with the 300 kb size of sim-
ulated loops, (ii) the presence of ChIP-Seq peaks of the
cohesin subunits SMC1 and RAD21, as well as ChIP-Seq
peaks of CTCF at both loop anchors, and (iii) at least one
pair of bound convergent CTCF sites at the anchors (Fig-
ure 2A). These selection criteria were intended to focus the
analysis on loops that depend on cohesin-mediated loop ex-
trusion stabilized by CTCF, rather than on other biological
mechanisms (10,74).

Using 200 000 single polymer conformation snapshots
from 2500 independent simulations, we built 231 distinct
contact maps, each corresponding to a different combina-
tion of the open, extruding or closed state fractions (Supple-
mentary Figure S3). The extreme cases, where all conforma-
tion snapshots are from the same state, showed the expected
behavior: for 100% open states, the contact map displayed
no specific structure, and only reflected the uniform decay
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Figure 2. Estimation of loop state fractions consistent with experimental Hi-C data. (A) Starting from 4,470 loops detected in Hi-C data of HCT-116 cells
from Rao et al (16), we selected a subset of 229 loops with sizes of 300 ± 30 kb, with ChIP-seq peaks of CTCF, RAD21 and SMC1 at both anchors and
at least 1 pair of CTCF-bound convergent CTCF sites. (B) Top: For each of these loops, a peak score was computed as the ratio of the peak Hi-C contact
frequency between the two anchors (blue square) and the background contact frequency (average of the black square). Bottom: Peak scores were used
to compare simulated contact frequency maps (for varying fractions of each loop state) to experimental Hi-C maps. (C) Heat maps show differences in
peak scores between simulated and experimental contact maps for each combination of extruding, closed and open state fractions, for 300 ± 30 kb loops.
The cells were subjected or not to a 6 h auxin treatment to deplete the cohesin subunit RAD21 (16). Red and blue colors indicate a positive or negative
difference between the simulated and the experimental mean peak scores, respectively, whereas white indicates similar peak scores. The open state fraction
is: Aopen = 1 − Aclosed − Aextruding where Aclosed and Aextruding are the fractions of closed and extruding states, respectively. The black contour denotes
state fractions for which the peak scores of simulated and experimental loops were indistinguishable (P-value > 0.05 for a one sample t-test). Insets show
aggregated maps of the experimental Hi-C data centered on the loop anchors and their mean peak score is displayed on the bottom left. The same display
range was used for all aggregated maps. (D) Simulated contact maps for selected fractions of loop states. The first three maps from the left show extreme
cases corresponding to 100% open, 100% closed or 100% extruding states. The fourth map corresponds to the state fractions that achieved the best match
with the experimental Hi-C data (40% open, 40% extruding and 20% closed). The peak score for each simulated map is indicated below. All contact maps
are shown with the same display range. Simulated and experimental Hi-C maps in panels B–D are shown at 15 kb resolution. (E) Mean fraction of closed
states in simulations that are consistent with Hi-C data (P-values > 0.05) for loops of different genomic sizes. Error bars indicate the 95% confidence
interval.
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of contact frequencies as function of genomic distance, P(s);
for 100% closed states, the contact map exhibited a strong
peak at the corner of a moderately intense contact block; for
100% extruding states, the map showed a block of enhanced
contact frequencies delimited by the anchors, without a cor-
ner peak (Figure 2D and Supplementary Figure S3).

For a more quantitative comparison of simulation pre-
dictions with Hi-C data, we computed a ‘peak score’ in in-
dividual contact maps. The peak score was defined as the
contact frequency between the two anchors divided by the
contact frequency inside a 30 × 30 kb window located be-
tween the two anchors (Figure 2B). A higher fraction of
closed states led to a high peak score, while a higher frac-
tion of extruding states led to a higher background and
thus a lower peak score (Figure 2D). We then systematically
compared simulated and experimental peak scores for frac-
tions of open, extruding and closed states ranging from 0
to 100%. For this purpose, we first verified the consistency
of our metric with experimental findings that cohesin de-
pletion leads to elimination of chromatin loops using Hi-C
maps of auxin-treated cells (16). As expected, only simu-
lations without closed states and with a large majority of
open states (>70–80%) had peak scores statistically consis-
tent with the Hi-C data in these cells (Figure 2C, right; P >
0.05).

We then used this peak score to compare simulation pre-
dictions to Hi-C maps in cells without auxin treatment. We
found that simulation predictions were consistent with the
Hi-C data for a range of closed state fractions of 15–25%
and a large range of extruding state fractions (Figure 2C,
left; P > 0.05). Within these ranges, the best match between
simulations and Hi-C data was obtained for 20% closed
states, 40% extruding states and 40% open loop states (Fig-
ure 2C, D). Simulations with 100% closed states were in-
consistent with the experiments, leading to peak scores two
times higher than in the Hi-C data (Figure 2D, P < 10-150),
consistent with previous studies arguing against the exis-
tence of stable loops in cells (20,33,75,76). However, our
metric did not enable us to determine tight constraints on
the fractions of open versus extruding states, as a wide range
of fractions for each of these two states was compatible with
the Hi-C data (Figure 2C and Supplementary Figure S2E).

