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Abstract

Numerous models have been developed to account for the complex properties of the
random walks of biomolecules. However, when analysing experimental data, conditions
are rarely met to ensure model identification. The dynamics may simultaneously be
influenced by spatial and temporal heterogeneities of the environment,
out-of-equilibrium fluxes and conformal changes of the tracked molecules. Recorded
trajectories are often too short to reliably discern such multi-scale dynamics, which
precludes unambiguous assessment of the type of random walk and its parameters.
Furthermore, the motion of biomolecules may not be well described by a single,
canonical random walk model. Here, we develop a methodology for comparing
biomolecule dynamics observed in different experimental conditions without beforehand
identifying the model generating the recorded random walks. We introduce a two-step
statistical testing scheme. We first use simulation-based inference to train a graph
neural network to learn a fixed-length latent representation of recorded random walks.
As a second step, we use a maximum mean discrepancy statistical test on the vectors of
learnt features to compare biological conditions. This procedure allows us to characterise
sets of random walks regardless of their generating models. We initially tested our
approach on numerical trajectories. We then demonstrated its ability to detect changes
in α-synuclein dynamics at synapses in cultured cortical neurons in response to
membrane depolarisation. Using our methodology, we identify the domains in the latent
space where the variations between conditions are the most significant, which provides a
way of interpreting the detected differences in terms of single trajectory characteristics.
Our data show that changes in α-synuclein dynamics between the chosen conditions are
largely driven by increased protein mobility in the depolarised state.

Author summary

The continuous refinement of methods for single molecule tracking in live cells
advance our understanding of how biomolecules move inside cells. Analysing the
trajectories of single molecules is complicated by their highly erratic and noisy nature
and thus requires the use of statistical models of their motion. However, it is often not
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possible to unambiguously determine a model from a set of short and noisy trajectories.
Furthermore, the heterogeneous nature of the cellular environment means that the
molecules’ motion is often not properly described by a single model. In this paper we
develop a new statistical testing scheme to detect changes in biomolecule dynamics
within organelles without needing to identify a model of their motion. We train a graph
neural network on large-scale simulations of random walks to learn a latent
representation that captures relevant physical properties of a trajectory. We use a
kernel-based statistical test within that latent space to compare the properties of two
sets of trajectories recorded under different biological conditions. We apply our
approach to detect differences in the dynamics of α-synuclein, a presynaptic protein, in
axons and boutons during synaptic stimulation. This represents an important step
towards automated single-molecule-based read-out of pharmacological action.

Introduction 1

Numerical models make it possible to generate synthetic observations of biological 2

systems across a broad range of parameters. However, the computational cost of 3

directly using these simulations to perform statistical inference is often prohibitive [1]. 4

The reason is that both the likelihood and evidence are intractable in most systems, and 5

these inferences must therefore be addressed as likelihood-free simulation-based 6

inferences [2]. The primary approach to simulation-based inference is approximate 7

Bayesian computation (ABC) [2]. ABC relies on comparing user-defined summary 8

statistics from experimentally recorded and simulated data using a chosen distance 9

metric. The ever-growing amount of available data, along with recent advances in deep 10

learning [3] make it possible to capture more and more detailed properties of 11

experimental systems, and have thus boosted the development of simulation-based 12

inference. We refer the interested reader to [1] for a detailed taxonomy of 13

simulation-based inference methods. 14

Typical inference schemes developed to analyse biomolecule trajectories focus on 15

estimating physical parameters such as the diffusion coefficient, the anomalous diffusion 16

exponent, the type of random walk model, or other ad-hoc quantities measuring 17

particular aspects of the dynamics. Here, instead of describing trajectories using a set of 18

explicitly defined features, we rely on an encoder neural network, in order to 19

characterise each trajectory by a latent vector of features. The goal of this encoder is to 20

automatically learn optimised features that describe random walks beyond predefined 21

canonical models and features. We employ the encoder network to project recorded 22

trajectories into the fixed-dimensional latent space. We develop a statistical test on this 23

latent space to test for differences in dynamics between two sets of trajectories. Our 24

methodology can in particular be used to compare dynamics observed in different 25

biological conditions and different cell organelles, by comparing the sets of latent vectors 26

computed from trajectories observed in the respective microscopy recordings or regions 27

of the cell. The central advantage of the testing methodology we propose is that it is 28

not dependent on the specification and selection of a model of the recorded random 29

walks. This enables statistically robust testing of differing biological conditions, which 30

are likely to induce different levels of cellular heterogeneity and do not necessarily 31

generate canonical random walks. 32

We train the encoder network using a simulation-based inference framework 33

(detailed below), allowing it to provide a representation of trajectories without assuming 34

that they are realisations of a canonical random walk model. The subsequent statistical 35

test seeks to differentiate the distributions of latent vectors coming from different 36

conditions or organelles (or both). It is based on the maximum mean discrepancy 37

(MMD) test [4], which uses a kernel approach to compare two distributions. This test 38

April 8, 2022 2/23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2022. ; https://doi.org/10.1101/2022.04.11.487825doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487825
http://creativecommons.org/licenses/by/4.0/


allows us to compare sets composed of different numbers of trajectories, and provides a 39

means for interpreting the differences between biological conditions. Finally, we show 40

the robustness of the approach to the intrinsic variability of biological observations, and 41

demonstrate that the statistical differences do not stem from a single experiment, nor 42

from an outlier composed of a minority of trajectories. 43

We demonstrate our methodology by studying the dynamics of α-synuclein inside 44

and outside of synapses. α-synuclein is a small, soluble, and highly mobile protein (140 45

amino acid residues) that is strongly accumulated in presynaptic boutons (reviewed 46

in [5]). Experiments based on fluorescence recovery after photobleaching [6] have shown 47

the existence of at least two main modes of diffusion, one in which α-synuclein is 48

transiently bound to synaptic vesicles in the synaptic bouton, and another in which the 49

protein diffuses freely both in axons and in synaptic regions. The existence of an 50

immobile population of α-synuclein molecules, taking the form of protein aggregates at 51

synapses, has also been proposed [6]. In response to strong depolarising signals the 52

bound population of α-synuclein dissociates from its synaptic binding sites and 53

disperses in the neighbouring axon [7]. In agreement with these earlier studies, we found 54

that α-synuclein dynamics differ between synapses and axons. Furthermore, 55

depolarisation of the neurons shifts the relative frequency of the proteins from a less 56

