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Abstract 19 

Sublineages within microbial species can differ widely in their ecology and pathogenicity, and their 20 

precise definition is important in basic research and for industrial or public health applications. Widely 21 

accepted strategies to define sublineages are currently missing, which confuses communication in 22 

population biology and epidemiological surveillance. 23 

Here we propose a broadly applicable genomic classification and nomenclature approach for bacterial 24 

strains, using the prominent public health threat Klebsiella pneumoniae as a model. Based on a 629-25 

gene core genome multilocus sequence typing (cgMLST) scheme, we devised a dual barcoding system 26 

that combines multilevel single linkage (MLSL) clustering and life identification numbers (LIN). 27 

Phylogenetic and clustering analyses of >7,000 genome sequences captured population structure 28 

discontinuities, which were used to guide the definition of 10 infra-specific genetic dissimilarity 29 

thresholds. The widely used 7-gene multilocus sequence typing (MLST) nomenclature was mapped 30 

onto MLSL sublineages (threshold: 190 allelic mismatches) and clonal group (threshold: 43) identifiers 31 

for backwards nomenclature compatibility. The taxonomy is publicly accessible through a community-32 

curated platform (https://bigsdb.pasteur.fr/klebsiella), which also enables external users’ genomic 33 

sequences identification. 34 

The proposed strain taxonomy combines two phylogenetically informative barcode systems that 35 

provide full stability (LIN codes) and nomenclatural continuity with previous nomenclature (MLSL). This 36 

species-specific dual barcoding strategy for the genomic taxonomy of microbial strains is broadly 37 

applicable and should contribute to unify global and cross-sector collaborative knowledge on the 38 

emergence and microevolution of bacterial pathogens.  39 

https://bigsdb.pasteur.fr/klebsiella


 

   
 

3 
 

Introduction 40 

Taxonomy is a foundation of biology that entails the classification, nomenclature, and identification of 41 

biological objects (Cowan 1965). Although the Linnaean system is organized into taxonomic ranks 42 

down to the level of species (Sneath 1992), sublineages within microbial species can diversify as 43 

independently evolving lineages that persist over long periods of time, (Selander and Levin 1980) and 44 

the broad microbial species definition and horizontal gene transfer of accessory genes underlie 45 

extensive strain heterogeneity of phenotypes with ecological, medical or industrial relevance (Hacker 46 

and Kaper 2000; Lan and Reeves 2001; Feil 2004; Konstantinidis and Tiedje 2005). Nevertheless, strain-47 

level diversity is overlooked by current prokaryotic taxonomy.  48 

Most attempts to develop and maintain microbial strain taxonomies aimed at facilitating 49 

epidemiological surveillance and outbreak detection (Maiden et al. 1998; van Belkum et al. 2007; 50 

Maiden et al. 2013). Although local epidemiology can rely on vernacular type designations, the benefits 51 

of unified nomenclatures of sublineages for large-scale epidemiology and population biology were 52 

recognized early (Struelens, De Gheldre, and Deplano 1998). By far the most successful taxonomic 53 

system of microbial strains is the multilocus sequence typing (MLST) approach (Maiden et al. 1998; 54 

Achtman et al. 2012). This highly reproducible and portable nomenclature system has been extensively 55 

used for studies of population biology and public health surveillance of bacterial pathogens (Keith A. 56 

Jolley, Bray, and Maiden 2018). Core genome MLST (cgMLST) extends the advantages of the MLST 57 

approach at the genomic scale (K. A. Jolley and Maiden 2010; Maiden et al. 2013) and provides strain 58 

discrimination at much finer scales. 59 

Strain classification, based either on cgMLST or on nucleotide polymorphisms, can be achieved by using 60 

several clustering thresholds simultaneously, leading to a succession of group identifiers (‘barcodes’) 61 

that provide relatedness information at increasing levels of phylogenetic depth (Maiden et al. 2013; 62 

Moura et al. 2016). This approach was recently formalized as hierarchical clustering (HierCC, based on 63 

cgMLST)  (Zhou, Charlesworth, and Achtman 2021) and as the ‘single nucleotide polymorphism (SNP) 64 

address’ (Dallman et al. 2018) , based on single linkage classifications; here we generically refer to 65 

these approaches as MultiLevel Single Linkage (MLSL). Unfortunately, the single linkage clustering may 66 

result in the fusion of preexisting groups as additional genomes are introduced, due to the possibility 67 

of new genomes being less distant than the threshold, from two distinct groups. This approach thus 68 

suffers from instability, which led HierCC inventors to instead use ad-hoc group attribution rules after 69 

an initial single linkage classification (Zhou, Charlesworth, and Achtman 2021).  70 
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An alternative approach, the Life Identification Number (LIN) encoding, was proposed by Vinatzer and 71 

colleagues (Vinatzer, Tian, and Heath 2017; Tian et al. 2020): a multi-position numerical code is 72 

assigned to each genome based on its similarity with the closest genome already encoded. An 73 

attractive property of this procedure is that LIN codes are definitive, i.e., not affected by subsequent 74 

additions of genomes, as they are attributed to individual genomic sequences rather than to groups. 75 

However, in the current implementation of LIN codes the similarity between genomes is estimated 76 

using Average Nucleotide Identity (ANI), which may be imprecise for nearly identical strains.   77 

Here, we present a strain classification, naming and identification system for bacterial strains, which is 78 

based on cgMLST and combines the MLSL and LIN code approaches. We took as a model the 79 

Klebsiella pneumoniae species complex, a genetically and ecologically highly diverse bacterial group 80 

that causes a wide range of infections in humans and animals (Brisse, Grimont, and Grimont 2006; 81 

Wyres, Lam, and Holt 2020). Given its extensive diversity and fast evolutionary dynamics, 82 

K. pneumoniae is a challenging model for the development of a genomic taxonomy of strains. 83 

Moreover, the rapid emergence and global dissemination of multidrug resistance in K. pneumoniae, 84 

sometimes combined with high virulence, (Bialek-Davenet et al. 2014; Wyres et al. 2020) have created 85 

a pressing need for an efficient K. pneumoniae strain definition and tracking system.  86 
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Results 87 

Genome-based phylogenetic structure of the K. pneumoniae species complex (KpSC) 88 

The deep phylogenetic structure of the K. pneumoniae (Kp) species complex (Figure 1) reflects the 89 

previously recognized seven major phylogroups, Kp1 to Kp7 (Brisse and Verhoef 2001; Fevre et al. 90 

2005; Blin et al. 2017; Long et al. 2017; Rodrigues et al. 2019; Wyres, Lam, and Holt 2020). The most 91 

represented phylogroup (91.7%; n=6,476) is Kp1, i.e., K. pneumoniae sensu stricto (Table 1), and its 92 

phylogenetic structure (Figure 2) revealed a multitude of sublineages (note that below, we define 93 

sublineages and clonal groups is a stricter sense in paragraph “Definition of classification thresholds 94 

for phylogroups, sublineages and clonal groups”). There were multiple closely-related isolates within 95 

some sublineages, most prominently within a sublineage comprising genomes with 7-gene MLST 96 

identifiers ST258, ST11, ST512 (Figure 2), which represented more than a third (33.4%) of the Kp1 97 

dataset. The abundance of this sublineage (and a few others, such as ST23) reflected the clinical 98 

microbiology focus on multidrug resistant or hypervirulent isolates (Bowers et al. 2015; Struve et al. 99 

