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Neural stem cells (NSCs) represent a remarkable

developmental unit, necessary for the proper functioning of

neurogenesis, by retaining their plasticity to self-renew and give

rise to progeny throughout life in specific regions of the adult

brain. Although NSCs were thought to merely represent a stem

cell type in the brain, recent advances have demonstrated the

incredible complexity of NSC identity and functions. Ranging

between quiescence, activation and intermediary subtypes,

NSCs choose their fate through their developmental

inheritance, regional positioning within the niche, as well as

dynamic transcriptional and metabolic states. The plasticity of

their developmental program is reflected in the tremendous

changes they undergo upon external environmental cues and

extrinsic manipulations, and harnessing these potentials can

open new avenues to fight against brain injury,

neurodegenerative and age-related diseases.
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Introduction
The process of adult mammalian neurogenesis, the birth of

new neurons in the brain, was discovered over 50 years ago

[1], and during these last decades enormous progress has

been made in deciphering the mechanistic aspects of adult

neurogenesis, regulation of intrinsic NSC machinery, as

well as systemic regulation of the niche in animal models;

yet this field of research still remains fruitful. Identification

of pathways involved in adult neurogenesis and explora-

tion of the mechanistic regulation of NSCs can increase our

understanding of this process and give us further insight

into the relationship of adult neurogenesis and neurologi-

cal and psychiatric disorders, as well as brain injury. For
www.sciencedirect.com 
this, open questions about the biology of NSCs, and the

way their activity could be regulated, need to be addressed.

Recently, in addition to the study of the overall process of

neurogenesis, much effort has focused on deciphering the

intrinsic regulation of stem cells in the brain, both in the

hippocampus as well as the subventricular zone (SVZ)

niche. In this review we discuss recent advances and

new insights into in vivo NSC heterogeneity, the balance

between quiescence and activation, the role of cell metab-

olism, as well as transcriptomic and metabolomic analyses

that have pushed the field forward into the exploration of

the multiple facets of the adult NSC as a cell type that can

dynamically transit between different states upon external

cues.

Human adult neurogenesis
The main reason behind the continuing interest in under-

standing the process of mammalian adult neurogenesis is

the notion that similar processes might be involved in the

human brain. Whether neurogenesis in humans exists has

been investigated using several and distinct approaches

that brought compelling evidence about the presence of

adult hippocampal neurogenesis in human brains. Because

of the difficulty in accessing human adult tissue and mea-

suring the incorporation of thymidine analogs to label

proliferating cells in humans in vivo, several studies were

based on the analysis of postmortem human brains, which

had been labeled for different purposes. For example, the

remarkable study by Eriksson et al. provided strong evi-

dence for the birth of newborn neurons and incorporation of

BrdU in cycling progenitor cells in brains of cancer patients

[2], whereas Spalding et al. took advantage of the concen-

tration of nuclear bomb test-derived 14C in genomic DNA

to demonstrate the existence and to calculate the turnover

rate of newborn neurons throughout adult life in humans

[3]. Interestingly, two very recent -but opposing-publica-

tions brought back the debate concerning the existence of

human adult neurogenesis. Sorrells et al., using postmortem

and fresh tissue, reported that there was no evidence of

neurogenesis in humans after adolescence whatsoever [4�],
while the study by Boldrini et al. demonstrated the exact

oppositebyshowing thatadult neurogenesis persists during

life in humans, albeit with a small decrease with aging,

while the volume of the dentate gyrus remains the same

[5�]. Further exploration of this complex question is nec-

essary in order to conclude on the processes underlying the

timeline and the mechanisms of neurogenesis in humans.