mobile to a highly mobile state, but it does not appear to induce qualitative changes in 57

the type of diffusion dynamics the molecules follow. It is not clear what role this 58

dynamic shift of α-synuclein plays in vesicle cycling and in the regulation of synaptic 59

transmission. Single molecule based imaging in living neurons can help to address this 60

question and yield new information about the physiological function of α-synuclein at 61

synapses, as well as its involvement in pathological processes. 62

Materials and methods 63

Recording αSyn:Eos4 dynamics 64

Neuron cultures and αSyn:Eos4 expression 65

Primary murine cortical neuron cultures were prepared at embryonic day E17 as 66

described previously [8]. Cortices were dissected, the tissue was dissociated and the cells 67

were seeded at a concentration of 5 x 104 cm−2 on glass coverslips that had been coated 68

with poly-D,L-ornithine. Neurons were kept at 37oC and 5% CO2 in neurobasal 69

medium supplemented with Glutamax, antibiotics and B27 (all from Gibco, Thermo 70

Fisher Scientific), infected at day in vitro (DIV) 11-24 with lentivirus driving the 71

expression of α-synuclein tagged at its C-terminus with the photoconvertible fluorescent 72

protein mEos4b (αSyn:Eos4) under the control of a ubiquitin promotor, and used for 73

experiments 7 days later. All cell culture and imaging experiments were conducted at 74

the Laboratory for cellular synapse biology at IBENS (Paris). Procedures involving 75

animals were performed according to the guidelines set out by the local veterinary and 76

administrative authorities. 77

Single molecule localisation microscopy (SMLM) 78

Living neurons expressing αSyn:Eos4 were imaged in modified Tyrode’s solution (in 79

[mM]: 120 NaCl, 2.5 KCl, 2 CaCl2, 2 MgCl2, 25 glucose, 5 pyruvate, 25 HEPES, 80

adjusted to pH 7.4) at room temperature, using an inverted Nikon Eclipse Ti microscope 81

equipped with a 100x oil objective (NA 1.49), an Andor iXon EMCCD camera (16 bit, 82

image pixel size 160 nm), and Nikon NIS acquisition software. First, an image of the 83

chosen field of view (average of 10 image frames taken with 100 ms exposure time) was 84

taken in the green channel (non-converted mEos4b fluorescence) using a mercury lamp 85
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Fig 1. Single molecule localisation microscopy (SMLM) of α-synuclein in
cortical neurons. (A) Neurons expressing αSyn:Eos4 were first imaged in control
condition. A reference image (left panel) was taken in the green channel, followed by a
SMLM movie of 25000 frames in the red channel (panel two). (B) A second recording of
the same field of view (image and movie) were then acquired in the presence of elevated
KCl concentration. Note the dispersal of αSyn:Eos4 in response to depolarisation
compared to the control (left panels). (C) A third image and movie were acquired after
addition of 2% paraformaldehyde. The third column of images shows zoomed SMLM
reconstructions of the synaptic bouton indicated in the first image. The fourth column
depicts a subset of trajectories from the same synaptic terminal.

and specific excitation (485/20 nm) and emission filters (525/30 nm). This was followed 86

by a streamed acquisition of 25 000 movie frames recorded with 15 ms exposure and 87

∆t = 15.4 ms time lapse (total duration: 6 min 25 s) in the red channel using a 561 nm 88

laser at a nominal power of 150 mW for excitation (inclined illumination), together with 89

pulsed activation lasers applied during the off time of the camera (405 nm, approx. 90

1-5 mW; 488 nm, 10 mW; 0.45 ms pulse). The red emission of the photo-converted 91

mEos4b fluorophores was detected with a 607/36 nm filter (Fig. 1A). 92

After recording of the baseline dynamics of αSyn:Eos4, the buffer composition was 93

changed with the addition of Tyrode’s solution containing elevated KCl at the expense 94

of NaCl (final concentrations in [mM]: 78 NaCl, 44.5 KCl, 2 CaCl2, 2 MgCl2, 25 glucose, 95

5 pyruvate, 25 HEPES, pH 7.4). This treatment causes the depolarisation of the 96

neurons leading to the dissociation of α-synuclein from its binding sites in the synaptic 97

bouton [7]. A reference image was taken in the green channel, followed by a second 98

SMLM recording (Fig. 1B), starting approximately 7.5 min after the first acquisition. 99

Finally, the neurons were fixed with the addition of phosphate buffer at pH 7.4 100

containing 4% paraformaldehyde and 1% sucrose (final concentration 2% PFA), and a 101

third reference image (green) and SMLM movie (red channel) were acquired in the 102
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presence of the fixative (Fig. 1C). 103

Image processing and analysis 104

SMLM image stacks (tiff files) were pre-processed in order to remove background 105

fluorescence using a quantile filter computed on a sliding window. Then, localisations 106

were detected using the algorithm described in [9], based on a wavelet analysis. Subpixel 107

localisation was performed using the radial symmetry center algorithm introduced 108

in [10]. Sample drift was corrected by subtracting the displacement that yielded the 109

best correlation between densities of successive temporal slices grouping 10 000 110

localisations each. To isolate axons, we applied a Sato filter [11] with a width of 3 pixels 111

on the logarithm of the pixel-wise mean intensity. Then, we used a local thresholding 112

algorithm, provided by [12] to compute a mask over the image. All steps of the analysis 113

were implemented in Python, the code is available at http://gitlab.pasteur.fr. 114

Synapses were manually detoured using an ad-hoc graphic user interface. In total, our 115

analysis includes 321 synapses for which more than 150 trajectories were recorded, 116

coming from 10 different fields of view. A synapse is counted twice if it appears in two 117

or three recordings based on the same field of view but done in different conditions (e.g. 118

some synapses appear in control, KCl and fixed conditions). 119

In the analysis of experimental trajectories, we considered only trajectories located 120

in the axons, and we split them into two groups: those located outside the synaptic 121

region and those located inside. Synaptic regions were delimited by a density threshold 122

of one tenth of the maximum density of detections in the synapse. The density was 123

estimated using a Gaussian kernel method with a bandwidth of 150 nm. We estimated 124

the apparent effective diffusivity [13] of a trajectory from the sample variance of its 125

single-time-lapse displacements, i.e. D̂ =
∑N
i=1 ||∆ri − µ||2)/[4(N − 1)∆t], where 126