2015; Lam et al. 2018; Wyres et al. 2020). The phylogenetic structure within other K. pneumoniae 100 

phylogroups also revealed a multitude of distinct sublineages but no predominant ones, and medically 101 

important lineages in these phylogroups are yet to be recognized. 102 

K. pneumoniae strains can recombine large sections of their chromosome (Chen et al. 2014; Wyres et 103 

al. 2015). Large recombination events were detected in 1.9% (138/7,198) genomes (based on their 104 

cgMLST profiles) and involved the phylogroups Kp1, Kp2 and Kp4 (supplementary appendix: Detection 105 

of hybrids; Figure S1; Table S1; Table S2). The phylogenetic impact of large-scale recombination is 106 

illustrated on Figure 1, with ‘hybrids’ occurring on misleadingly long branches. 107 

 108 

cgMLST analysis of the K. pneumoniae species complex  109 

A previously defined core genome MLST (named scgMLST, with 634 loci) scheme (Bialek-Davenet et 110 

al. 2014) was updated (Table S3) and defined as scgMLSTv2 (with 629 loci, as five of the original ones 111 

were removed; see Methods). cgMLST allelic profiles were then determined for 7,433 genomic 112 

sequences (including 45 reference sequences; Figure S2). The mean number of missing alleles per 113 

profile was 8 (1.2%; standard deviation: 25; 4.0%), and most (7,198; 96.8%) isolates had a cgMLST 114 

profile with fewer than 30 (4.8%) missing alleles. Missing allele proportions did not vary significantly 115 

among phylogroups (Table 1). The transcription-repair coupling factor mfd gene was atypical, with 778 116 

alleles and an average allele size of 3,447 nucleotides (nt); for the other loci, the number of distinct 117 
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alleles varied from 8 to 626 (median: 243), and was strongly associated with locus size (range: 123 to 118 

2,826 nt; median: 758 nt; Figure S3). Locus-by-locus recombination analyses detected evidence of 119 

intra-gene recombination (PHI test; 5% p-value significance) in half of the loci (318/629; 50.6%) and 120 

these exhibited more alleles than non-recombining ones (Table S3; Figure S3). 121 

The distribution of pairwise allelic mismatch proportions among non-hybrid cgMLST allelic profiles was 122 

discontinuous (Figure 3), with four major modes centered around values 99.7% (627 mismatches; i.e., 123 

0.3% similarity), 82.7% (520 mismatches; 17.3%), 12.4% (79 mismatches; 87.6%) and 2.0% (13 124 

mismatches; 98%). Average nucleotide identity (ANI) values (Figure S4) varied from 92.8% to 100%, 125 

with two first modes at 93.5% and 95.5%, composed of inter-phylogroup strain comparisons. The 126 

corresponding genome pairs typically had only ≈2% cgMLST similarity. In turn, whereas the range of 127 

ANI values was only 98% to 100% for intra-species pairs, their cgMLST similarities occupied the much 128 

broader 5%-100% range.  129 

The 627-mismatch mode corresponded mostly to pairs of strains belonging to distinct species of the 130 

KpSC (Figure 3; Figure S4), while a minor peak centered on 591 mismatches (Figure S5) corresponded 131 

to comparisons between subspecies of K. quasipneumoniae and K. variicola (Kp2 and Kp4, and Kp3 and 132 

Kp5, respectively; Figure S4). Whereas the 520-mismatch mode corresponded to inter-ST comparisons 133 

in 99.9% cases, the 13-mismatch mode was largely dominated by comparisons of cgMLST profiles with 134 

the same ST (68.2%; pairs of genomes within 402 distinct STs) or of single-locus variants (SLV; 30.8%). 135 

Finally, the 79-mismatch mode comprised a large proportion (48.0%) of ST258-ST11 comparisons and 136 

other comparisons of atypically closely-related STs (Figure S5). 137 

 138 

Definition of classification thresholds for phylogroups, sublineages and clonal groups 139 

To determine optimal allelic mismatch thresholds that would reflect the KpSC population structure, 140 

the consistency and stability properties of single linkage clustering groups were assessed for every 141 

threshold value t from 1 to 629 allelic mismatches. The consistency (silhouette) coefficient St had a 142 

plateau of optimal values in the range corresponding to 118/629 (18.8%) to 355/629 (56.4%) allelic 143 

mismatches (Figure 3, blue curve). Analysis of the robustness to subsampling (Wt; based on an 144 

adjusted Wallace coefficient; Figure 3, green curve) identified several ranges of allelic mismatch 145 

threshold values that were associated to maximal stability. 146 

The above analyses led us to propose four deep classification levels. The two first thresholds, 610 and 147 

585 allelic mismatches, enable species and subspecies separations, respectively. We next defined a 148 
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threshold of 190 allelic mismatches, corresponding to the optimal combination of consistency and 149 

stability coefficients St and Wt. The single linkage clustering based on this threshold created 705 groups, 150 

which we here define as ‘sublineages’ (SL). By design, this threshold separated into distinct groups, the 151 

pairs of cgMLST profiles corresponding to the major mode (at 520 mismatches), i.e., the majority of 152 

genomes that have distinct STs within phylogroups. Finally, a threshold of 43 allelic mismatches was 153 

defined to separate genome pairs of the 79-mismatch mode. This value corresponded to local optima 154 

of both St and Wt coefficients. Interestingly, this last threshold value was also located in the optimal 155 

range of compatibility with the classical 7-gene ST definitions (Rand index Rt ≥ 0.70 was observed for 156 

10 ≤ t ≤ 51). The use of this threshold resulted in 1,147 groups, which we propose to define as ‘clonal 157 

groups’ (CG).  158 

Overall, approximately half (547/1,147; 47.7%) of the CGs corresponded one-to-one with the 159 

sublineage level (Table S4): 77.6% (547/705) sublineages contained a single CG, whereas 158 (22.4%) 160 

sublineages comprised at least two clonal groups (Table S5; Figure 4; Figure S6). Overall, CG 161 

compatibility with classical ST classification was high (i.e., Rt = 0.72, whereas it was only 0.50 for 162 

sublineages).  163 

The distribution of pairwise allelic mismatch values that involved hybrid genomes showed an 164 

additional peak around 39 shared alleles (i.e., 590 allelic mismatches; Figure S7). Therefore, these 165 

inter-phylogroup hybrids were placed into distinct partitions at the 585-mismatch level. However, as 166 

some of these hybrid genomes diverged by fewer than 585 allelic mismatches from two distinct 167 

phylogroups at the same time, they would cause fusion of phylogroup partitions upon single linkage 168 

clustering. To highlight the impact of this phenomenon, hybrids were first filtered out, and next 169 

incorporated in a second single linkage clustering step (supplementary appendix; Figure S8). 170 

 171 

Phylogenetic compatibility of sublineages and clonal groups 172 

To estimate the congruence of classification groups with phylogenetic relationships among genomic 173 

sequences, we quantified the proportion of monophyletic (single ancestor, exclusive group), 174 

paraphyletic (single ancestor, non-exclusive group) and polyphyletic (two or more distinct ancestors) 175 

groups. Regarding 7-gene MLST, 6,985 (98.9%) genomes had a defined ST, i.e., an allele was called for 176 

each of the seven genes. Of the 992 distinct STs, 396 were non-singleton STs (i.e., comprised at least 177 

two isolates). Of these, 286 (72.2%) were monophyletic, nine were paraphyletic (2.3%) and 101 (25.5%) 178 

were polyphyletic. The monophyletic STs comprised only 22% of all genomes in non-singleton STs. 179 
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Regarding cgMLST-based classification, there were five and seven partitions at 610 and 585 allelic 180 

mismatch levels, respectively, and 100% of these were monophyletic. Among the 705 distinct 181 

sublineages (SLs), 317 (45.0%) were non-singleton, and most (310; 97.8%) of these were monophyletic 182 

(see Figure 2 for Kp1); only three (0.9%) were paraphyletic, and four (1.3%) were polyphyletic 183 