To account for differences in the genomic sizes of loops,
we then repeated the above simulations and analyses for
loop sizes ranging from 150 to 990 kb. We found that the
mean fraction of closed states consistent with the Hi-C data
was larger for small loops than for large loops (33% for 150
kb loops, versus 16% for 504 kb loops and 13% for 990 kb
loops) (Figure 2E and Supplementary S2F).

Thus, we used Hi-C data to estimate plausible ranges for
the fractions of open, closed and extruding states in our
polymer simulations. This allowed us to subsequently simu-
late loop extrusion dynamics and imaging observations un-
der realistic conditions.

Comparing polymer simulations to imaging data

Having determined the fractions of loop states consistent
with experimental Hi-C data, we next compared our sim-
ulations to published measurements of distances between
chromatin loci from experimental imaging data. We first

compared simulations of 504 kb loops with or without ex-
trusion to recent live-cell imaging data from a study by
Gabriele et al. (35) that specifically targeted a pair of loop
anchors in mouse embryonic stem cells (mESC) with and
without cohesin and found good agreement between exper-
iments and simulations in both cases (Supplementary Fig-
ure S4). Next, we compared our simulations to a larger ex-
perimental data set where DNA FISH was used to measure
distances between pairs of loci in mESC for a large range
of genomic distances between these loci (31). These exper-
iments did not specifically target loop anchors, but loops
were nonetheless present in the targeted genomic regions.
As a result, we expected anchor–anchor distances predicted
by our simulations with and without extrusion to bracket
the distances measured by DNA-FISH. This was indeed
the case, and distances predicted by simulations with extru-
sion were slightly lower than the experimentally measured
distances and closely followed the predicted trend as func-
tion of genomic distance (Supplementary Figure S4). These
comparisons indicated that our simulations were also con-
sistent with imaging data in fixed and living cells.

Detecting chromatin loop extrusion from imaging data

Chromatin loop extrusion is expected to reduce anchor–
anchor distances compared to conditions without extru-
sion. We therefore asked whether loop extrusion can be
detected simply by measuring anchor–anchor distances in
populations of single cells and comparing them to distances
measured when loop extrusion is abolished (Figure 3A). We
aimed to assess the ability to reveal loop extrusion (here-
after called ‘detectability’ and defined quantitatively below)
depending on several relevant biophysical and experimen-
tal parameters. The biological parameters were: the frac-
tions of loop states (open vs. extruding vs. closed), the ge-
nomic size of loops, and the speed of loop extrusion. The
experimental parameters were: the reporter-anchor separa-
tion, which we varied from 0 to 300 kb, the localization
precision of fluorescent labels, defined as the standard de-
viation of errors in estimated coordinates, which we var-
ied from σx,y = 0 nm to σx,y = 200 nm laterally (with an
axial error σz = 2σx,y due to the anisotropy of the micro-
scope point spread function (54)) and the number of ana-
lyzed anchor–anchor distances, which we varied from N =
10 to 10 000.

In order to determine whether extrusion can be detected,
we compared the distributions of anchor–anchor distances
in simulations with and without extrusion, thereby mim-
icking the experimental comparison of cells with and with-
out cohesin. For each pair of simulated distance distribu-
tions, we performed Kolmogorov–Smirnov tests on thou-
sands of random samples. We then defined the detectability
of loop extrusion as the fraction of tests that revealed sta-
tistically significant differences between these distributions
(Figure 3B).

To explore the effect of the different parameters above
on the detectability of extrusion (Figure 3C–I), we var-
ied two parameters at a time, holding the other param-
eters constant. We used the following state fractions as
defaults, based on the above comparison to Hi-C data:
20% closed, 40% extruding, 40% open (Figure 2C). Other
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Figure 3. Experimental and biological parameters allowing to detect loop extrusion. (A) Polymer simulations assumed that distances between fluores-
cently labeled anchors are measured in a population of cells at a given time, both in conditions allowing extrusion, and in a condition where extrusion
is experimentally abolished. (B) Cumulative distribution functions (CDFs) of anchor–anchor distances sampled from simulations with (red) or without
(blue) extrusion were compared using a Kolmogorov-Smirnov test. Sampling was repeated 5000 times, P-values were corrected for multiple testing with
the Benjamini–Hochberg procedure. Detectability of loop extrusion was defined as the fraction of tests revealing significant differences (P < 0.05) and is
displayed on a color scale from black (no significant difference) to yellow (all tests show significant differences). Histograms show examples of distance dis-
tributions for these extreme cases of low and high detectability. (C–H) Effect of experimental or biological parameters on the detectability of loop extrusion.
Heat maps show detectability as function of various parameters, including: the reporter-anchor separation (C), the localization precision of fluorescent
reporters σx,y = σz/2 (D), the fractions of closed and extruding states (E), the sample size (i.e. the number of distance measurements), N (F), the genomic
size of the loop (G) and the speed of loop extrusion (H). Two parameters were varied at a time, with the other parameters set to the following default values:
fractions of loop states: 40% open, 40% extruding, 20% closed; loop size: 300 kb; extrusion speed: 1 kb/s; reporter-anchor separation: 0 kb; localization
precision: σx,y = σz = 0 nm; sample size: N = 100. Distributions of anchor–anchor distances with and without extrusion (red and blue, respectively) and
for different parameter values are shown in (C)–(E) (note that we used N = 100 000 to plot these distributions for better legibility, irrespective of the
sample size N used for the detectability heat maps). The arrows show the peaks at small distances due to closed states. Note that ‘anchor–anchor distance’
designates the distance between the corresponding reporters (which differ from the actual anchors for panel C). In the heat map of panel (E), the red con-
tour denotes loop state fractions consistent with experimental Hi-C data from Figure 2C (without auxin treatment). (I) Detectability of loop extrusion in
realistic experimental conditions with: reporter-anchor separation of 2 × 3 = 6 kb and excellent ( σx,y = σz/2 = 15 nm, top) or poor ( σx,y = σz/2 = 100
nm, bottom) localization precision. Other parameters were set to the default values above.
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default parameters were as follows: loop size: 300 kb; extru-
sion speed: 1 kb/s, based on measurements of DNA loop ex-
trusion in vitro (17,26); localization precision σx,y = σz =0
nm; reporter-anchor separation = 0 kb (corresponding to a
direct labeling of the anchors); sample size: N = 100 mea-
surements (anchor–anchor distances).