∆ri = ri − ri−1 is the displacement between the (i− 1)th and ith recorded positions 127

and µ =
∑N
i=1 ∆ri/N is the average displacement. 128

Describing trajectories with latent vectors 129

The first step of the analysis is to build a latent representation of random walks that 130

does not require strong assumptions about the underlying generative models. In this 131

section, we present the simulation-based inference scheme, the architecture of the neural 132

network used to compute latent vectors from trajectories, and the visualisation of these 133

vectors. 134

Simulation-based inference 135

In order to ensure that our characterisation of trajectories is accurate, robust and 136

length-independent, it should be trained on an as wide as possible variety of random 137

walks. Hence, we chose to rely on a simulation-based inference procedure [1]. It consists 138

in generating data on which the neural network is subsequently trained. In our case, 139

this amounts to simulating trajectories of a variety of models known to encapsulate 140

different properties of biomolecule dynamics in cells. The physical parameters chosen to 141

simulate these trajectories should at least cover the range of the experimentally 142

observed ones, in order to ensure that the network is able to encode relevant 143

information about the recorded trajectories on which the inference will eventually be 144

performed after its training. 145

To ensure the diversity of the training set, we simulated trajectories using five 146

different canonical random walk models covering a wide spectrum of possible random 147

walk characteristics: 148
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• the Levy walk (LW) [14–16], which has non-Gaussian increments and exhibits 149

weak ergodicity breaking; 150

• scaled Brownian motion (sBM) [17–19], which is Gaussian, non-stationary and 151

weakly non-ergodic; 152

• the Ornstein Uhlenbeck process (OU) [20], a Gaussian, stationary process with 153

exponentially decaying autocorrelations; 154

• fractional Brownian motion (fBM) [21], which is Gaussian, stationary and exhibits 155

slowly decaying temporal correlations; 156

• and the continuous time random walk (CTRW) [22,23], which is non-Gaussian, 157

shows weak ergodicity breaking, ageing, and has discontinuous paths. 158

The models’ parameters were drawn from the same distributions throughout the 159

entire study and were chosen to cover the entire ranges observed experimentally. 160

Trajectory lengths were drawn from a log-uniform distribution between 7 and 25 points, 161

which corresponds to a mean length of 14 points. The effective diffusivity was drawn 162

from a log-normal distribution with D0 = 1µm2/s, 〈log10(D/D0)〉 = −0.5 and 163

Var(log10(D/D0)) = 0.52. For the OU model, the relaxation rate θ was drawn from ... 164

We added uncorrelated localisation noise to each point of the trajectories, drawn 165

from a centred Gaussian distribution with standard deviation drawn uniformly between 166

15 and 40 nm (to include the signal intensity dependence of the localisation precision). 167

The time lapse between recordings was set equal to that of the camera (15,4 ms). 168

The neural network (the architecture of which is detailed below) was then trained to 169

infer two characteristics of interest from the trajectories: their anomalous diffusion 170

exponent (if applicable), and the random walk model from which they were generated 171

among the five described above. Throughout the training, the network processed ∼ 106
172

independent simulated trajectories. 173

Graph neural network and random walks 174

Here, we explain how we construct an informative size-independent representation of 175

random walks. We feed trajectories into a neural network, which we train to compute a 176

vector of summary statistics from each trajectory. It contains information relevant to 177

the characterisation of the random walk. Although observed trajectories are not all of 178

the same length, the summary statistics is a vector of constant size. Thus, this vector 179

can be used to compare trajectories of different sizes. Details about the subsequent 180

analyses are found in the next subsections. Here, we focus on the neural network 181

architecture, which is based on our previous work [24]. We refer the interested reader to 182

the Supporting Information for implementation details 183

Graphical models are methods of choice to handle complex inferences [2, 25], model 184

large scale causal relationships [26] and provide inductive biases in Bayesian 185

inferences [27]. Over the last five years, graph-based analysis methods have been 186

complemented by graph neural networks (GNNs), which extend classical neural network 187

approaches to run directly on graphs. GNNs are efficient at representation 188

learning [28–30] and naturally apply to data of varying dimensions. Furthermore, GNNs 189

are ideally suited to encode natural symmetries of physical systems [31]. For these 190

reasons, we chose to use a such network to process trajectories. 191

To do so, we represent a trajectory R = (r1, r2, . . . , rN ) by a directed graph 192

G = (V,E,X,Y). Here V = {1, 2, . . . , N} are the nodes, each associated with a 193

position in the trajectory, E ⊆ {(i, j)|(i, j) ∈ V 2} is the set of edges connecting pairs of 194

nodes, X = (x
(0)
1 ,x

(0)
2 , . . . ,x

(0)
N ) are node feature vectors, and Y = (y

(0)
1 ,y

(0)
2 , . . . ,y

(0)
|E|) 195
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are edge features. Each node feature vector x
(0)
i ∈ X, of size nx, captures features 196

associated to the trajectory and to the associated graph. It depends on node i and on 197

arbitrary neighborhoods of i. The incoming edges of each node connect only to nodes in 198

the past (respecting causality): node i receives incoming edges from nodes 199

i−∆1, . . . , i−∆max, where (∆i)i≥1 is a geometric series. Each edge feature vector 200

y
(0)
2 ∈ Y, of size ny, contains information about the trajectory’s course between pairs of 201

nodes. The graph construction is illustrated in Fig. 2A. 202

A trajectory’s graph and its associated feature vectors are then passed to a series of 203

graph convolution layers, as illustrated in Fig. 2B. Node features vectors are aggregated 204

in the pooling layer such that in the second part of the network, each trajectory is 205

represented by a fixed-size vector. The output of the multi-layer perceptron directly 206

downstream of the pooling layer provides a 16-dimensional vector representing each 207

trajectory, i.e. a summary statistics, which we designate in the following as the “latent 208

representation”, or “latent vector”. During the training phase, the latent vector is fed to 209

two separate MLPs predicting the anomalous exponent and the underlying model of the 210

random walk, respectively. The loss minimised during the network’s training is the sum 211

of two task-specific losses: the mean squared error of the prediction of the anomalous 212

exponent (excluding OU trajectories which are not anomalous random walks) and the 213

cross-entropy of the predicted and true model classes. Training the network on such 214

physically informed tasks makes it build a relevant latent representation of trajectories 215