(Table S4). The monophyletic SLs comprised a large majority (5,961/6,672; 89.3%) of genomes in non-184 

singleton STs. 185 

Finally, 396 out of 1,147 (34.5%) clonal groups (CGs) were non-singleton; most (362; 91.4%) were 186 

monophyletic (Figure 2), whereas eight (2.0%) were paraphyletic, and 26 (6.6%) were polyphyletic 187 

(Table S5). Monophyletic CGs comprised nearly half (3,030; 48.0%) of the genomes in the non-188 

singleton CGs, whereas 3,224 (51.1%) were in polyphyletic groups, mostly in CG258, CG340 and CG15. 189 

  190 

Definition of shallow-level classification thresholds for Klebsiella epidemiology 191 

Although the scgMLSTv2 scheme comprises only 629 loci, or ~10% of a typical K. pneumoniae genome 192 

length (512,856 nt out of 5,248,520 in the NTUH-K2044 genome), shallow-level classifications of 193 

genomic sequences might be useful for tentative outbreak delineation and epidemiological 194 

surveillance purposes, by ruling-out outliers. To provide flexible case cluster definitions, we classified 195 

KpSC cgMLST profiles using thresholds of 0, 1, 2, 4, 7 and 10 scgMLSTv2 allelic mismatches. Together 196 

with the four higher levels, the MLSL nomenclature therefore comprises 10 classification levels in total. 197 

The classification groups corresponding to the 0-mismatch threshold correspond to groups of cgST 198 

profiles that only differ by missing data. We observed that profiles of isolates involved in previously 199 

reported KpSC outbreaks generally differed by no or 1 mismatch, with a maximum of five allelic 200 

mismatches (Table S6; Table S7), indicating that this classification approach may be useful for genomic 201 

surveillance and outbreak identification purposes. 202 

 203 

Inheritance of the 7-gene ST identifiers into the cgMLST classification, and characteristics of main 204 

sublineages (SLs) and clonal groups (CGs) 205 

To attribute SL and CG identifiers that corresponded maximally to the widely adopted 7-gene ST 206 

identifiers, we developed an inheritance algorithm to map MLST identifiers onto SL and CG partitions 207 

(see supplementary appendix: Nomenclature inheritance algorithm). Of the 705 SLs, most (683; 96.9%) 208 

were named by inheritance and this was the case for 879 (76.6%) of the 1,047 CGs (Table S4). The 209 

resulting correspondence of cgMLST partitions with classical MLST was evident for the major groups 210 
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(Figure 4; Figure S6). For instance, the multidrug resistant SL258 comprised isolates belonging to MLST 211 

sequence types ST258, ST11, ST512, ST340, ST437 and 25 other STs. SL258 consisted of 16 distinct CGs, 212 

of which the four most frequent were defined as CG258 (61.2%), CG340 (17.8%), CG11 (17.3%) and 213 

CG3666 (2.8%) (Figure 4). When compared to 7-gene MLST, most isolates of CG258 were ST258 (75.6%) 214 

or ST512 (22.6%), whereas CG11 mostly comprised ST11 genomes (98.0%). In turn, CG340 included a 215 

large majority of ST11 genomes (61.8%) and only 20.0% ST340 genomes, and was named CG340 rather 216 

than CG11 because CG11 was already attributed. Likewise, the majority (83/86; 96.5%) of ST23 217 

genomes, which are associated with pyogenic liver abscess (Lam et al. 2018), were classified into SL23, 218 

which itself consisted mainly (84/90, 93.3%) of ST23 genomes (Figure 4). The well-recognized emerging 219 

multidrug resistant KpSC populations of ST15, ST101, ST147 and ST307 each corresponded largely to a 220 

single SL and CG (Figure S6). 221 

The frequency of detection of virulence and antimicrobial resistance genes differed among the main 222 

SLs and CGs (Figure 5; Figure S9). As expected (Lam et al. 2021), SL23 (median virulence score of 5) and 223 

SL86 (median score 3) were prominent ‘hypervirulent’ sublineages, and they were largely lacking 224 

resistance genes. In contrast, a majority of strains from SLs 258, 147, 101, 307 and 37, as well as a large 225 

number of other SLs, had a resistance score of 2 or more, indicative of BLSE/carbapenemases, but 226 

these had modest virulence scores (Figure S9). SL231 genomes stood out as combining high virulence 227 

and resistance scores. In some cases, CGs within single major SLs had contrasted virulence and 228 

resistance gene contents (Figure 6).   229 

 230 

Development and implementation of a cgMLST-based LIN code system 231 

Following the principle of the LIN code system, initially proposed based on the ANI similarity (Marakeby 232 

et al. 2014), we defined a cgMLST-based LIN (cgLIN) code approach. As LIN coding is performed 233 

sequentially, we first explored the impact on the resulting partitioning of cgMLST profiles, of the order 234 

in which genomes are assigned. We confirmed that the number of partitions (hence their content too) 235 

varied according to input order (Figure S10). However, we established that the order of genomes 236 

determined by the traversal of a Minimum Spanning tree (MStree) (Prim 1957, 57) naturally induces a 237 

LIN encoding order that is optimal, i.e., most parsimonious with respect to the number of identifiers 238 

generated at each position of the code (see supplementary appendix). Using this MStree traversal 239 

strategy, we defined cgLIN codes for the 7,060 non-hybrid genomes (as a first step), resulting in 4,889 240 

distinct cgLIN codes. 241 
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Furthermore, cgLIN codes can be displayed in the form of a prefix tree (Figure 5), which largely reflects 242 

the phylogenetic relationships among genomes. In addition, cgLIN code prefixes can be used to label 243 

particular phylogenetic lineages (Vinatzer, Tian, and Heath 2017). For example, a single cgLIN code 244 

prefix defined each phylogroup (e.g., Kp1: prefix 0_0; Kp2: prefix 2_0; Figure 5). Likewise, a full one-245 

to-one correspondence between prefixes and SLs was observed, and almost all (99.4%) CGs also had a 246 

unique prefix (Table S4; Table S5; Figure 6). 247 

 248 

Effect of hybrid genomes incorporation on the MLSL and cgLIN codes classifications 249 

Because inter-phylogroup hybrid genomes have smaller distances to their parental phylogroups than 250 

the inter-phylogroup distances resulting from vertical evolutionary events, their incorporation into the 251 

MLSL classification may induce fusion of previously distinct single linkage groups. To illustrate this 252 

chaining effect, the 'hybrid' genomes were included into the MLSL nomenclature in a second step, and 253 

fusions of previously existing partitions we recorded; for example, at the 610 allelic mismatch 254 

threshold, partitions 2 (Kp2 and Kp4) and 4 (Kp3 and Kp5) were merged with partition 1 (Kp1). At the 255 

585-mismatch threshold, partitions 5 (Kp2) and 2 (Kp4) were merged with partition 1 (Kp1). At the 190-256 

mismatch threshold, only one fusion was observed, between partitions 184 (SL113) and 465 (SL1518; 257 

Figure S11). The partitions at other thresholds were not impacted by the addition of the hybrid 258 

genomes. 259 

In contrast, the incorporation of hybrid genomes into the cgLIN code database left the cgLIN codes of 260 

the 7,060 previous genomes entirely unaffected; there were no merging of groups, as per design of 261 

the system. In particular, the seven phylogroup prefixes corresponding to species and subspecies 262 

remained unaffected (Figure S11); instead, additional prefixes were created for the hybrid genomes 263 