We first analyzed the effect of the reporter-anchor sep-
aration (Figure 3C). In the ideal case where this separa-
tion is zero (i.e. the anchors themselves are fluorescently
labeled), the clearest signature of extrusion was an addi-
tional peak in the anchor–anchor distance distribution at
very low distances due to closed states (Figure 3C, arrows).
In this case, extrusion detectability was high (95%) for a
sample size N as low as 50. As expected, increasing the
reporter-anchor separation tended to reduce and broaden
the low distance peak, and for a total separation of 18 kb
or more the distribution became unimodal again (Figure
3C). Consistently, increasing the reporter-anchor separa-
tion lowered detectability when the sample size N was kept
constant. However, even for reporter-anchor separations of
54 kb, extrusion remained detectable using N > 100 mea-
surements (detectability>92%). Increasing the random lo-
calization errors had a qualitatively similar effect as increas-
ing the reporter-anchor separation (Figure 3D). Neverthe-
less, even for poor localization precisions of σx,y = σz

2 = 100
nm, detectability was high (>97%) as long as the sample size
N exceeded 200 (Figure 3D).

Obviously, these results strongly depended on the as-
sumed fractions of closed, extruding and open states. For
example, for a fixed extruding state fraction of 10%, it be-
came more challenging to detect extrusion from N = 100
measurements when closed state fractions were lower than
20% (Figure 3E). Interestingly, increasing the sample size to
N = 1000 measurements allowed extrusion to be detected
for almost all combinations of state fractions, except in the
quasi-absence of closed states combined with an extremely
high fraction of open states (>80%) (Supplementary
Figure S5A).

We then assessed the effects of sample size, loop size and
extrusion speed, assuming 40% of extruding states as based
on the above analysis of Hi-C data. A larger sample size al-
ways helped to detect extrusion in unfavorable conditions.
For example, for a small closed state fraction of 5%, in-
creasing the sample size from N = 100 to N = 1000 im-
proved detectability from 70% to 100% (Figure 3F). The
loop size, which we varied between 150 and 900 kb, had
only a marginal effect on detectability (Figure 3G). Sim-
ilarly, varying the speed of extrusion in the range 0.2–5
kb/s, which encompasses extrusion speeds measured in vitro
(17,26), did not appreciably affect the detectability of loop
extrusion (Figure 3H).

Next, we considered the detectability of extrusion as
function of localization precision and sample size for real-
istic values of all other parameters combined (Figure 3I).
Specifically, we assumed 20% closed, 40% extruding and
40% open states; a loop size of 300 kb; an extrusion speed
of 1 kb/s; and a total reporter-anchor separation of 6 kb.
We tested excellent, good and poor localization precisions (
σx,y = σz

2 = 15, 50 and 100 nm (31,32,77), respectively). The
presence of closed loops was identifiable as a low distance
peak in the distance histogram for excellent localization pre-

cision, but not for good or poor precision (Supplementary
Figure S5B). Nevertheless, even for poor precision, loop ex-
trusion detectability was still high (96%) for a reasonable
sample size of N = 200 (Figure 3I).

Finally, we performed simulations using experimental
and biological parameters approximating those of the
above-mentioned Gabriele et al. study (35), which reported
the identification of loop extrusion from anchor–anchor
distances measured using live-cell imaging. Based on these
simulations, we found loop extrusion to be detectable at
97% with as little as N = 100 measurements, while at least
45 000 distances were measured in (35) (Supplementary Fig-
ure S6). Hence, this study’s experimental approach indeed
matches the conditions defined by our theoretical analysis
to detect loop extrusion from imaging data.

In summary, our analysis suggests that under a relatively
wide range of realistic biological and experimental condi-
tions, the presence of loop extrusion can be detected in
cells by imaging pairs of loop anchors, measuring their dis-
tances and comparing them to distances measured in cells
where extrusion is abolished. The above results also define
the minimal experimental parameters that are required (and
satisfied by Gabriele et al. (35)) to detect the presence of
loop extrusion depending on the fractions of different loop
states.