[24]. 216

Latent representation of trajectories 217

Once processed by the encoder, each trajectory is reduced to a 16-dimensional vector. 218

For visualisation purposes, we projected this vector on a 2D plane using a 219

parametric-UMAP to perform the projection [32]. This variation of UMAP allows us to 220

learn the transformation projecting the data from 16 to 2 dimensions solely on 221

simulated trajectories, so that it is independent of the experimental trajectories and is 222

only trained once. The GNN was trained first, then the parametric-UMAP projection 223

was learnt and both their sets of weights were frozen. 224

We designate as “2D latent representation” the two-dimensional vector, output by 225

the parametric-UMAP, which represents a trajectory in the latent space. Figure 3A 226

shows that latent representations of simulated and experimental data largely overlap, 227

and that the experimental trajectories fall within the region covered by the simulated 228

ones. Figures 3B and 3C show that the random walk model and the diffusivity are 229

prominent determinants of the latent space structure. Figures 3D, 3E and 3F illustrate 230

the diversity of αSyn:Eos4 trajectories that can be found in a presynaptic bouton, and 231

how this diversity is captured by the latent representation. Figure 3F highlights the fact 232

that there is a high variability of trajectory dynamics even within a given synapse, 233

suggesting that α-synuclein molecules can transition between various dynamic modes. 234

Using the approach described above, we can associate to any set of trajectories, a set 235

of constant-sized vectors characterising their dynamics. Each microscope recording, or 236

organelle within it, can thus be characterised by a set of N 2-dimensional feature 237

vectors, N being the number of trajectories. Note that we could have used the latent of 238

vectors of 16 dimensions, but in this application the 2D projection captured enough 239

information about the random walk dynamics. The conditions are thus met to perform 240

statistical testing. 241

Statistical testing in the space of latent representations 242

We develop in this section the statistical test we use to compare the dynamics of single 243

molecules in different organelles and under different biological conditions. Each 244
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convolution

convolution

convolution

MLP

MLP

Pooling

MLP

MLP
MLP

MLP

B

A

Variable-size vectors
Operations on graphs

Fixed-size vectors
Operations on vectors

Latent
representation

Fig 2. Model architecture. (A) Building a trajectory graph. Node and edge
features are computed, and edges are drawn between edges following a pre-determined
pattern. (B) Graph neural network. The graph is passed through a series of graph
convolution layers (shown in blue), which propagate information along edges. The
pooling operation (green) combines all node feature vectors from a graph into a vector
of fixed size representing the graph. This vector is then passed to a multi-layer
perceptron (MLP in orange), whose output we refer to as the ”latent representation” of
the trajectory. The latent representation is fed to two task-specific MLPs: one that
predicts the trajectory’s anomalous exponent α and one that assigns a vector of
probabilities for the trajectory to have been generated by each of the models considered.
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Fig 3. 2D Latent space of trajectories. (A) Latent representations of simulated
versus experimentally recorded trajectories. (B) Latent representations of simulated
trajectories, coloured by random walk model (fBM: fractional Brownian motion; LW:
Levy walk; sBM: scaled Brownian motion; OU: Ornstein-Uhlenbeck process; CTRW:
continuous-time random walk). The cropped region at the bottom contains mostly
simulated Levy walks. (C) Latent representation of experimentally recorded
trajectories, coloured according to the estimated log-diffusivity. (D) Recorded
trajectories at synapses and in the axon. (E) Zoom on a presynaptic bouton, delimited
by the red square in panel D. Three individual trajectories are highlighted. (F) Latent
representation of the trajectories at this synapse, with colored dots corresponding to the
three trajectories highlighted in E. (G) Examples of acquired trajectories, located
according to their position in the 2D latent space. Each square has a side length of 1
micrometer.
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organelle is characterised by the set of its latent vectors. Thus, we base our statistical 245

test on the comparison of the generating distributions of these vectors. In the absence 246

of a priori knowledge of these distributions, we employ a kernel-based approach: the 247

maximum mean discrepancy (MMD) test. 248

Maximum mean discrepancy 249

Maximum mean discrepancy (MMD), introduced in [4], is a measure of distance 250

between distributions. It was developed to perform statistical testing between two sets 251

of independent observations lying in a metric space X , X = {x1, . . . , xm} drawn from 252

probability measure p and Y = {y1, . . . , yn} drawn from q, with the the goal of 253

assessing whether or not p and q are different. 254

Given a class F of functions from X to R, the MMD between two probability 255

measures p and q is defined as 256

MMD[F , p, g] = sup
f∈F

(Ex [f(x)]− Ey [f(y)]) , (1)

where Ex and Ey denote expectation w.r.t. p and q, respectively. 257

If the function class is the unit ball in a Reproducing Kernel Hilbert Space 258

(RKHS) [33] H, the square of the MMD can directly be estimated from data samples. 259

Denoting k the kernel operator such that ∀f ∈ F , f(x) = 〈f, k(x, ·)〉, an unbiased 260

estimator of the square of the MMD between X and Y is given by: 261

MMD2
u[F , X, Y ] =

1

m(m− 1)

∑
i,j
i 6=j

k(xi, xj) +
1

n(n− 1)

∑
i,j
i 6=j

k(yi, yj)−
2

nm

∑
i,j

k(xi, yj)

(2)
In our case, X = R2, and we used the classical Gaussian kernel 262

k : x, y → k(x, y) = 1√
2πσ

exp(− ||x−y||
2
2

2σ2 ). We set the kernel bandwidth σ either to the 263

median of the pairwise Euclidian distances between samples from X and Y or we 264

optimised it in specific conditions. 265

The MMD is capable of detecting subtle differences such as the ones between data 266

generated by generative adversarial networks (GANs) and real data [34]. It has also 267

proved efficient in discovering which variables exhibit the greatest difference between 268

datasets [4, 33]. 269

Statistical test 270

We adapted the bootstrap test described in [4] to assess whether dynamics of 271

α-synuclein observed in two experimental conditions exhibit different properties. We 272

denote by X and Y the two sets of trajectories observed in the two different conditions, 273

drawn from unknown probability densities p and q. For simplicity, we assume that X 274

and Y have the same number of elements, m = n, using the same notation as in the last 275

section. In practice, the number of observed trajectories varies significantly across 276

experimental replicates. To ensure that all replicates have an equal importance when 277

the two sets do not have the same number of trajectories we randomly sub-sampled the 278

larger of the two sets to equalise their sizes. The null hypothesis H0 of the statistical 279

test is that p = q, i.e. the two conditions lead to the same distribution of random walks. 280