(Table S1; Table S2).  264 

 265 

Implementation of the genomic taxonomy in a publicly-accessible database 266 

The MLSL nomenclature was incorporated into the Institut Pasteur K. pneumoniae MLST and whole 267 

genome MLST databases (https://bigsdb.pasteur.fr/klebsiella) under the classification scheme 268 

functionality developed in BIGSdb version 1.21.0. In brief, the cgMLST profile of every isolate with 269 

fewer than 30 missing scgMLSTv2 alleles were assigned to a core genome sequence type (cgST), and 270 

these were next grouped into single linkage partitions for each of the 10 classification levels. For SLs 271 

and CGs, a custom classification group field (named SL or CG within the system) was additionally 272 

https://bigsdb.pasteur.fr/klebsiella
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populated with identifiers inherited from 7-gene MLST. All cgMLST profiles and classification identifiers 273 

are publicly available.  274 

To allow users identifying K. pneumoniae isolates easily, a profile matching functionality was 275 

developed, enabling to search for cgMLST profiles related to a query genome sequence. This was 276 

implemented on the website sequence query page 277 

(https://bigsdb.readthedocs.io/en/latest/administration.html#scheme-profile-clustering-setting-up-278 

classification-schemes). This functionality returns the classification identifiers (including MLST-279 

inherited CG and SL identifiers) of the cgMLST profile that is most closely related to the query genomic 280 

sequence, along with its number of mismatches compared to the closest profile. 281 

cgLIN code functionality was also incorporated into BIGSdb version v1.34.0 282 

(https://bigsdb.readthedocs.io/en/latest/administration.html#setting-up-lincode-definitions-for-283 

cgmlst-schemes). In particular, cgST profiles can be queried by full cgLIN code or any prefix, and a 284 

nomenclature can be attached to LINcode prefixes of interest (e.g., SL258 is attached to prefix 0_0_1 285 

and CG258 to 0_0_105_6).  286 

Note that identification of users’ query genomic sequences is made possible either through the BIGSdb 287 

platform that underlies the cgMLST website, or externally after export of the cgMLST profiles, which 288 

are publicly accessible. 289 

290 

https://bigsdb.readthedocs.io/en/latest/administration.html#scheme-profile-clustering-setting-up-classification-schemes
https://bigsdb.readthedocs.io/en/latest/administration.html#scheme-profile-clustering-setting-up-classification-schemes
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Discussion 291 

The existence within microbial species of sublineages with unique genotypic and phenotypic properties 292 

underlines the need for infra-specific nomenclatures (Lan and Reeves 2001; Maiden et al. 1998; 293 

Rambaut et al. 2020). Similar to species and higher Linnaean taxonomic ranks, a strain taxonomy 294 

should: (i) recognize genetic discontinuities and capture the most relevant sublineages at different 295 

phylogenetic depths; (ii) provide an unambiguous naming system for sublineages; and (iii) provide 296 

identification methods for placement within the taxonomic framework. Here we developed a strain 297 

taxonomy consisting of a dual naming system that is grounded in population genetics and linked to an 298 

identification tool. The proposed system thus complies with the three fundamental pillars of 299 

taxonomy.  300 

Although 7-gene MLST has been widely adopted as a taxonomic system of KpSC strains, several 301 

limitations are apparent: besides its restricted resolution, MLST identifiers do not convey phylogenetic 302 

information, as a single nucleotide substitution generates a different ST with unapparent relationships 303 

with its ancestor. Further, approximately half of the ST partitions were not monophyletic. The cgMLST 304 

approach provides much higher resolution and phylogenetic precision (Maiden et al. 2013; Zhou, 305 

Charlesworth, and Achtman 2021). Although other metrics such as whole-genome single nucleotide 306 

polymorphisms (SNPs) or average nucleotide identity (ANI) can be used to classify strains (Marakeby 307 

et al. 2014; Dallman et al. 2018), cgMLST presents advantages inherited from classical MLST, including 308 

standardization, reproducibility, portability and the conversion of sequences into human-readable 309 

allelic numbers. The high reproducibility and easy interpretation of cgMLST are two critical 310 

characteristics for its adoption in epidemiological surveillance. Here, we showed that cgMLST, based 311 

on 629 genes, has a much broader dynamic range than ANI when considering intra-specific variation 312 

(Figure S4), and enables defining several hierarchical classification levels (Zhou, Charlesworth, and 313 

Achtman 2021). The resolutive power of the 629-loci cgMLST scheme provides valuable genotyping 314 

discrimination up to outbreak resolution and is highly consistent with whole-genome SNPs (Miro et al. 315 

2020). However, to define shallower genetic structure within sublineages resulting from recent clonal 316 

expansions or outbreaks, higher resolution should be sought based e.g., on core gene sets of specific 317 

sublineages. 318 

Optimization of threshold definitions based on population structure aims at optimizing cluster stability 319 

(Barker et al. 2018; Zhou, Charlesworth, and Achtman 2021). The density distribution of pairwise allelic 320 

mismatch dissimilarities within K. pneumoniae and related species exhibited genetic discontinuities at 321 

several phylogenetic depths. We took the benefit of this multimodal distribution to define optimal 322 
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intra-specific classification thresholds, and combined a clustering consistency coefficient (Silhouette) 323 

with a newly developed strategy that evaluates cluster stability by subsampling the entire dataset. We 324 

defined four classifications at phylogenetic depths that reflected natural discontinuities within the 325 

population structure of K. pneumoniae, including the deep subdivisions of K. pneumoniae sensu lato. 326 

The 190-mismatch sublineage level was designed to capture the numerous deep phylogenetic 327 

branches within phylogroups (Bialek-Davenet et al. 2014; Holt et al. 2015). In turn, the clonal group 328 

(CG) level was useful to capture the genetic structuration observed within these primary sublineages. 329 

For example, the CG-level nomenclature captures the evolutionary split of CG258 and CG11 from their 330 

SL258 ancestor, caused by a 1.1 Mb recombination event (Chen et al. 2014) (Figure S5). 331 

Seven-locus MLST is a widely adopted nomenclature system, as illustrated by the widespread use of 332 

ST identifiers associated with hypervirulent or multidrug resistant sublineages (e.g., ‘Klebsiella 333 

pneumoniae ST258’: 293 PubMed hits; ST23: 117 hits; on July 20th, 2021). Backward nomenclatural 334 

compatibility is therefore critical. After applying our inheritance algorithm, most sublineages and 335 

clonal groups were labeled according to the 7-gene MLST identifier of the majority of their isolates. 336 

Widely adopted ST identifiers will therefore designate nearly the same strain groups within the 337 

proposed genomic taxonomy of K. pneumoniae, which should greatly facilitate its adoption. We note 338 

that the 7-gene MLST nomenclature will still have to be expanded, as this classical approach continues 339 

to be widely used. However, for practical reasons, upcoming MLST and cgMLST nomenclatural 340 

identifiers will be uncoupled, and we suggest that the cgMLST-based identifiers of sublineages and 341 

clonal groups (rather than their ST) should be adopted as the reference nomenclature in the future.  342 

Instability is a major limitation of single linkage clustering, caused by group fusion known as the 343 

chaining effect (Turner and Feil 2007). This is particularly relevant over epidemiological timescales, 344 

where intermediate genotypes (e.g., a recent ancestor or recombinant) are often sampled (Feil 2004). 345 

This issue is exacerbated in K. pneumoniae, where large-scale recombination may result in truly 346 

intermediate genotypes (Chen et al. 2014; Holt et al. 2015), referred to as ‘hybrids’ by analogy to 347 

eukaryotic biology. Here this phenomenon was illustrated through our delayed introduction into our 348 

nomenclature, of 138 inter-phylogroup hybrid genomes. The merging of predefined classification 349 

groups can be handled by classification versioning or ad hoc rules (Zhou, Charlesworth, and Achtman 350 