Neural stem cell heterogeneity: not all NSCs
are born equal
In the adult mammalian brain, NSCs reside mainly in two

areas of the adult brain, the SVZ and the dentate gyrus of
Current Opinion in Neurobiology 2018, 53:131–138

mailto:lida.katsimpardi@pasteur.fr
mailto:pmlledo@pasteur.fr
http://www.sciencedirect.com/science/journal/09594388/53
https://doi.org/10.1016/j.conb.2018.10.010
https://doi.org/10.1016/j.conb.2018.07.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conb.2018.07.006&domain=pdf
http://www.sciencedirect.com/science/journal/09594388


132 Developmental neuroscience
the hippocampus [6,7], and they represent a pool of self-

renewing cells that can differentiate into neurons upon

different stimuli [8]. Despite the preconceived notion

that adult NSCs are merely stem cells residing in the

brain, increasing evidence suggests that NSCs constitute

an extremely diverse population of cells. NSCs exhibit

different characteristics and functions depending on their

proliferative state, as well as their regional identity. In the

SVZ, NSC have restricted positional information depend-

ing on the specific location where they reside, which will

determine the neuronal type into which they will termi-

nally differentiate and mature in the olfactory bulb [9].

Depending on the respective microdomain in the SVZ

niche, patterned by specific transcription factors such as

Nkx6.2, Zic [10], Gsx2 [11], Nkx2.1 [12] or Pax6 [13,14],

NSCs generate several different subtypes of interneurons

that regulate the olfactory bulb [15], revealing the com-

plexity and inter-regulation between cell types in the

neurogenic niche [16,17]. In addition, adult NSCs and

their embryonic counterparts generate functionally dis-

tinct subpopulations of dopaminergic neurons [18], while

exposure to reward-associated odors specifically increases

the activity of adult-born neurons but not preexisting

neurons [19]. The remarkable plasticity of NSCs is also

demonstrated by the capacity of SVZ NSCs to convert to

reactive astrocytes and contribute to the astrocyte scar

following brain injury, and these SVZ-derived reactive

astrocytes can also be converted to neurons by Mash1

[20]. Interestingly, it was recently reported that a subset

of CD133+ ependymal cells throughout the central ner-

vous system (CNS) can be reactivated into neuronal

differentiation upon specific cues, such as VEGF and

bFGF, suggesting that these cells are dormant ependy-

mal NSCs [21], lending more credence to the stem cell

identity of ependymal cells [16,22–24].

The above findings show that regional and developmen-

tal identity plays a pivotal role for NSC lineage

progression.

The dynamic state of a neural stem cell
Although adult stem cells in brain niches are broadly

referred to as NSCs, we can distinguish different sub-

types of NSCs, mainly based on their state of quiescence

or activation. NSCs in the adult SVZ niche originate

from a subpopulation of embryonic radial glia cells,

which become specified during development and main-

tain their quiescent state until reactivation in adulthood

[25]. Specifically, most adult SVZ NSCs originate from a

distinct population of slowly dividing neural progenitors

in the ganglionic eminence of the embryonic brain [26].

Single-cell transcriptomic analyses confirmed that adult

NSCs share a core transcriptional phenotype with their

radial glial progenitors and that the transition to the adult

NSC state occurs during late neurogenesis [27]. Inter-

estingly, the number of the embryonic stem cells that

will become adult NSCs is regulated by the type of cell
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division during embryonic development [28��]. Modifi-

cation of the embryonic program, such as deletion of

VCAM1, a molecule necessary for the maintenance of

adult quiescence [29], results in a reduction of the adult

quiescent NSC (qNSC) pool, showing that maintenance

of NSC properties is a continuous developmental pro-

cess, operating in a temporal-dependent and region-

dependent mechanism [30]. Chronic live imaging of

the hippocampus showed that NSCs divide within a

limited time window and that their division patterns

are associated with each NSC’s cell division history [31].

Lineage tracing techniques in the SVZ showed that a

small subset of adult dividing NSCs go through sym-

metric self-renewing divisions, whereas the majority,

around 75%, undergoes lineage progression to generate

neural progenitors, which rapidly differentiate into neu-

roblasts at the expense of NSCs [32�]. While some

activated NSCs (aNSCs) rapidly cease their neurogenic

activity, other NSCs are re-activated from their quies-

cent state to take over lineage progression and thus

safeguard the continuation of neurogenesis [33]. Simul-

taneously, a small fraction of NSCs can revert back to a

transient quiescent state through degradation of proac-

tivation factor Ascl1 in order to maintain life-long hip-

pocampal neurogenesis and avoid stem cell pool exhaus-

tion [34]. However, the majority of NSCs, once activated

they divide until they become exhausted, which could

explain NSC depletion with aging. The advance of

single-cell transcriptomics has provided extremely use-

ful information about the different states of a NSC, from

quiescence to activation, suggesting a high degree of

transcriptional dynamics throughout these states. Purifi-

cation of acutely isolated SVZ NSCs revealed four types:

dormant NSCs, qNSCs, aNSCs and progenitor cells

(Figure 1a). NSCs present a heterogeneous molecular

profile and multiple states of activation in the adult SVZ

niche [35]. Most NSCs are ciliated, quiescent, express

GFAP and CD133, and they give rise to cycling, acti-

vated EGFR + NSCs, which in turn differentiate into

progenitors and finally neuroblasts [36,37]. Activated

NSCs retain the ability to from spheres in vitro, unlike

qNSCs [38]. However, additional NSC subpopulations

in intermediate states have recently been discovered.

Pseudotemporal ordering of single-cell transcriptomic

analyses revealed three subpopulations of aNSCs (early,

mid and late activation states), which exhibit variations

in cell cycle timing and progression, together with dif-

ferential expression of specific genes, placing these

subpopulations in a continuum between quiescence

and activation [39�]. In these cells, activation is associ-

ated with protein synthesis and differentiation priming,

while dormancy is coupled to high glycolytic and lipid

metabolism [35]. Interestingly, single-cell RNA-Seq in

the dentate gyrus revealed that hippocampal NSCs also

exhibit a molecular heterogeneity and take part in a

progressive continuum of transcriptional dynamics from

quiescence to neuronal differentiation [40,41�].
www.sciencedirect.com
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Figure 1
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Schematic representation of the subventricular zone neurogenic niche. (a) Cell subtypes involved in the progression from dormant niche

astrocytes to quiescent NSCs to activated NSCs to neural progenitors to neuroblasts. (b) Cytoarchitecture of the SVZ: the ventricular area (V) is

composed of ependymal cells (dark and light brown) and the apical cilium of qNSCs, while the SVZ contains qNSCs (dark blue with cilium),

aNSCs (light blue without cilium), transit-amplifying neural progenitors (green) and chains of migrating neuroblasts (pink). NSCs make contact with

the cerebrospinal fluid on the apical side and blood vessels (red) through a basal process. (c) Sagittal section of the brain depicting the SVZ area

(small square).
Most adult NSCs depend on Notch signaling for their

maintenance and self-renewal [42]; however, different

Notch family members have distinct roles in adult NSC

regulation. Notch1 maintains actively proliferating

NSCs, whereas Notch2 maintains NSC quiescence
www.sciencedirect.com 
[43]. Similarly, Notch3 plays a crucial role in the main-

tenance of qNSCs residing in the lateral and ventral

walls, but not in the medial and dorsal walls, of the SVZ

[44]. Within the Notch-dependent NSC pool, Hes5
+BLBP + cells were characterized as a long-term
Current Opinion in Neurobiology 2018, 53:131–138
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neurogenic population that can transition between qui-

escence and activation and are greatly affected by aging

[45]. In addition, non-canonical Wnt signaling can

induce activation of Cdc42 in qNSCs which in turn

modulates the expression of Notch1, Id1 and N-Cad-

herin, resulting in anchorage of NSCs to the niche, as

well as maintenance of their self-renewal capacity [46].

Stem cell fate is tightly related to metabolic changes in

the surrounding environment, regulated by energy-sens-

ing pathways in NSCs [47]. For example, insulin stimu-

lates proliferation, but not self-renewal, of adult NSCs

through IRS2-mediated regulation of Cdk4 activity [48].

Recently, metabolomic analyses of NSCs showed high

levels of taurine and glucose in these cells compared to

other stem cells types [49]. Interestingly, it was also

demonstrated that qNSCs in the dentate gyrus require

high levels of fatty acid oxidation to maintain quiescence,

while a shift in lipid metabolism can induce a change of

NSC state [50��] and impairment of lipogenesis in adult

NSCs results in a sharp decline of neurogenesis [51].