Under H0, we approximated the distribution of MMD2
u[F , X, Y ] by bootstrapping, i.e. 281

we drew random samples from the union of X and Y and distributed them in two 282

groups X ′ and Y ′ (whose sizes respectively match those of X and Y ), on which we 283

computed MMD2
u[F , X ′, Y ′]. We repeated this procedure a sufficient number of times 284

to obtain an estimation of the distribution of MMD2
u under the assumption that X ′ and 285
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Y ′ are drawn from the same distribution. Then, if the original MMD2
u[F , X, Y ] was 286

greater than the 1− α quantile of this distribution, we rejected H0. This test is said to 287

be of level α, because with probability α, we will reject the null hypothesis when it is 288

actually true. 289

Results 290

Detecting differences between sets of simulated trajectories 291

To assess the performance of the full statistical testing framework, we applied it on 292

simulated data. We set the level of statistical significance to α = 0.05, and we simulated 293

trajectories as described in Material and Methods. 294

A first case of our test is to detect changes in the proportions of given types of 295

trajectories between two sets of observations. This is illustrated in Fig. 4, where we 296

show example comparisons in the 2D latent space between two sets with different 297

proportions of their trajectories generated by fBM and sBM. We compared fBM and 298

sBM, since they share numerous features and because for a large range of values of the 299

anomalous exponent they are challenging to distinguish [24]. Furthermore, these two 300

random walk models are highly representative of our experimental data, as can be seen 301

by their latent space occupations (compare Figs. 3A and B). 302

The difficulty of separating the two populations depends on their relative 303

proportions in the two datasets, and we see that both the amplitude of the witness 304

function (Fig. 4C) as well as the value of the test statistic (Fig. 4D) decrease as the 305

ratio is closer to 1:1. When the two sets are drawn from the same 50/50 distribution, 306

the test does not, and should not, find significant differences between them. 307

The other main factor determining the difficulty of detecting a difference, is the size 308

of the datasets. Experimentally, changes in biological conditions lead not only to 309

changes in the properties of the random walks. It also leads to changes in the total 310

number of trajectories of a given type. This causes challenges in performing proper 311

statistical testing. To quantitatively assess the effect of both the number of trajectories 312

and the relative proportions belong to different random walk classes, we conducted 313

numerical experiments where we varied these two parameters systematically (Fig. S2A). 314

Besides differences in the proportions of trajectories generated by different random 315

walk models, the sets may also differ in the models’ parameter values. We thus 316

additionally evaluated the test’s ability to distinguish two sets of fBMs, one with 317

anomalous diffusion exponent α = 1− δ and the other with α = 1 + δ. Our results 318

indicate that in both cases 1 000 trajectories are sufficient to detect subtle changes 319

between distributions (Fig. S2). Fewer trajectories are needed to detect starker 320

differences. In cases where the compared sets are drawn from the same distribution 321

(ν = 0 and δ = 0), the null hypothesis is rejected in about 5% of cases, consistent with 322

our chosen α-level. 323

One way to further improve these results is to optimise the kernel used to compute 324

the MMD. We show in Fig. S1 how kernel bandwidth and shape affect the power of the 325

test. If the kernel bandwidth is too small, this weakens the test by making it too 326

sensitive to noise. Conversely, if its bandwidth is too large, this prevents the test from 327

detecting subtle changes. We tested the effect of the kernel characteristics in the same 328

setting as illustrated in Figs. 4 and S2A, with N = 200 trajectories in each set and 329

comparing sets with 70% fBM / 30% sBM and 30% fBM / 70% sBM. We observed that 330

a Gaussian kernel with radius σ equal to the median pairwise distance in the dataset 331

(i.e. σ between 1.5 and 2) yields a near-optimal test, in agreement with earlier 332

findings [4]. Finally, while we have here focused on optimizing type II error while 333

controlling type I error (i.e. fixed α-level), the parameters and the functional form of the 334
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1× 10 2 MMD2u[ , X0,Y0]
1,000 random
splits
top 5%
top 1%
MMD2u[ , X, Y]

25% / 75%

50% / 50%

100% fBM / 0% sBM

75% / 25%

50% / 50%

6× 10 3

4× 10 3

3× 10 3
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0
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A B C D

Fig 4. MMD-based statistical test. (A), (B) Densities of latent vectors in the 2D
plane, for two sets of 500 trajectories with different ratios of fBM / sBM trajectories
(top: 0% fBM / 100% sBM vs. 100% fBM / 0% sBM, middle: 25% / 75% vs. 75% /
25%, bottom: 50% / 50%). (C) Witness functions of the MMD test for difference
between A and B, i.e. the function attaining the maximum in Eq. 1, based on the
available samples. (D) Distribution of the test statistic MMD2

u between sets of equal
size composed of randomly chosen trajectories of the two sets, with its top 1% (yellow
line) and top 5% percentiles (green), as well as the unbiased estimate of the square
MMD between the two sets (red).
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fixed

AxonsSynapses

AA BB CC DD EE FF

CTRL Syn.

CTRL Syn.

CTRLAxons

KCl Syn.

fixed Syn.

KCl Axons

Fig 5. Latent space occupation & statistical testing. Left part: (A), (B)
Latent space occupation densities of αSyn:Eos4 trajectories observed in synapses and
axons, in the three experimental conditions (control, high KCl, fixed). Right part: each
row is one comparison of two sets of trajectories. (C), (D) Side by side comparison of
the latent space occupation densities of the two sets of trajectories used in the
comparison in E and F. (E) Witness function of the comparison. The colour scale is
preserved across rows. (F) Histograms illustrating the statistical test based on the
MMD. The green and yellow vertical lines represent the top 5% and top 1% quantiles of
the null distribution of the squared MMD, respectively, while the red line shows the
squared MMD for the experimental data.

kernel can be adjusted to control either type I or II error while optimising the other [35]. 335

Differences of α-synuclein mobility in axons and at synapses in 336

response to membrane depolarisation 337

We analysed trajectories of αSyn:Eos4 molecules in the axons of cultured cortical 338

neurons and compared them between different subcellular regions, outside or inside the 339

synaptic bouton, and experimental conditions, control, high KCl (leading to synaptic 340

depolarisation) and fixed cells. 341

The three experimental conditions (control, KCl, fixed) and two subcellular regions 342