2021), but this is indeterministic and challenging in practice. 351 

To address its stability issue, we complemented the single linkage clustering approach with a fully 352 

stable approach. LIN codes were proposed as a universal genome coding system (Marakeby et al. 2014; 353 

Tian et al. 2020), a key feature of which is the generation of definitive genome codes that are inherently 354 

stable. The original LIN code system was based on the ANI metric; here we noted that the ANI values 355 
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that best correspond to some of the 10 cgMLST thresholds were highly similar (Table S8), casting doubt 356 

on the reliability of this metric for small-scale genetic distances. In addition, the ANI metric is non-357 

reciprocal and highly dependent on comparison implementations and parameters. These shortfalls 358 

may yield imprecision and non-reproducibility that are particularly impactful for comparisons between 359 

very similar genomes. We therefore adapted the LIN code concept to cgMLST-based similarity (i.e., 360 

one-complement of the allelic mismatch proportions) to classify strains into a cgLIN code system. This 361 

strategy leverages the benefits of cgMLST, and introduces more intuitive shallow-level classification 362 

thresholds. The multilevel similarity information embedded in MLSL and cgLIN ‘barcodes’ provides a 363 

human-readable snapshot of strain relationships, as nearly identical genomes have identical barcodes 364 

up to a position near the right end. In contrast to single linkage clustering partitions, one important 365 

limitation of LIN codes is that preexisting classification identifiers (e.g., ST258) cannot be mapped onto 366 

individual LIN code identifiers, because these are attributed with reference to the upper levels and are 367 

set to 0 for each downstream level (Marakeby et al. 2014). However, cgLIN code prefixes may 368 

represent useful labels for particular lineages. 369 

The cgMLST-based nomenclatures have some limitations. First, comparison of allele numbers rather 370 

than SNPs implies loss of information. In turn, this approach is advantageous to estimate evolutionary 371 

relationships of closely related genomes that diverged following homologous recombination events, 372 

which are common among strains within bacterial species (Feil 2004; Vos and Didelot 2009).  Second, 373 

MLST-based distances saturate more rapidly than SNP distances (once a locus is affected, even by a 374 

single mutation, further mutations at this locus will change the allele but will not increase the allelic 375 

distance), and are therefore mostly meaningful within bacterial species. Third, in contrast to the 376 

original ANI-based LIN code approach (Tian et al. 2020), cgMLST-based LIN codes require prior 377 

development of cgMLST schemes, which are larger, hence more powerful for strain resolution, for 378 

single species. Therefore, the advantages of cgLIN codes for population genomics and epidemiological 379 

questions, come at the expense of universality. Still, the dual MLSL and cgLIN code approach proposed 380 

here is in principle applicable to all bacterial species (or closely related groups thereof) for which large 381 

representative sets of genomes are available. The cgLIN code algorithms were incorporated into 382 

BIGSdb and should be readily portable to other existing cgMLST platforms such as EnteroBase. 383 

However, the use of genetic thresholds for an entire group of organisms may not always be meaningful, 384 

depending on population genetic structure. Whereas K. pneumoniae shows strong structuring with 385 

neat peaks and valleys of pairwise genetic distances, other species may have more fuzzy structure. In 386 

the latter cases, the approach will still be applicable, but even optimally defined thresholds may be 387 

less relevant biologically. 388 
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Conclusions 389 

A unified nomenclature of pathogen genotypes is required to facilitate communication in the ‘One 390 

Health’ and ‘Global Health’ perspectives. K. pneumoniae represents a rapidly growing public health 391 

threat, and the availability of a common language to designate its emerging sublineages is therefore 392 

highly timely. The proposed unified taxonomy of K. pneumoniae strains will facilitate advances on the 393 

biology of its sublineages across niches, time and space, and will endow surveillance networks with the 394 

capacity to efficiently monitor and control the emergence of sublineages of high public health 395 

relevance. 396 

Here, we propose a dual barcoding approach to bacterial strain taxonomy, which combines the 397 

complementary advantages of stability provided by the cgLIN codes, with an unstable, but human 398 

readable multilevel single linkage nomenclature rooted in the popular 7-gene MLST nomenclature. 399 

Because they are definitive, cgLIN codes can be used for the traceability of cluster fusions that will 400 

occur occasionally in the MLSL arm of the dual taxonomy (Figure S11). We contend the stability of 401 

cgLIN codes and their use alongside MLSL approaches provide a pragmatic solution to current attempts 402 

at developing genomic taxonomies of bacterial strains that are both stable and practical for human-403 

to-human communication.   404 
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Material & Methods 405 

Definition of an updated core genome MLST (scgMLSTv2) genotyping scheme 406 

We previously defined a core genome MLST (using strict synteny criteria, hence name scgMLSTv1) 407 

scheme of 634 highly syntenic genes (Bialek-Davenet et al. 2014). Here, we updated the scgMLSTv1 408 

scheme, with the following improvements. First, two loci (KP1_2104 and aceB=KP1_0253) were 409 

removed because they were absent or truncated in multiple strains, based on 751 high-quality 410 

assemblies available in the BIGSdb-Pasteur Klebsiella database on October 16th, 2017 (project id 11 at 411 

https://bigsdb.pasteur.fr/cgi-bin/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_isolates&page=projects). 412 

Second, the remaining 632 loci templates were modified so that they would include the start and stop 413 

codons of the corresponding coding sequence (CDS). This was not the case for all CDSs of the 414 

scgMLSTv1 scheme, as some loci corresponded to internal portions of CDSs. These template 415 

redefinitions were done to harmonize locus definitions across the scheme. Of note, defining loci as 416 

complete CDSs also facilitates genotyping, by enabling precise identification of the extremities of novel 417 

alleles, through the search of the corresponding start and stop codons. As a result of these locus 418 

template extensions, three additional loci (yraR, rnt and KP1_1655) had to be removed because they 419 

were called in a low proportion of the above 751 genomes. The resulting 629 scgMLSTv2 genes have a 420 

summed length of 512,856 nt (9.8% of the genome of reference strain NTUH-K2044), as compared to 421 

507,512 nt (9.7%) for the corresponding loci in scgMLSTv1. 422 

 423 

Definition of a genomic sequence dataset of 7,060 isolates with cgMLST profiles 424 

The K. pneumoniae species complex (KpSC) comprises seven phylogroups that have been given 425 

taxonomic status in the prokaryotic nomenclature: K. pneumoniae subsp. pneumoniae (Kp1, also 426 

known as K. pneumoniae sensu stricto), K. quasipneumoniae subsp. quasipneumoniae (Kp2), K. 427 

variicola subsp. variicola (Kp3), K. quasipneumoniae subsp. similipneumoniae (Kp4), K. variicola subsp. 428 

tropica (Kp5), ‘K. quasivariicola’ (Kp6) and K. africana (Kp7) (Rodrigues et al. 2019). We retrieved all 429 

KpSC genomes from the GenBank assembly repository on March 15th, 2019, corresponding to 8,125 430 

assemblies. We then chose high-quality assemblies by excluding draft genomes: (i) containing more 431 

than 1,000 contigs of size >200 nt; (ii) for which the average nucleotide identity (ANI) values (estimated 432 

using FastANI v1.1) were < 96% against every reference strain of the taxonomic diversity of the SC 433 

(Rodrigues et al., 2019; Table S9); (iii) of size ≤ 4.5Mb or ≥ 6.5 Mb; and (iv) with G+C% content >59%. 434 

The data of each criterion per strain are shown in Table S1. The three last criteria excluded possible 435 

contamination or non-KpSC genomes (Figure S2).  436 

https://bigsdb.pasteur.fr/cgi-bin/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_isolates&page=projects
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The resultant 7,388 ‘high-quality’ draft genomes (Table S2) were scanned for scgMLSTv2 alleles, using 437 

the BLASTN algorithm, as implemented in the BIGSdb platform (Keith A. Jolley, Bray, and Maiden 2018; 438 