Estimating the fraction of loop states from static imaging
data

Next, we aimed to move beyond the mere detection of
loop extrusion and assess if static imaging data from a
population of single cells allows to quantitatively esti-
mate the fractions of loop states (closed vs. extruding vs.
open) (Figure 4). We approached this by fitting to the
data a ‘three-state’ mathematical polymer model that in-
cludes these fractions as adjustable parameters. Specifi-
cally, we considered the differences in x, y and z co-
ordinates between the two anchors (δx = x1 − x2; δy =
y1 − y; δz = z1 − z2) and fitted a model, P(δx, δy, δz) =
Px(δx)Py(δy)Pz(δz) to the three distributions of coordi-
nate differences (δx, δy, δz) simultaneously. For each co-
ordinate difference δw ∈ {δx, δy, δz}, Pw(δw) is a linear
combination of three models, Popen

w , Pclosed
w and Pextruding

w ,
one for each loop state (open, closed and extruding, re-
spectively), weighted by the fractions of each state (Aopen,
Aclosed, and Aextruding = 1 − Aclosed − Aopen), and is given
by (Eq. 2). For the open state, we assumed that the poly-
mer behaves as a freely jointed chain and each coordinate
difference δw ∈ {δx, δy, δz} follows a normal distribution
Popen

w = N (0, N0b2

3 + 2σ 2
w), where b is the Kuhn length, N0 is

the number of Kuhn lengths between the anchors, and σw is
the localization precision along axis w ∈ {x, y, z}. For the
closed state, where the two anchors are in contact or in close
proximity, we assumed that each coordinate difference fol-
lows a normal distribution Pclosed

w (δw) = N (0, σ 2
c + 2σ 2

w),
where the added variance σ 2

c reflects a possible non-zero dis-
tance between the anchors in the closed state (e.g. because
of the ∼40 nm size of the cohesin ring (56,57)). We assumed
that the probability distributions Popen

w and Pclosed
w can be

determined experimentally (see Discussion).
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Figure 4. Quantifying fractions of loop states from static images. (A) Total distribution of the differences δw between coordinates of the two anchors
(w ∈ {x, y, z}) as obtained from simulated data (black dots) and the fitted three-state model (grey curve, Eq. 2). (B) Same as A, but with the three fitted
components of the three-state model (corresponding to the closed, extruding and open states) shown separately. Dots show the simulated data and colored
curves show the fitted model components. (C, D) Quantification of errors in estimation of loop state fractions. (C) Root mean square error (RMSE) of
estimated fractions for the three states as function of the sample size (number of measured anchor–anchor vectors) N. The simulations used for panels
(A), (B) and (C) assumed the following loop state fractions: 35% closed, 15% extruding and 50% open. (D) Heat maps show the signed error (bias) in the
estimated fractions of closed, extruding or open states, for each combination of loop state fractions, estimated for N = 500 000. Overestimates are shown in
red, underestimates in blue. The absolute bias did not exceed 13.1%. All simulations used in this Figure assume a localization precision σx,y = σz/2 = 15
nm.

For the extruding state, we assumed that the coordinate
differences follow the probability density Pextruding

w (δw; t) =
N (0,

Nb(t)b2

3 + 2σ 2
w), with Nb(t) = N0 − Nloop(t), where t =

0 is the end of loop extrusion (during extrusion t < 0), and
Nloop(t) is the number of Kuhn lengths extruded at time
t. This assumption effectively derives from the hypotheses
that (i) the anchors in the extruding state behave as if part
of a shorter polymer from which the extruded loop is ab-
sent and (ii) this polymer has time to equilibrate at each step
of the extrusion process. In the Materials and Methods sec-
tion, we derived an explicit model for Pextruding

w (δw; t) (Eq. 1)
based on the additional assumptions that extrusion initi-
ates with uniformly random probability between the two
anchors and switches from bidirectional at constant speed
V0 to unidirectional at constant speed V0

2 upon reaching an
anchor. Having specified these models for Popen

w , Pclosed
w and

Pextruding
w , we could estimate the fractions of each loop state

(open, closed and extruding) by fitting the three-state model
of (Eq. 2) to the measured distributions of coordinate dif-
ferences δx, δy and δz.

To test this method, we first simulated coordinates of
anchor pairs from 4000 independent simulations assuming
35% closed, 15% extruding and 50% open states (based on
the analysis of Hi-C data in Supplementary Figure S2F)
for a 150 kb loop, with localization errors σx,y = σz/2 =
15 nm (29,31,32), drew N = 500 000 samples (anchor–
anchor vectors) and fitted our three-state model (Eq. 2) to
these data (Figure 4A-C). As before, these simulations as-
sumed that extrusion initiates with uniformly random prob-
ability between the two anchors, and that the extrusion
speed is halved once the first anchor is reached. As shown
in Figure 4A and B, the fitted model was in very good

agreement with the simulated data. We computed a root
mean square error (RMSE) of estimated fractions Aclosed,
Aopen and Aextruding for varying sample size N (Figure 4C).
For N = 100, the RMSE for open and extruding states re-
mained substantial (14% and 16%, respectively), implying
that larger sample sizes are needed for accurate estimation
of loop state fractions. For N > 5000, the RMSE dropped to
<3% for all three states, and decreased further for larger N.
Open and extruding states still had RMSE <2.5% even for
large sample sizes (Figure 4C), a residual bias that presum-
ably reflects a minor mismatch between the analytical model
and the simulations. We then systematically varied the frac-
tions of open, extruding and closed states and quantified the
absolute biases of the estimated fractions for a sample size
of N = 500 000 (Figure 4D). The closed state fraction was
always very accurately estimated, with absolute bias <0.5%.
The extruding state tended to be slightly underestimated,
while the open state was slightly overestimated, but the ab-
solute bias always remained at an acceptable level (<13.1%)
(Figure 4D).