(extra- and intra-synaptic) define six populations of trajectories, whose latent space 343

occupation densities are shown in Figs. 5A and 5B. In the remaining four columns of 344

Fig. 5, we illustrate a few comparisons performed between pairs of trajectory 345

populations using our statistical test. Figures 5C and 5D show the latent space densities 346

for the two conditions that are compared in each case, the differences of which are the 347

witness functions shown in Fig. 5E. The distributions of the test statistics under the 348

null hypothesis, obtained after 1 000 bootstrapping iterations, are shown in Fig. 5F, as 349

well as its top 1% and 5% quantiles and the test statistic obtained on the actual two 350

compared populations. 351

In all of the three cases illustrated in Fig. 5, the empirical MMD2
u is significantly 352

higher than the top 1% quantile of the null distribution, meaning that our test detects a 353

significant difference in the properties of the trajectories of the two compared subsets at 354

the 1% α-level. Note the wide range of magnitudes spanned by these differences, which 355

is well judged by looking at the absolute intensity of the witness functions shown in 356

Fig. 5E. We see that the difference induced by fixation on α-synuclein mobility at 357

synapses (Fig. 5E, middle) is much more pronounced than the one induced by high KCl 358
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treatment (Fig. 5E, top). This is also apparent when looking at how large MMD2
u is 359

compared to its distribution under the null hypothesis: in the case of the fixed vs 360

control comparison (Fig. 5F, middle), the histogram of the MMD2
u values obtained 361

under the null hypothesis is completely squeezed because the empirical MMD2
u is more 362

than two orders of magnitude larger than the top 1% quantile of the distribution under 363

the null hypothesis. In comparison, KCl treatment produces a less drastic change in 364

α-synuclein trajectories located in synaptic terminals (Fig. 5F, top), although this effect 365

is also highly statistically significant (p� 0.01). 366

We further observed that, while their magnitudes differ, the witness functions of the 367

control/KCl comparisons in axons and in synaptic boutons (Fig. 5E, top and bottom) 368

exhibit similar patterns. This indicates that the addition of KCl to the medium can 369

affect the physical properties of many if not all α-synuclein molecules in a similar 370

manner, irrespective of their subcellular location. In contrast, α-synuclein mobility in 371

fixed neurons appears to be almost entirely abolished, which is seen not only in the 372

amplitude of the change, but also in the fact that the occupation of the latent space 373

displays massive qualitative differences in this condition. This demonstrates that 374

α-synuclein is highly mobile in living cells, and helps to put our experimental findings 375

into perspective. 376

Another feature of the MMD, is the possibility of extracting the points of the feature 377

space that are most important for distinguishing one distribution from another. By 378

finding the local maxima of the S statistic, introduced in [36], which is given as the 379

ratio of the mean squared amplitude and the variance of the witness function estimated 380

by bootstrapping, we identify the regions of the latent space where the occupation 381

differs most in the two populations. This enables a straightforward interpretation of the 382

latent space. In Fig. 6, we apply this method to the comparison of intra-synaptic 383

αSyn:Eos4 trajectories in the control and KCl conditions. According to this analysis, 384

the representative α-synuclein trajectories exhibit a greater mobility in the depolarised 385

state. This is likely the result of a weaker binding of α-synuclein at synapses, as 386

reflected in the overall reduction of α-synuclein molecules during KCl application 387

(Figs. 1A and 1B). 388

Furthermore, as illustrated in Fig. S3, we use this statistic to check that all acquired 389

fields of view contribute evenly to the difference between the control and KCl conditions. 390

We looked at the proportion of trajectories coming from each field of view and condition 391

in a region of the latent space which we define as ”critical”, based on the value of S (it 392

is the contiguous domain containing the maximum of S and where S is greater than half 393

of its maximum value). We could thus confirm that, on the one hand, trajectories 394

located in this region of the latent space originate from all considered fields of view in a 395

balanced manner, and on the other hand, that within each field of view, the difference 396

of representation of each condition is in the same direction (except for one field of view, 397

where there is almost no difference). This furthermore excludes the possibility that the 398

observed differences are solely due to a single abnormal recording. 399

Comparing synapses 400

The approach we propose is not restricted to inter-condition comparisons, but can be 401

used to compare any two subsets of trajectories. Hence, we can group trajectories by 402

synapse and external condition (control, KCl or fixed), and compute the value of 403

MMD2
u of all the pairs of so-obtained synapses. This provides us with an inter-synapse 404

distance matrix, shown in Fig. 7A. Using these distances, we can embed the trajectory 405

subsets in an Euclidian space, i.e. summarise each subset by a vector of fixed dimension, 406

using for instance the multi-dimensional scaling (MDS) algorithm [2]. We adapted the 407

MDS algorithm in order to account for the uncertainty that we have in the estimation 408

of the squared distance, which notably depends on the number of observed trajectories 409
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200 nm 200 nm

A

C D

B

Fig 6. Most salient dynamics. (A) Witness function of the comparison of
intra-synaptic trajectories, between the control (blue) and KCl (red) conditions. (B)
Test statistic such as defined in [36], i.e. ratio of the square amplitude divided by the
variance. The black contour indicates the ”critical region”, i.e. the region of the latent
space most responsible of the statistical difference. (C) and (D) Illustration, for each
maximum of the test statistic, of its 16 closest trajectories.
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Fig 7. Comparing individual synapses. (A) Matrix of the inter-synapse MMD:
the value at row i and column j is colored according to the MMD between trajectories
of synapse i and synapse j. (B) 5-dimensional embedding obtained by
multi-dimensional scaling (MDS) based on this distance matrix. Dots are coloured
according to the condition in which the synapse they represent was observed: CTRL in
orange, KCl in blue and fixed in green.

per synapse (see Supplementary information). We show in Fig. 7B the vectors obtained 410

when using this method to embed synapses in a 5-dimensional space. The clouds of 411

points corresponding to synapses observed in each condition do not perfectly overlap, 412

which is expected given that we previously showed that conditions were significantly 413

different. However, this view provides an intuitive illustration of the relative extent of 414

inter- and intra-condition variability. More generally, this type of visualisation may be 415

used to illustrate potential continuous shift or clear separations between distinct 416

synaptic regimes observed in different conditions. 417

Discussion 418

We have introduced a statistical procedure to compare organelles or biological 419

conditions of single molecule experiments. This statistical test does not require 420

explicitly defining the generative models of experimentally recorded random walks. The 421

test consists of two steps. In the first step, an amortised inference is used to reduce any 422

trajectory to a features vector of constant size. In the second, the distribution of 423

features between different conditions is compared by the MMD statistical test. 424