K. A. Jolley and Maiden 2010), with 90% identity, 90% length coverage, word size 30, with type alleles 439 

only (as defined below). After this step, 235 profiles were excluded because they had more than 30 440 

missing alleles. 441 

The resulting dataset comprised 36 taxonomic references of Kp1-Kp7 (Rodrigues et al. 2019) that, 442 

together with eight additional genomes of phylogroup Kp7, were considered as a reference dataset of 443 

the KpSC taxa (‘K. quasivariicola’ reference strain KPN1705, SB6096, was excluded because it had more 444 

than 30 missing alleles). Besides these 44 reference genomes, 7,154 GenBank genomes were retained, 445 

resulting in a total dataset of 7,198 genomes (Table S1; Table S2). For some analyses, 138 genomes 446 

were set aside, defined as ‘hybrids’ between phylogroups (see below), resulting in a 7,060-genome 447 

dataset (Figure S2). 448 

We estimated within-outbreak variation using previously published outbreak sets (Table S6, Table S7).  449 

 450 

Recording sequence variation at the cgMLST gene loci 451 

Allelic variation at scgMLSTv2 loci was determined with the following strategy. First the sequence of 452 

strain NTUH-K2044 was used as the reference genome, with all its alleles defined as allele 1. Then, 453 

BLASTN searches (70% identity, 90% length coverage) were carried out using allele 1 as query against 454 

the genomic sequences of reference genomes 18A069, 342, 01A065, 07A044, CDC4241-71 and 455 

08A119, representing major lineages (phylogroups Kp2 to Kp6, including two genomes of Kp3 and 456 

excluding Kp7, which was not discovered yet) of the KpSC (Blin et al. 2017). Only sequences with a 457 

complete CDS (start and stop, no internal frameshift) and within a plus/minus 5% range of the 458 

reference size were accepted. Alleles defined from these reference genomes and from NTUH-K2044 459 

were then defined as type alleles. 460 

New alleles were identified by BLASTN searches using a 90% identity threshold, 90% length coverage 461 

and a word size of 30 and the above defined type alleles. The use of type alleles avoided expanding 462 

the sequence space of alleles in an uncontrolled way, at the cost of losing a few highly divergent alleles, 463 

which may have replaced original (vertically inherited) alleles by horizontal gene transfer (HGT) and 464 

homologous recombination. As for type alleles, novel alleles were accepted only if they (i) 465 

corresponded to a complete CDS (start and stop codons with no internal frameshift mutations) and (ii) 466 

were within a 5% (plus/minus) of the size of the type allele size. Novel allele sequences were also 467 
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excluded if they came from assemblies with more than 500 contigs of size > 200 nt, as these may 468 

correspond to low quality assemblies and that might contain artifactual alleles. Genome assemblies 469 

based on 454 sequencing technology, which are prone to frameshifts, were also excluded for novel 470 

allele definitions. No genome assemblies based on IonTorrent sequencing technology were found. 471 

In order to speed the scanning process, we used the fast scan option (-e -f) of the BIGSdb autotag.pl 472 

script (https://bigsdb.readthedocs.io/en/latest/offline_tools.html). This option limits the BLASTN 473 

search to a few exemplar alleles, which are used as query to find the genomic region corresponding to 474 

the locus. In a second step, a direct database lookup of the region was performed to identify the exact 475 

allele. 476 

 477 

Definition of MLST sequence types (ST) and core genome MLST sequence types (cgST)   478 

Classical 7-gene MLST loci have been defined previously (Diancourt et al. 2005) as internal portions of 479 

the seven protein-coding genes gapA, infB, mdh, pgi, phoE, rpoB and tonB. Novel alleles were defined 480 

in the Institut Pasteur Klebsiella MLST and whole-genome MLST database 481 

https://bigsdb.pasteur.fr/klebsiella/. In 7-locus MLST, the combination of the seven allelic numbers 482 

determines the isolate profile, and each unique profile is attributed a sequence type (ST) number. 483 

Incomplete MLST profiles with one (or more) missing gene(s) are recorded in the isolates database but 484 

in these cases, no ST number can be attributed and the profiles are therefore not defined in the 485 

sequence definition database. The 7-locus MLST genes were not included in the scgMLSTv2 scheme. 486 

Similar to ST identifiers used for unique 7-gene MLST allelic combinations, each distinct cgMLST profile 487 

can be assigned a unique identifier; however, when using draft genomes, cgMLST data can be partly 488 

incomplete due to de novo assembly shortcomings or missing loci. cgSTs were therefore defined only 489 

for cgMLST profiles with no more than 30 uncalled alleles out of the 629 cgMLSTv2 loci. In addition, 490 

we have used the --match_missing option of the define_profiles.pl script, which allows missing loci to 491 

be treated as specific alleles rather than 'any' alleles. While this retains more information (because it 492 

differentiates profiles that differ only by missing data at different loci), it can result in some isolates 493 

genomes corresponding potentially to more than a single cgST; their equality can nevertheless be 494 

deduced by the last MLSL level, ‘mismatch 0’, as these will be grouped into the same clusters at level 495 

0; this is because the clustering ignores loci with missing data in any of the profiles of a pair when 496 

calculating the pairwise distance. For example, cgST1 = 0-N-1-1; cgST2 = 0-2-N-1; an isolate with profile 497 

0-2-1-1 would result in cgST3 = 0-2-1-1 being created, and this genome would equate to both previous 498 

cgSTs and would be labeled as cgST1; cgST2; cgST3. 499 

https://bigsdb.readthedocs.io/en/latest/offline_tools.html
https://bigsdb.pasteur.fr/klebsiella/
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Phylogenetic analyses, recombination tests and screens for virulence and resistance genes 500 

JolyTree v2.0 (Criscuolo 2019; 2020) was used to reconstruct a phylogenetic tree of the KpSC. For this, 501 

first a single linkage clustering was performed to cluster cgSTs into partitions. This clustering was 502 

applied on the pairwise distances between allelic profiles, defined as the number of loci with different 503 

alleles, normalized by the number of loci with alleles called in both profiles. A threshold of 8 504 

mismatches was defined, resulting in 2,417 clusters. One genome from each of these 2,417 clusters 505 

was used as an exemplar for phylogenetic analysis (Figure 1). 506 

A core genome multiple sequence alignment (cg-MSA) of 7,060 cgMLST profiles free of evidence for 507 

inter-phylogroup ‘hybridization’ (see below) was constructed. The gene sequences were retrieved 508 

based on allele number in the sequence definition database, individual gene sequences were aligned 509 

with MAFFT v7.467 (missing alleles were converted into gaps), and the multiple sequence alignments 510 

were concatenated. IQ-TREE v2.0.6 was used to infer a phylogenetic tree with the GTR+G 511 

model (Figure 2). 512 

Locus-by-locus recombination analyses were computed with the PHI test (Bruen, Philippe, and Bryant 513 

2006) using PhiPack v1.0.  514 

Kleborate v2.0.4 (Lam et al. 2021) was employed to identify acquired antimicrobial resistance and 515 

virulence genes in genomic sequences, based on CARD v3.0.8 database, with identity >80% and 516 

coverage >90%. Virulence score (ranges from 0 to 5) and antimicrobial resistance score (ranges from 0 517 

to 3) were also derived from Kleborate. The virulence score is assigned according to the presence of 518 

yersiniabactin (ybt), colibactin (clb) and aerobactin (iuc), as follows: 0 = none present, 519 