We repeated this analysis but changed the localization er-
rors to either σx,y = σz = 0 or σx,y = σz/2 = 50 nm (Sup-
plementary Figure S7). Paradoxically, the state fractions
were estimated more accurately for larger localization er-
rors (maximum absolute bias of 7.4%) than without local-
ization errors (maximum absolute bias of 17.7%) (Supple-
mentary Figure S7D and H), likely because the Gaussian
localization errors reduce the mismatch between the Gaus-
sian model and the simulations in the closed state. Never-
theless, for sample sizes N > 8000, the RMSE were <5%
both without localization errors and for large localization
errors, assuming 35% closed, 15% extruding and 50% open
states (Supplementary Figure S7C and G).
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Figure 5. Quantifying the lifetime of closed states and the speed of loop extrusion by dynamic tracking of loop anchors. (A) Six example time series of
anchor–anchor distances from simulations with loop extrusion. The true loop state is indicated by color bars on top (blue: open, green: extruding, red:
closed). Black dotted lines indicate state changes, i.e. when loop extrusion starts or ends or when closed loops are released. The segmentation of the time
series in intervals of closed states is shown below (indigo bar indicates inferred closed state intervals). (B) Estimated vs. true lifetimes of closed loops. Each
indigo dot corresponds to a distinct segmented closed state interval. Black dotted line denotes y = x. The inset shows a close-up for short lifetimes (0–20
s). (C) Histogram of 1000 estimated lifetimes of closed states. The dotted red line shows a robust exponential fit to the segmented closed state lifetimes
and the solid black line shows the theoretical distribution. (D) Ensemble mean squared anchor–anchor distance (EMSAAD) as function of time, averaged
over >1000 time series, after aligning the estimated start time of the closed state to t = 0 (solid orange curve). An effective loop extrusion speed V̂eff = 0.72
kb/s was estimated by fitting a linear function for –150 s < t < 0 (red dotted line). The theoretically expected EMSAAD (Eq. 4) is a non-linear function
of time and is shown in solid grey. A linear fit to the theoretical EMSAAD (Eq. 5) is shown as a dashed black line and corresponds to a theoretical speed
of 0.63 kb/s. Localization errors were ignored in the simulations used here.

To sum up, our analysis indicates that the fractions
of loop states can be estimated accurately by measuring
anchor–anchor distances from static imaging data of a suf-
ficiently large number of cells.

Quantifying closed loop lifetimes from live-cell trajectories

While the analysis of static data can provide important
quantitative information on loop states, as shown above, a
full characterization of the dynamic aspects of loop extru-
sion, in particular extrusion speed and the lifetime of closed
loops, requires dynamic data. Here and in the next section,
we assess to what extent these parameters can be estimated
from live-cell tracking of loop anchors.

For this purpose, we generated 1000 independent
Langevin dynamics simulations of a polymer undergoing
extrusion and recorded the trajectories of the two anchors
as function of time. We considered a polymer with two loop
anchors separated by 150 kb and simulated trajectories of
1330 s each. We assumed that extrusion started 83 s after the
beginning of each simulation at a random position between
the two anchors, and that extrusion proceeded until the loop
was closed. The two anchors were then maintained in this

closed state during a time interval drawn from an exponen-
tial distribution, in order to mimic a memory-less (Poisson)
process of loop dissociation, with a mean closed state life-
time of 466.6 s (and a maximum of 833 s). After dissoci-
ation, the two anchors were released from each other, and
the polymer relaxed rapidly to the open state. Typical time
series of the anchor–anchor distance during a simulation
trajectory are shown in Figure 5A.

In order to quantify closed state lifetimes, we aimed to
segment these time series into disjoint time intervals cor-
responding to closed, open or extruding states. As appar-
ent from the examples in Figure 5A, it is difficult to distin-
guish the open state from the extruding state, especially in
the early phases of the extrusion process where the anchor–
anchor distances fluctuate widely. We therefore focused on
segmenting the closed state only, without attempting to dis-
tinguish open from extruding states. Nonetheless, the dis-
tance distribution in the closed state can still significantly
overlap that of the extruding and open states, since in these
two states anchors can still come into close vicinity due
solely to random polymer movements (Supplementary Fig-
ure S8A). For this reason, a distance threshold alone is ill
suited to segmenting closed states (Supplementary Figure
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S8A). We therefore decided to use a combination of spa-
tial and temporal thresholds and identified closed states as
long-lived small distance states that were not present in time
series without extrusion (as measured in an experimental
condition that abolishes extrusion). We defined small dis-
tances as those below the 99.9% quantile of distances in
the closed state. We defined the temporal threshold as the
99.9% quantile of time intervals during which the anchor–
anchor distance was always below the spatial threshold in
time series of extrusion-free simulations (Supplementary
Figure S8A).