Our approach allows extracting physically and biologically relevant results without 425

having to assign the biomolecule motion to canonical models. Although these models 426

are instrumental for interpreting the properties of random walks, the complexity and 427

heterogeneity of biological environments at the nanometer/micrometer scale often 428

precludes an unambiguous model assignation. 429

An alternative approach that would also use a set of canonical random walks as a 430

possible basis for description is Bayesian Model Averaging (BMA). The BMA method 431

does not look for the best model to describe experimental data but rather evaluates the 432

parameters for each of the possible models and then averages the different results. It is 433

challenging to apply this approach to our current problem for two reasons: (i) the space 434

parameters of the different random walks are not identical and (ii) the evaluation of the 435
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parameters associated with each random walk by Bayesian methods is not possible for 436

all models. It would be possible to develop Bayesian method variations to estimate the 437

parameters of models that do not have tractable likelihoods. However, the 438

marginalisation of the different models would be computationally intensive. Finally, 439

even though BMA could include information from multiple models, it would still rely on 440

the projection of the experimental date onto a set of canonical models. 441

We applied our approach to study the dynamics of α-synuclein molecules in axons 442

and presynaptic boutons. In agreement with earlier studies of the population dynamics 443

of α-synuclein [6, 7], we found that the protein assumes differing dynamic states at 444

synapses and in axons. Depolarisation of the presynaptic terminals through the 445

application of high potassium concentrations shifted the relative frequency of the 446

various states, without necessarily changing the types of diffusion. In other words, our 447

analysis demonstrates clear quantitative changes in the mobility of α-synuclein but does 448

not identify qualitative changes due to the extensive overlap in the occupation of the 449

latent space (with the exception of the fixed state). 450

This statistical testing procedure paves the way to automated analysis of single 451

molecule experiments. Single molecule pharmacology is an emerging field [37,38], in 452

which the effects of drugs are evaluated at the nanometer scale by studying the spatial 453

properties and dynamics of biomolecules of interest. The possibility to automatically 454

compare different conditions without relying on manually selected generative models of 455

molecule diffusion would be helpful in defining groups of conditions in which a certain 456

effect can be detected. Even though model identification will often be impossible, the 457

properties of the latent space can reveal the source of observed differences. The witness 458

function can thus be instrumental in differentiating changes in the probability of 459

occupancy of specified domains within the latent space between conditions. As 460

illustrated on Fig. 6, going from a region of the latent space to an intelligible trait of 461

trajectories is rather intuitive, hence the interest of this method to orient further 462

analysis and build biologically relevant hypotheses. 463

Beyond the automation of the analysis procedure between biological conditions, our 464

approach is well suited for exploratory data analysis. The capacity to project individual, 465

differently sized trajectories into finite sized vectors makes it possible to study precise 466

sub-cellular compartments or organelles in a standardised form, and thus allows to test 467

statistical differences between these regions. Hence, recorded single molecule data can 468

be searched in order to detect and characterise regions of the cell that have different 469

statistical properties. This exploration can be done even in regions with different 470

trajectory densities, as is the case for α-synuclein at synapses versus axonal domains. 471

One of the current limitations of the current approach is the difficulty in evaluating 472

the type II error [35] bounds on the statistical test. The MMD test is applied within the 473

latent space of the GNN. This manifold is built using a set of non-linear operations, 474

which depends both on the numerical trajectories seen during the training and on the 475

cost function being optimised. Hence, there may be domains within the latent space 476

that could lead to improper sensitivity of the statistical test. As can be seen in [24] and 477

in Fig. 3, different types of random walks occupy domains of different size and there is a 478

large overlap of the regions. Since our approach relies on a simulation based framework, 479

it is possible to use numerical simulations matching the experimental occupancy of the 480

latent space to evaluate the accuracy of the test. Furthermore, extensive simulations 481

and check if the statistical test misbehaves, even though this procedure can be time 482

consuming. In order to further improve the statistical power of the test, one could 483

optimise the kernel with which the MMD is computed. Along these lines, a possible 484

variant of this method could rely on an encoder network trained not on a supervised 485

inference task but rather to maximise the MMD between two sets of experimentally 486

recorded trajectories. This, however, would require substantially a larger quantity of 487
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experimental data. 488
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and may hold shares and/or stock options in the company. The other authors declare to 500

have no financial or non-financial conflicts of interest. 501

References 502

1. Cranmer K, Brehmer J, Louppe G. The frontier of simulation-based 503

inference;117(48):30055–30062. doi:10.1073/pnas.1912789117. 504

2. Bishop CM. Pattern Recognition and Machine Learning. Softcover reprint of the 505

original 1st ed. 2006 edition ed. Springer;. 506

3. LeCun Y, Bengio Y, Hinton G. Deep learning;521(7553):436–444. 507

doi:10.1038/nature14539. 508

4. Gretton A, Borgwardt KM, Rasch MJ, Schölkopf B, Smola A. A Kernel 509

Two-Sample Test;13(25):723–773. 510

5. Specht CG. A Quantitative Perspective of Alpha-Synuclein Dynamics–Why 511

Numbers Matter. Frontiers in Synaptic Neuroscience. 2021;13. 512

6. Spinelli KJ, Taylor JK, Osterberg VR, Churchill MJ, Pollock E, Moore C, et al. 513

Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease. 514

Journal of Neuroscience. 2014;34(6):2037–2050. 515

7. Fortin DL, Nemani VM, Voglmaier SM, Anthony MD, Ryan TA, Edwards RH. 516

Neural activity controls the synaptic accumulation of α-synuclein. Journal of 517