1 = yersiniabactin only, 2 = yersiniabactin and colibactin (or colibactin only), 3 = aerobactin (without 520 

yersiniabactin or colibactin), 4 = aerobactin and yersiniabactin (without colibactin), and 5 = all three 521 

present. Resistance scores are calculated as follows: 0 = no ESBL (Extended-Spectrum Beta-522 

Lactamases), no carbapenemase, 1 = ESBL without carbapenemase, 2 = carbapenemase without 523 

colistin resistance, 3 = carbapenemase with colistin resistance.  524 

 525 

Detection of hybrid genomes 526 

Horizontal gene transfer of large portions of the genome can occur among isolates belonging to distinct 527 

KpSC phylogroups (Holt et al. 2015). Additionally, MLST or scgMLST alleles may have been transferred 528 

horizontally from non-KpSC members, for example E. coli. For the purpose of phylogeny-based 529 

classification, putative hybrid genomes were excluded. To define genomes that result from large inter-530 
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phylogroup recombination events, the gene-by-gene approach was used to define an original strategy, 531 

outlined briefly here and more thoroughly in the supplementary appendix (Detection of hybrids): for 532 

each locus, each allele was unambiguously labelled by one of the seven KpSC phylogroup of origin, if 533 

possible; next, for each profile, a phylogroup homogeneity index (i.e., proportion of alleles labelled by 534 

the predominant phylogroup) was derived. The distributions of the phylogroup homogeneity indices 535 

allowed determining hybrid genomes (Figure S12). Exclusion of such hybrid genomes resulted in a 536 

genomic dataset of 7,060 isolates deemed as having a majority of alleles inherited from within a single 537 

phylogroup. Of the 44 reference genomes, one (SB1124, of phylogroup Kp2) was defined as having a 538 

hybrid origin: 414 alleles were attributed to Kp2, whereas 150 alleles originated from non-KpSC 539 

species; as a result, 73.4% of SB1124 alleles were part of the majority phylogroup, which was below 540 

the defined threshold of 78%. The quantification of recombination breakpoints was performed based 541 

on the position of cgMLST loci on the NTUH-K2044 reference genome (NC_012731), counting the 542 

number of recombination breakpoints in each successive 500 kb fragment along the reference 543 

genome. Note that hybrids had typical assembly sizes (Table S1), whereas our simulations of 544 

contaminated sequence read sets between phylogroups resulted in significantly larger assemblies (not 545 

shown; available upon request). 546 

 547 

Identification of genetic discontinuities in the KpSC population structure  548 

The tool MSTclust v0.21b (https://gitlab.pasteur.fr/GIPhy/MSTclust) was used to perform the single 549 

linkage clustering of cgMLST profiles from their pairwise allelic mismatch dissimilarities, as well as to 550 

assess the efficiency of the resulting profile partitioning (for details, see supplementary appendix: 551 

Minimum Spanning tree-based clustering of cgMLST profiles). Briefly, for each threshold t (= 0 to 629 552 

allelic mismatches), the clustering consistency was assessed using the silhouette metrics St (Rousseeuw 553 

1987), whereas its robustness to profile subsampling biases was assessed using a dedicated metrics Wt 554 

based on the adjusted Wallace coefficients (Wallace 1983; Severiano et al. 2011). Both consistency (St) 555 

and stability (Wt) coefficients converge to 1 when the threshold t leads to a clustering that is consistent 556 

with the ‘natural’ grouping and is robust to subsampling biases, respectively. 557 

The adjusted Rand index Rt (Carrico et al. 2006; Hubert and Arabie 1985) was used to assess the global 558 

concordance between single linkage clustering partitions and those induced by classifications into 7-559 

gene MLST sequence types, subspecies and species. 560 

 561 

https://gitlab.pasteur.fr/GIPhy/MSTclust
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Diversity and phylogenetic compatibility indices 562 

Simpson’s diversity index was computed using the www.comparingpartitions.info website (Carrico et 563 

al. 2006).  The clade compatibility index of STs or other groups was calculated using the ETE Python 564 

library (http://etetoolkit.org/docs/latest/tutorial/tutorial_trees.html#checking-the-monophyly-of-565 

attributes-within-a-tree), in order to define whether their constitutive genomes formed a 566 

monophyletic, paraphyletic or polyphyletic group within the recombination-purged sequence-based 567 

phylogeny of the core genome. We estimated clade compatibility as the proportion of non-singleton 568 

STs, sublineages or clonal groups that were monophyletic.  569 

 570 

Classification of cgMLST profiles into clonal groups and sublineages 571 

The classification scheme functionality was implemented within BIGSdb v1.14.0 and relies on single 572 

linkage clustering. Briefly, cgSTs were defined in the sequence definitions (‘seqdef’) database as 573 

distinct profiles with fewer than 30 missing alleles over the scgMLST scheme, and their pairwise 574 

cgMLST distance was computed as the number of distinct alleles. To account for missing data, a relative 575 

threshold was used for clustering: the number of allelic mismatches was multiplied by the proportion 576 

of loci for which an allele was called in both strains. Hence, in order to be grouped, the number of 577 

matching alleles must exceed: (the number of loci called in both strains × (total loci - defined 578 

threshold)) / total loci. cgSTs and their corresponding sublineage (SL), clonal group (CG) and other 579 

levels partition identifiers, are stored in the seqdef database and are publicly available. Here, 580 

classification schemes were defined in the Klebsiella seqdef database on top of the scgMLSTv2 scheme, 581 

and host single linkage clustering group identifiers at the 10 defined cgMLST allelic mismatch 582 

thresholds (see Results). For classification groups defined using 43 and 190 allelic mismatch thresholds, 583 

scheme fields were defined and populated with the identifiers defined by inheritance from 7-gene 584 

MLST ST identifiers (see supplementary appendix: Nomenclature inheritance algorithm). 585 

 586 

 587 

Adaptation of the LIN code approach to cgMLST: defining cgLIN codes 588 

Vinatzer and colleagues proposed an original nomenclature method in which each genome is 589 

attributed a Life Identification Number code (LIN code), based on genetic similarity with the closest 590 

previously encoded member of the nomenclature (Marakeby et al. 2014; Weisberg et al. 2015; 591 

http://etetoolkit.org/docs/latest/tutorial/tutorial_trees.html#checking-the-monophyly-of-attributes-within-a-tree
http://etetoolkit.org/docs/latest/tutorial/tutorial_trees.html#checking-the-monophyly-of-attributes-within-a-tree
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Vinatzer et al. 2016; Vinatzer, Tian, and Heath 2017; Tian et al. 2020). In this proposal, the similarity 592 

between genomes was based on ANI (Average Nucleotide Identity; (Konstantinidis and Tiedje 2005; 593 

Goris et al. 2007)), with a set of 24 thresholds corresponding to ANI percentages of 60, 70, 75, 80, 85, 594 

90, 95, 98, 98.5, 99, 99.25, 99.5, 99.75, 99.9, 99.925, 99.95, 99.975, 99.99, 99.999 and 99.9999. Here, 595 

the method was adapted by replacing the ANI metric by the similarity between cgMLST profiles, 596 

defined as the proportion of loci with identical alleles normalized by the number of loci with alleles 597 

called in both profiles. These codes, which we refer to as cgLIN codes, are composed of a set of p 598 

positions, each corresponding to a pairwise genome similarity threshold sp. These similarity thresholds 599 

are sorted in ascending order (i.e., sp < sp+1), the first positions of the code (on the left side) thus 600 

corresponding to low levels of similarity. Following the initial proposal, the codes are assigned as 601 

follows (Figure S13): (step 1) the code is initialized with the first strain being assigned the value "0" at 602 

all positions; (step 2) the encoding rule for a new genome i is based on the closest genome j already 603 

encoded as follows, from the similarity sij ∊ ] sp–1 , sp ]:  604 

i) identical to code j up to and including position p – 1; 605 

ii) for the position p: maximum value observed at this position (among the subset of codes 606 

sharing the same prefix at the position p – 1) incremented by 1;  607 

iii) "0" to all downstream positions, from p + 1 included. 608 

For each genome to be encoded, step 2 is repeated.  609 

 610 

A set of 10 cgMLST thresholds were defined as follows: first, four thresholds were chosen above the 611 

similarity values peak observed between Klebsiella species (sp = 1 – 610 / 629 = 0.03), subspecies (sp = 612 