Next, we evaluated this segmentation method on simu-
lated time series with extrusion by quantifying the number
of time points correctly or incorrectly classified as closed
states. Using the above spatial and temporal thresholds,
closed states were identified with a precision (ratio of true
positives over all positives) of 99.75% and a recall (ratio
of true positives over the sum of true positives and false
negatives) of 99.87%, proving high classification quality for
individual time points (Supplementary Figure S8B). Preci-
sion and recall could be traded-off against each other by
varying the spatial and temporal thresholds (Supplemen-
tary Figure S8B). We then analyzed the performance of
our segmentation method for a total reporter-anchor sep-
aration of 6 kb and different localization errors. Recall re-
mained above 99% for localization errors σx,y = σz/2 <
50 nm, while segmentation precision decreased when in-
creasing localization errors (from 96% for σx,y = σz = 0 nm
to 78% for σx,y = σz/2 = 50 nm) (Supplementary Figure
S8C). Localization errors above σx,y = σz/2 = 75 nm dras-
tically reduced both recall (from 93% for σx,y = σz/2 = 75
nm to 7% for σx,y = σz/2 = 200 nm) and precision (73%
for σx,y = σz/2 = 75 nm vs. 49% for σx,y = σz/2 = 200 nm)
(Supplementary Figure S8C).

We then proceeded to estimate closed loop lifetimes.
This was much more challenging and error-prone, because
any time point with a false negative closed state detection
led to a fragmentation of segmented closed state intervals
and therefore to an underestimation of the true lifetime,
while false positive time points generally led to spurious
short-lived closed states. Nevertheless, using the thresholds
above, the estimated lifetimes of closed states were in ex-
cellent overall agreement with the true lifetimes (Figure
5B). The exception to this were very short lifetimes (Fig-
ure 5B, C), which originated from the residual false pos-
itives in the detection of closed states. 95% of these spu-
rious closed states were detected during extruding states,
typically at the end of the extrusion phase (Supplementary
Figure S8D).

To estimate the mean lifetime of closed states, we fitted an
exponential function to the histogram of estimated lifetimes
using a robust approach that rejects outliers. We found that
with this robust fit, we could accurately estimate the mean
closed state lifetime (Figure 5C and Supplementary Figure
S9A). The estimated mean closed lifetime across 4000 boot-
strapped samples (each containing 1000 time series) was
465.9 s, in excellent agreement with the expected value of
466.6 s (Supplementary Figure S9A).

Therefore, our analysis suggests that closed state lifetimes
can be accurately estimated by tracking loop anchors in live-
cell imaging.

Quantifying the speed of loop extrusion from live-cell trajec-
tories

Finally, we assessed whether loop extrusion speed could
be quantified from 1000 time series of anchor–anchor dis-
tances obtained by live-cell imaging. Because the above ap-
proach identified closed loop intervals that depend on the
presence of extrusion (thanks to the control condition that
abolishes extrusion, Supplementary Figure S8A), we rea-
soned that timepoints before these intervals should be in
the extruding state. Assuming, as before, that the polymer
with a loop behaves at each time point as an ideal polymer
from which the loop portion is absent, we derived analyti-
cal models for the temporal evolution of the mean squared
anchor–anchor distance (MSAAD)

〈
R2

〉
(see Materials and

Methods for details). If loop extrusion occurred at a con-
stant speed V(t) = V0, the MSAAD would follow a simple
linear function of time, given by (Eq. 3). However, we as-
sumed that the speed of extrusion switches from bidirec-
tional with speed V(t) = V0 to unidirectional with speed
V(t) = V0/2 when the extrusion complex reaches one of the
two anchors (Supplementary Figure S2A). The time point
of switching depends on the genomic site where extrusion is
initiated: switching occurs earlier if this site is closer to one
of the two anchors. As a result, fitting equation (Eq. 3) to
measured MSAAD is expected to lead to an effective speed
Veff between V0/2 and V0, whose exact value depends on the
site of initiation.

Under the additional assumption that the site of extru-
sion initiation (i.e. the loading site of the extrusion com-
plex) is uniformly random between the two loop anchors,
we further derived a model for the ensemble average of the
MSAAD (EMSAAD) over many time series, denoted as〈〈

R2
〉〉

(t), obtained after aligning the starting times of closed
states for all time series at t = 0, and given by Eq. (4) (Sup-
plementary Figure S10B).