Along those lines, deregulation of lipid metabolism in the

neurogenic niche is sufficient to induce a disease pheno-

type, such as Alzheimer’s [52], demonstrating the impor-

tance of proper metabolic regulation within the cell.

Extrinsic regulation of NSC state
The neurogenic niche is an extensive microenvironment

supporting and nurturing NSC through structural scaf-

folding, secretion of local factors, nutrients and oxygen

necessary for their maintenance. It is composed of differ-

ent types of neural and non-neural cells that interact with

each other: ependymal cells (in the SVZ), astrocytes,

pericytes, microglia and blood vessels, as well as the

NSC progeny (transit-amplifying neural progenitors

and neuroblasts) [53–55] (Figure 1b,c). Local stimuli from

the niche, as well as circulating blood factors secreted

from remote organs, can positively or negatively affect the

NSC state and differentiation potential, thereby modu-

lating neurogenesis in the adult brain [56–58]. Astrocytes

and microglia can affect neurogenesis and induce cogni-

tive dysfunction by secretion of pro-inflammatory cyto-

kines in the niche, such as IL-1, [59]. A main non-neural

component of the niche is the vasculature, which is

intertwined within the niche [60–63]. Strikingly, not only

the neurogenic niche vasculature, but also blood vessels

from non-neurogenic, cortical areas can secrete diffusible

signals, such as PlGF-2, to affect NSC proliferation

[64�,65]. In a reciprocal fashion, adult NSCs secrete

factors, such as VEGF [66], or the neurovascular protein

EGFL7, which is secreted by both NSCs and vascular

cells and modulates the quiescence state of NSCs [67].

Additionally, NSCs can decrease the inflammatory

metabolite succinate and thus push niche microglia

towards an anti-inflammatory phenotype [68]. In addition

to the local microenvironment, the cerebrospinal fluid,

which is produced by the choroid plexus and circulates in
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the ventricles, brings secreted factors that regulate NSC

fate and, consequently, neurogenesis. Some of these

factors include IGF2 (which regulates proliferation of

NSCs), Sonic Hedgehog, Wnts, retinoic acid, NT-3

and bone morphogenetic proteins [69–73]. Regulation

of the NSC state can also take place through modulation

by neuronal activity, which is a hallmark of adult neuro-

genesis [74]. For example, long-range GABAergic projec-

tion neurons depolarize GABA signaling onto local par-

valbumin interneurons which, in turn, keep hippocampal

NSC quiescent [75�]. Remarkably, it was recently shown

that adult neurogenesis could be modulated depending

on hunger or satiety states via hypothalamic control. In

this case, proopiomelanocortin neurons selectively inner-

vate the anterior SVZ and promote proliferation of

Nkx2.1+ NSCs and the generation of deep granule neu-

rons [76��]. Additionally, a mouse model of kainic acid-

induced epilepsy demonstrated that neuronal hyper-exci-

tation accelerates depletion of NSCs by inducing their

activation en masse, converting them into reactive astro-

cytes thereby exhausting adult hippocampal neurogen-

esis [77].

Aging and rejuvenation of NSCs
Aging negatively affects neurogenesis by inducing a sharp

and continuous decrease in cell production in both the

SVZ and hippocampal neurogenic niches of the brain

[7,78–80]. With aging, aNSCs lose their proliferative

potential and become quiescent [81], but, remarkably,

they can be reactivated to a certain extent upon stimula-

tion, such as exercise or even seizure [79], indicating that

NSC plasticity is preserved to a certain extent in the aged

organism. For example, it was recently demonstrated that

high mobility group B family 2 (HMGB2) is associated

with the transition of NSCs from quiescence to prolifera-

tion and that aging negatively impacted these cell popu-

lations, while running exercise stimulated the prolifera-

tion of HMGB2+ cells [82]. Furthermore, global SVZ

transcriptome analyses of multiple time points during the

aging process (2, 6, 18 and 22 months of age) showed that

SVZ transcriptome is not modified in a linear manner with

aging, since processes such as proliferation of Mash1+

progenitors decrease until 18 months of age, but then

sharply increase at 22 months [83�]. A recent analysis of

the molecular profiles between 2-month-old and 6-

month-old mice showed sharp molecular modifications

in the aNSC program, and a characteristic lengthening of

their cell cycle [84�]. Age-related changes in the cell cycle

are likely due to an accumulation of damaged proteins

resulting in a reduction in the NSC proliferation rate [85].