1 – 585 / 629 = 0.07), main sublineages (sp = 1 – 190 / 629 = 0.70) and clonal groups (sp =1 – 43 / 629 = 613 

0.93). Second, we included six thresholds deemed useful for epidemiological studies, corresponding to 614 

10, 7, 4, 2, 1 and 0 allelic mismatches.  615 

This encoding system conveys phylogenetic information, as two genomes with identical prefixes in 616 

their respective cgLIN codes can be understood as being similar, to an extent determined by the length 617 

of their common prefix. Isolates having cgMLST profiles with 100% identity (no mismatch at loci called 618 

in both genomes) will have exactly the same cgLIN code. For example, cgLIN codes 619 

0_0_22_12_0_1_0_0_0_0 and 4_0_3_0_0_0_0_0_0_0 would denote two strains belonging to distinct 620 

species (as they differ by their first number in the code). cgLIN codes 0_0_105_6_0_0_75_1_1_0 and 621 

0_0_105_6_0_0_75_1_0_0 correspond to strains from Kp1 (prefix 0_0) that differ by only 2 loci; they 622 

are identical up to the second bin, corresponding to 2 locus mismatches (Figure S13); note that 0 and 623 
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1 mismatches are both included in the last bin: genomes have an identical identifier when having 0 624 

difference, and a different identifier when having 1 mismatch (Figure S14). 625 

The impact of genome input order on the number of cgLIN code partitions at a given threshold was 626 

defined using the 7,060 high-quality, non-hybrid cgMLST profiles, which were encoded 500 times with 627 

random input orders (see details in the supplementary appendix: Impact of strains input order on LIN 628 

codes, and use of Prim’s algorithm). 629 

The scripts for cgLIN code database creation were made available via GitLab BEBP 630 

(https://gitlab.pasteur.fr/BEBP/LINcoding).  631 

https://gitlab.pasteur.fr/BEBP/LINcoding
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Figure legends 659 

Figure 1. Genome-based phylogenetic tree of the K. pneumoniae species complex. 660 

The whole-genome distance-based tree was inferred using JolyTree. JolyTree uses mash to decompose 661 

each genome into a sketch of k-mers and to quickly estimate the p-distance between each pair of 662 

genomes; after transforming every p-distance into a pairwise evolutionary distance, a phylogenetic 663 

tree is inferred using FastME. The seven phylogroups are indicated. Red dots correspond to strains 664 

defined as inter-phylogroup hybrids. Scale bar, 0.01 nucleotide substitutions per site. 665 

Figure 2. Phylogenetic structure within phylogroup Kp1 (K. pneumoniae sensu stricto). 666 

The circular tree was obtained using IQ-TREE based on the concatenation of the genes of the 667 

scgMLSTv2 scheme; 1,600 isolates are included (see Methods). Labels on the external first circle 668 

represent 7-gene MLST ST identifiers (each alternation corresponds to a different ST and only ST with 669 

more than 20 strains are labelled). The second and third circles (light green and blue, respectively) 670 

show the alternation of clonal groups (CG) and sublineages (SL), respectively, labelling only groups with 671 

more than 20 isolates. Full correspondence between ST, SL and CG identifiers is given in the 672 

supplementary appendix. 673 

Figure 3. Distribution of pairwise cgMLST distances, clustering properties and phylogenetic 674 

congruence.  675 

Values are plotted for the 7,060 genomes dataset. Threshold values (t) are shown on the X-axis, 676 

corresponding to allelic profile mismatch values up to 629 (or 100%). Grey histograms: distribution of 677 

pairwise allelic mismatches. The circles correspond to the different modes of distribution. The curves 678 

represent the consistency (silhouette) and stability coefficients St (blue) and Wt (green), respectively, 679 

obtained with each threshold t; the corresponding scale is on the left Y-axis. The dotted vertical red 680 

lines at t = 43/629, 190/629, 585/629 and 610/629 represent the thresholds up to which pairs of 681 

genomes belong to the same clonal groups, sublineages, phylogroups and species, respectively. 682 

Figure 4. Concordance of sublineage, clonal group and 7-gene MLST classifications. 683 

Alluvial diagram obtained using RAWGraphs (Mauri et al. 2017: doi.org/10.1145/3125571.3125585) 684 

showing the correspondence between sequence types (ST; 7 genes identity), clonal groups (CG; 43 685 

allelic mismatches threshold) and sublineages (SL; 190 allelic mismatches threshold). Colors are 686 

arbitrarily attributed by the software for readability. 687 

Figure 5. Phylogenetic relationships are reflected in cgLIN code prefixes. 688 
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Left: the prefix tree generated from cgLIN codes; Right: phylogenetic relationships derived using IQ-689 

TREE from the cgMLST gene sequences from the reference strains. The cgLIN codes are also shown. 690 

The values indicated on top of the prefix tree correspond to the cgMLST similarity percentage of the 691 

corresponding cgLIN code bin.  692 

Figure 6. cgLIN code prefixes, and virulence and antimicrobial resistance scores of some sublineages 693 

and their clonal groups.  694 

Left (green) panel: LIN prefixes of selected sublineages (SL) and clonal groups (CG). Right: heatmaps of 695 

virulence and resistance scores of clonal groups, and the number of genomes in each group. For each 696 

genome, the virulence score derived from Kleborate has a value from 0 to 5; the value in the cells 697 

corresponds to the percentage of strains in the group with that virulence score (similar to a heat map). 698 

The principle is the same for the resistance score, but it varies from 0 to 3. 699 
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Table 1. Genome dataset phylogroup breakdown, quality assessment and diversity.  702 
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Table 1. Genome dataset phylogroup breakdown, quality assessment and diversity

Taxonomic Designation Phylogroup Initial No. Genomes No. QC-filtered No. after applying filters No. of hybrids No. of non-hybrid genomes No. Called alleles (mean, std)                           No. of sequence types (ST)

K. pneumoniae subsp. pneumoniae Kp1 6737 218 (3.2%) 6519 (90.6%) 43 (0.7%) 6476 (91.7%) 624.6 (3.6) 705

K. quasipneumoniae subsp. quasipneumoniae Kp2 115 1 (0.9%) 114 (1.6%) 8 (7.0%) 106 (1.5%) 604.0 (2.5) 49

K. variicola subsp. variicola Kp3 309 8 (2.6%) 301 (4.2%) 37 (12.3%) 264 (3.7%) 615.4 (3.3) 149

K. quasipneumoniae subsp. similipneumoniae Kp4 230 6 (2.6%) 224 (3.1%) 50 (22.3%) 174 (2.5%) 607.4 (1.9) 64

K. variicola subsp. tropica Kp5 19 0 (0.0%) 19 (0.3%) 0 (0.0%) 19 (0.3%) 611.7 (1.8) 13

K. quasivariicola Kp6 13 2 (15.4%) 11 (0.2%) 0 (0.0%) 11 (0.2%) 602.9 (1.8) 8

K. africana Kp7 10 0 (0.0%) 10 (0.1%) 0 (0.0%) 10 (0.1%) 606.3 (1.6) 4

Total 7433 235 7198 138 7060

mean                                                 

610.3 (2.36) 992