Equipped with this model, we proceeded to analyze time
series simulated with a bidirectional extrusion speed V0 = 1
kb/s that switched to a unidirectional extrusion with speed
V0/2 upon reaching an anchor. Although the dependence
of

〈〈
R2

〉〉
(t) on time in Eq. 4 is non-linear, we found that

a linear fit of the EMSAAD, assuming a single speed Veff
(Eq. 5), led to a reasonably accurate estimation of the mean
effective extrusion speed (V̂eff = 0.72 kb/s estimated speed
versus ( 5

8 )V0 = 0.63 kb/s for the true mean effective speed,
Figure 5D). The theoretical EMSAAD was well approxi-
mated by a linear fit of slope −5/8R2

0 V0/s0 (Figure 5D).
Therefore, multiplying the estimated effective speed V̂eff by
8/5 allowed us to recover the bidirectional extrusion speed
V0. This yielded V0 = 1 kb/s for the theoretical curve, as
expected, and V̂0 = 1.15 kb/s for the estimated speed. The
remaining discrepancy between estimated and true bidirec-
tional speeds (V̂0 and V0) can be attributed to two effects:
(i) the simulated polymer does not have time to equilibrate
given the assumed extrusion speed of V0 = 1 kb/s, and (ii)
the polymer is confined. Both effects are ignored by our
model and lead to a departure from linearity of the EM-
SAAD as function of time. Indeed, the EMSAAD is closer
to the theoretical (equilibrium) value in simulations with
slower extrusion and a relaxed confinement (Supplemen-
tary Figure S11). Note that the estimated speed depends on
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the size of the time window used for fitting. The optimal
window size depends on the actual speed and is therefore
not known, but correct time windows and speeds can be de-
termined experimentally from a peak in the estimated speed
as function of the time window, as shown in Supplementary
Figure S9B. This is explained by the slope of the theoretical
EMSAAD, which is maximum at t = −s0

V0
(Supplementary

Figure S10B).
Finally, we assessed how experimental parameters af-

fected the estimation of loop extrusion speed. Unsurpris-
ingly, localization errors negatively impacted the estima-
tion of extrusion speed (by deteriorating the accuracy of
closed state segmentation). Localization errors of σx,y =
σz
2 = 30 nm led to underestimations of the speed by 7%, and
σx,y = σz

2 = 75 nm led to underestimations by 51% (Sup-
plementary Figure S9C and S9E). Similarly, increasing the
reporter-anchor separation from 0 to 30 kb led to an under-
estimate of the loop extrusion speed by 27% (Supplemen-
tary Figure S9D and F).

Nevertheless, this analysis suggests that under realistic
conditions it should be possible to extract meaningful es-
timates of the speed of DNA loop extrusion by analyzing
trajectories of loop anchors in time-lapse microscopy of liv-
ing cells.

DISCUSSION

We used polymer simulations and presented dedicated anal-
ysis techniques to determine if, and under which conditions,
chromatin loop extrusion can be detected and/or character-
ized quantitatively by imaging two loop anchors with fluo-
rescence microscopy (Figure 1). We separately considered
static imaging experiments, as can be performed in fixed
cells, e.g. using DNA-FISH (28), or using single snapshots
in live-cells, and dynamic imaging experiments in which two
loop anchors are tracked over time (35,78). Our analyses as-
sume that imaging experiments are performed both in cells
where loop extrusion takes place and in cells where extru-
sion is experimentally abolished, e.g. by depletion of the co-
hesin subunit RAD21 (16), which provides a crucial nega-
tive control. We considered the effect of multiple biologi-
cal and experimental parameters. Biological parameters in-
clude the fractions of closed, open and extruding states, the
speed of loop extrusion and the genomic size of the loops.
Experimental parameters include the reporter-anchor sep-
aration, the localization precision of fluorescent reporters,
and the sample size (number of measured anchor–anchor
distances).

To estimate plausible ranges of loop state fractions, we
compared simulations to Hi-C data of ≈300 kb large loops
(Figure 2), and found that only small (15–25%) fractions of
closed states are consistent with the data, in line with pre-
vious studies (20,35). Despite this relative rarity of closed
loops, we showed that in most cases the presence of loop
extrusion can be detected from static images alone for re-
alistic localization precisions, provided that the sample size
N (i.e. the number of measured anchor–anchor distances)
is large enough (Figure 3). For example, for loops of 300
kb with 20% closed and 40% extruding states, a reporter-
anchor separation of 6 kb, and a lateral localization pre-
cision of 15 nm (30 nm axially), extrusion can be detected

reliably from as little as N ≈75 measurements (Figure 3I).
With a poor lateral localization precision of 100 nm (200 nm
axially), reliable detection requires N ≈200 measurements,
which is still within reach of standard microscopy experi-
ments (Figure 3I). An important result of our analysis is
that loop extrusion can be detected even in absence of a sec-
ond peak in small anchor–anchor distances, which to our
knowledge has never been observed in DNA-FISH (28,79)
or live-cell imaging (35–38). Furthermore, we showed that
analysis of static imaging data also enables to estimate the
fraction of closed loops with high accuracy, and the frac-
tions of loops in extruding and open states with reason-
able accuracy (Figure 4). Finally, we demonstrated that un-
der realistic conditions, dynamic imaging data can be an-
alyzed to estimate the lifetime of closed states as well as
the speed of loop extrusion (Figure 5). Our study therefore
establishes the feasibility of an imaging approach to iden-
tify and quantitatively characterize loop extrusion. This is
a non-trivial finding considering the many challenges aris-
ing from the highly stochastic nature of chromatin motion
(80), the potential rarity of closed states, and technical limi-
tations of image acquisition. We have defined the minimum
conditions that are required to detect and characterize loop
extrusion in terms of localization precision, proximity of
reporters to anchors and sample size, and highlighted the
critical importance of comparing cells with and without ex-
trusion. We also verified that the recent experimental study
of loop extrusion by Gabriele et al. in mouse embryonic
stem cells indeed matched these conditions (35). The anal-
ysis methods proposed here (statistical comparisons of dis-
tance distributions and fitting to theoretical polymer mod-
els) should be directly applicable to experimental data in
follow-up studies.