Neuroscience. 2005;25(47):10913–10921. 518

8. Ludwig A, Serna P, Morgenstein L, Yang G, Bar-Elli O, Ortiz G, et al.. 519

Feasibility analysis of semiconductor voltage nanosensors for neuronal membrane 520

potential sensing;. Available from: 521

https://www.biorxiv.org/content/10.1101/838342v1. 522

9. Izeddin I, Boulanger J, Racine V, Specht C, Kechkar A, Nair D, et al. Wavelet 523

analysis for single molecule localization microscopy. Optics express. 524

2012;20(3):2081–2095. 525

10. Parthasarathy R. Rapid, accurate particle tracking by calculation of radial 526

symmetry centers. Nature methods. 2012;9(7):724–726. 527

April 8, 2022 18/23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 11, 2022. ; https://doi.org/10.1101/2022.04.11.487825doi: bioRxiv preprint 

https://www.biorxiv.org/content/10.1101/838342v1
https://doi.org/10.1101/2022.04.11.487825
http://creativecommons.org/licenses/by/4.0/


11. Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, et al. 528

Three-dimensional multi-scale line filter for segmentation and visualization of 529

curvilinear structures in medical images. Medical image analysis. 530

1998;2(2):143–168. 531

12. Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, 532

Yager N, et al. scikit-image: image processing in Python. PeerJ. 2014;2:e453. 533

13. Vestergaard CL, Blainey PC, Flyvbjerg H. Optimal Estimation of Diffusion 534

Coefficients from Single-Particle Trajectories;89(2):022726. 535

doi:10.1103/PhysRevE.89.022726. 536
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Supporting information 606

Multi-dimensional scaling with uncertainty on estimated 607

distances 608

When estimating MMD2
u [F , p, q] from sets of trajectories X ∼ p and Y ∼ q, the 609

uncertainty directly depends on the number of samples in both X and Y . In our case, 610
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the uncertainty, which can be evaluated by bootstrapping, is sometimes of the same 611

order of magnitude than the estimated value. Furthermore, the number of elements per 612

set (here, the number of trajectories per synapse), spans more than an order of 613

magnitude and uncertainty thus greatly varies from one measure to the other. This 614

should be taken into account when using MMD2
u [F , X, Y ] to embed subsets of 615

trajectories. 616

Hence, starting from a matrix of squared distances D2 between N sets of
trajectories, and a matrix of uncertainties of these squared distances D2

σ, we obtain a
set of N Euclidian vectors {x1, . . . ,xN} by maximizing the probability of the resulting
squared distances, assuming that they follow Gaussian laws whose means are the
coefficients of D2 and standard deviations coefficients of D2

σ. This amounts to solving
the following optimisation problem :

max
x1,...,xN

∑
i<j

log
(
Pi,j

(
||xi − xj ||2

))
max

x1,...,xN

∑
i<j

(
||xi − xj ||2 −D2

i,j

D2
σi,j

)2

.

We do so using a gradient ascent method. 617

Graph neural network features and architecture 618

Node and edge features 619

Prior to entering the encoder, each trajectory is turned into a graph as described in . To 620

each node is associated a vector containing the following features : 621

• the normalised time: i/N ; 622

• the cumulative distance covered by the trajectory up to i:
∑
k≤i‖∆rk‖2; 623

• the cumulative squared distance covered by the trajectory up to i:
∑
k≤i‖∆rk‖22; 624

• the maximum step size up to i: maxk≤i‖∆rk‖2. 625

Similarly, each edge is associated to the following set of features : 626

• the normalised time difference: (j − i)/N ; 627

• the distance: ‖rj − ri‖2; 628

• the dot product of jumps: ∆r∆
i rj (equal to ∆ri∆rj for 1D trajectories); 629

• the distance covered by the trajectory between i and j: 630∑
i<k≤j‖∆rk‖2 =

∑
k≤j‖∆rk‖2 −

∑
k≤i‖∆rk‖2 631

• sum of square step sizes between i and j : 632∑
i<k≤j‖∆rk‖22 =

∑
k≤j‖∆rk‖22 −

∑
k≤i‖∆rk‖22. 633

Features based on distances are computed on a normalised three different versions of 634

the trajectories, corresponding to three different normalisation factors : the total 635

covered distance, the standard deviation of the positions, and the standard deviation of 636

step sizes. These three scales are concatenated to the output of the pooling layer and 637

are thus processed by the perceptron which produces the latent representation of a 638

trajectory (see Fig. 2). 639
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GNN architecture 640

The architecture of the GNN used in the summary network is similar to the encoder 641

network proposed in [24], with the difference that we here additionally apply edge 642

features. Node and edge features are first passed to perceptrons, which embeds them in 643

a homogeneous space. The network is then composed of three successive convolution 644

layers (one taken from [39] and two edge-conditioned layers taken from [40]) outputting 645

node features matrices x(1), x(2) and x(3), each of 32 dimensions, which are summed to 646

form x(f). The rows of this matrix of nodes features are then averaged during the 647

pooling step, to keep just one row per graph, i.e., per trajectory. This vector is 648

subsequently passed to a three-layer perceptron, the output of which is the summary 649

statistics vector. All multi-layer perceptrons have a leaky-ReLU activation with slope 650

0.1 for negative values. We summarise their shapes in table 1 651

MLP Layers

edge features embedding (13,32,32,16)
node features embedding (10,32,32,10)
edge convolution (x2) (16,32,32,1024)
final embedding (38,32,16,16)
alpha predictor (16,128,64,64,16,1)
model classifier (16,32,16,5)

Table 1. Shapes of multi-layer perceptrons used in the network.
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Fig S1. Influence of kernel parameters on the test’s power. Probability of
rejecting the null hypothesis that the two sets of trajectories are drawn from the same
distribution, with varying kernel types and radii. The sets are drawn with the same
characteristics as those used for Fig. S2A with N = 200 and ν = 0.2.
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Fig S2. Performance of the statistical test on simulated trajectories. A :
Probability of detecting a difference between two sets of N trajectories composed of a
fraction ν of fractional Brownian motions and 1− ν of scaled Brownian motions. B :
Probability of detecting a difference between two sets of N fractional Brownian motions,
one with anomalous diffusion exponent α = 1− δ and the other with α = 1 + δ.
Probabilities are estimated by performing the test 100 times; at each trial, new
trajectories are simulated and bootstrap-estimation of the distribution of MMD2

u under
the null hypothesis is done using 100 random splits.
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Fig S3. Origin of trajectories found in the critical region. These counts were
obtained using a set composed of the same number n = 1, 000 of trajectories from each
microscopy recording. We randomly subsampled those who had more intra-synaptic
trajectories, and discarded those who had less than 1,000 (hence the column with
missing number of KCl trajectories).
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