An impairment of diffusion barriers has been shown to

cause symmetric inheritance of ubiquitinated or damaged

proteins, leaving all NSC progeny with excess cellular

damage [86]. Deficient proteostasis was shown to be due

to defective lysosomes in qNSCs, but enhancement of

the lysosomal pathway, via transient expression of the

active form of TFEB in aged qNSCs or systemic
www.sciencedirect.com
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treatment with rapamycin, resulted in reversal of the

quiescent to an active state [87��]. Taken together, the

above findings suggest that an inherent developmental

program dictates the NSC transcriptional dynamic state

throughout life.

In addition to the intrinsic aging program, environmental

influences from neighboring niche cells, or even remote

organs, can affect NSC state and fate [88]. Transcriptional

dynamics observations in the hippocampal niche reveal

age-associated changes in the numbers and molecular

profiles of NSCs, progenitors and microglia [41�]. With

aging, microglia become progressively activated in the

SVZ niche and secrete proinflammatory cytokines result-

ing in a hostile environment for NSCs and, subsequently,

reduce neurogenesis [89]. In the vicinity of the SVZ, the

choroid plexus was shown to tightly regulate age-related

behavior. Blocking IFN-I signaling at the choroid plexus

attenuated chronic neuroinflammation and restored cog-

nitive functions and hippocampal neurogenesis [90].

Moreover, the choroid plexus transcriptome and secre-

tome, the proteins that circulate in the cerebrospinal

fluid, were recently shown to be differentially expressed

at different ages, and those changes directly affected NSC

behavior and fate [91��].

Because of the enormous consequences of aging on

NSCs, a lot of effort has focused on identifying mecha-

nisms that could potentially reset the aging clock. Sys-

temic manipulations such as exercise, calorie restriction

and heterochronic blood transfer have demonstrated that

it is possible to reactivate the intrinsic program in order to

rejuvenate NSCs and, consequently, the brain [92,93].

We, and others, have shown that it is possible to rejuve-

nate aged NSCs by infusing young blood, through het-

erochronic parabiosis [94] or young plasma injections [95].

Systemic factors found in the blood are pro-aging

(CCL11, b2-microglobulin [96,97]) or rejuvenating

(GDF11, TIMP2 [94,98��,99,100]), raising the exciting

possibility that blocking or inducing these factors, respec-

tively, could help fight the age-associated declines in

neurogenesis and cognitive function. Recently, virally

mediated overexpression of ten-eleven translocation-2

(Tet2) methylcytosine dioxygenase in the dentate gyrus

was able to rescue hippocampal neurogenesis and

enhance cognition through an increase in the production

of 5-hydroxymethylcytosine, involved in DNA methyla-

tion, proposing an epigenetic-mediated rejuvenation of

NSC [101]. Furthermore, treatment of 6-month-old mice

with resveratrol, a molecule linked to activation of Sir-

tuins and longevity, resulted in the enhancement of

hippocampal neurogenesis, brain plasticity and

cognition [102].

Outlook
Research on NSC biology over the past few years has

greatly increased our understanding of the molecular
www.sciencedirect.com 
mechanisms governing NSC behavior within physiologi-

cal and pathological contexts. The delicate balance

between NSC quiescence and activation is easily shifted

depending on the different stimuli and could be used to

better manipulate NSC fate in vitro and in vivo. Moreover,

recent findings point to the conclusion that aging is not

necessarily a permanent state, but could be malleable,

and that finding ways to interfere in the cell intrinsic

machinery in order to slow down or even reverse this

process will be the challenge for years to come.
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