Nonetheless, we acknowledge that our analyses have
caveats. First, our method for detecting loop extrusion (Fig-
ure 3) assumes that extrusion can be specifically abolished
in experiments such as RAD21 depletion (16). We cannot
exclude that potential changes to chromatin structure due
to RAD21-depletion that are unrelated to extrusion, such
as epigenetic modifications (81,82) or increased compart-
mentalization (23,24), may be picked up unspecifically by
this approach. Second, in our analysis of dynamic imaging
data, we identified the closed state as a temporally stable
low-distance state absent from conditions without extru-
sion. This method will miss short-lived closed states whose
duration is below the temporal threshold. The segmenta-
tion of closed states could potentially be made more specific
by also considering conditions that permit loop extrusion
but not closed states. Such conditions could be achieved ex-
perimentally by removing obstacles to loop extrusion, e.g.
by depleting the CTCF protein or mutating CTCF bind-
ing sites (19,24). Third, our quantification of closed state
fractions from static imaging data and our quantification
of closed state lifetimes from dynamic data assume that
the distributions of anchor–anchor distances in the closed
state are known, which is not straightforward. One possi-
ble way to estimate these distances (together with localiza-
tion errors) is to measure the distance between two fluores-
cent markers separated by a genomic distance equal to the
summed distance between anchors and reporters. Fourth,
we did not consider the possibility that multiple cohesin
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complexes may simultaneously extrude chromatin loops be-
tween the two anchors (76,83,84), which would consider-
ably complicate the analysis of state fractions and extrusion
speed. Fifth, our analysis ignores the possibility that loops
may be in the closed state at the start or end of dynamic
imaging experiments (censoring). Sixth, our assumption of
a continuous extrusion activity at constant (bidirectional
or unidirectional) speed does not account for the possibil-
ity of pausing (85), which may lead to underestimations of
the peak extrusion speed. Fully considering these complica-
tions will require follow-up work.

In spite of these limitations, our study highlights how
imaging in fixed or living cells can be used to rigor-
ously identify and quantitatively characterize the funda-
mental process of chromatin loop extrusion. With DNA-
FISH, fractions of closed, extruding and open states could
be estimated in a high-throughput manner by targeting
probes against the anchors of TADs and loops for hun-
dreds of genomic loci. Since each of these loci is associ-
ated with a unique epigenetic state, gene expression pattern
and spatial neighborhood, such a systematic analysis might
shed light on the intermingling between these factors and
loop extrusion, and its consequences on genome functions
(30,31,86,87). The possibility to analyze loop extrusion by
live-cell imaging is illustrated by two above-mentioned ex-
perimental studies in mESC (35,36), which estimated closed
loop fractions ranging from 3% to 27% and median loop
lifetimes ranging from 5 to 30 minutes. We expect that sub-
sequent experiments will extend this initial work by analyz-
ing many more TADs and loops and their dynamics in liv-
ing cells of multiple organisms. By providing clear quantita-
tive guidelines and analytical techniques, we hope that the
present study will be instrumental in reaching a better quan-
titative understanding of how loop extrusion affects chro-
matin dynamics and function.
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52. Vian,L., Pękowska,A., Rao,S.S.P., Kieffer-Kwon,K.-R., Jung,S.,
Baranello,L., Huang,S.-C., Khattabi,L.E., Dose,M., Pruett,N. et al.
(2018) The energetics and physiological impact of cohesin extrusion.
Cell, 173, 1165–1178.

53. Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery
rate: A practical and powerful approach to multiple testing. J. R.
Stat. Soc. B (Methodological), 57, 289–300.

54. Zhang,B., Zerubia,J. and Olivo-Marin,J.-C. (2007) Gaussian
approximations of fluorescence microscope point-spread function
models. Appl. Opt., 46, 1819–1829.

55. Virtanen,P., Gommers,R., Oliphant,T.E., Haberland,M., Reddy,T.,
Cournapeau,D., Burovski,E., Peterson,P., Weckesser,W., Bright,J.
et al. (2020) SciPy 1.0: Fundamental algorithms for scientific
computing in Python. Nat. Methods, 17, 261–272.

56. Huis in ’t Veld,P.J., Herzog,F., Ladurner,R., Davidson,I.F., Piric,S.,
Kreidl,E., Bhaskara,V., Aebersold,R. and Peters,J.-M. (2014)
Characterization of a DNA exit gate in the human cohesin ring.
Science, 346, 968–972.
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89. Sabaté,T., Lelandais,B., Bertrand,E. and Zimmer,C. (2023) Polymer
simulations guide the detection and quantification of chromatin loop
extrusion by imaging. https://doi.org/10.5281/ZENODO.7525055.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad034/7058223 by Institut Pasteur -  C

eR
IS user on 09 M

arch 2023

https://doi.org/10.5281/ZENODO.7521634
https://doi.org/10.5281/ZENODO.7525055

