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A ROBUST AND VERSATILE FRAMEWORK TO COMPARE SPIKE DETECTION
METHODS IN CALCIUM IMAGING OF NEURONAL ACTIVITY

Samuel Kubler ∗, Suvadip Mukherjee, Jean-Christophe Olivo-Marin and Thibault Lagache

Institut Pasteur, BioImage Analysis Unit, CNRS UMR 3691.
25 rue du docteur Roux, 75015 Paris, France.

ABSTRACT
Calcium fluorescence imaging enables real-time activity
monitoring of single neurons in living animals. A critical
inverse problem resides in the precise inference of spike lo-
cations from noisy fluorescence traces, especially in the pres-
ence of burst spiking and non-linear fluorescence intensity.
Several spike extraction algorithms have been proposed in
the recent years, but a robust and objective evaluation of their
performance still remains elusive due to the unsupervised na-
ture of the problem. Here we propose a biologically-inspired
mathematical framework to reproduce synthetic fluorescence
traces from a time-series data of spike-trains. The idea is
to create a versatile platform to objectively test the state-of-
the art spike inference methodologies over a large range of
experimental parameters. Our solution appears as a com-
plementary but more exhaustive approach to determine the
robustness of existing solutions to different nature of sig-
nals, imaging artefacts, sensitivity to hyper-parameters and
pre-processing steps. We benchmark state-of-the-art algo-
rithms with the proposed simulation platform, and validate
the results on an experimental dataset of the Hydra Vulgaris.
We hypothesize that, in contrast to the common practice of
qualitative evaluation, quantitative measure of algorithm ro-
bustness is essential in understanding the suitability of a spike
inference algorithm to be used in an automated computational
pipeline to decipher the neural code.

Index Terms— Calcium imaging, neuronal activity, sim-
ulation, deconvolution, Hydra

1. INTRODUCTION

To understand the emergent computational properties of con-
nected single neurons, it is necessary to monitor the coordi-
nated activity of many single cells with high temporal res-
olution [1]. Fluorescence calcium imaging [2] remains the
gold-standard for such studies. Thanks to the recent advances
in calcium probe engineering and optical microscopy, thou-
sands of interconnected neurons can now be imaged in living
animals with high temporal resolution [3]. The success of
reverse engineering the brain now hinges upon effective sig-
nal processing techniques to extract critical information from
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Fig. 1: Single Fluorescence trace of a neuron from Hydra Vul-
garis. a) Calcium uptake of Hydra neurons displayed using Icy soft-
ware [8]. b) Temporal response of one Rythmic Potential (RP) neu-
ron with the spike pattern extracted manually.

imaging datasets.
In addition to the automatic tracking of single neuron fluores-
cence [4], another critical issue in the processing of calcium
imaging data is that of analysing neuronal spike trains from
the videos of firing neurons (see Fig. 1). The inverse prob-
lem of reconstructing the neuronal spikes from the calcium
imaging data is inherently unsupervised. Given a temporal
sequence of calcium uptake of the firing neurons, it is diffi-
cult, even for a neuroscientist, to reconstruct a precise repre-
sentation of the spiking pattern. State-of-the-art deconvolu-
tion methodologies exhibit significant variability in extract-
ing the spike patterns from same videos [5] [6] [7]. Due to
the absence of ground-truth annotation in most experimen-
tal data, qualitative evaluation appears to be a complementary
norm to measure the efficacy of deconvolution algorithms [6].
However, supplemented by quantitative experimental evalua-
tions, such qualitative assessments are unreliable due to in-
herent subjective bias. In the absence of gold standards, the
proper mechanism to study the behaviour of deconvolution
algorithms is via rigorous testing on realistic synthetic data.

In this paper we present a robust generative model to
realize time-series distributions of fluorescent calcium traces
from a given neuronal spike-train. Existing fluorescent trace
simulators [5, 9] do not always account for the intricate fea-
tures which exist in real calcium imaging datasets. In contrast,
our proposed methodology enables a realistic simulation by
integrating four critical design factors: (a) a model for pho-
tobleaching of calcium indicators, (b) imaging noise model,
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Fig. 2: Main processing steps of calcium trace simulator

(c) a tunable non-linear baseline dynamics, and finally, (d)
inhomogeneous firing patterns, with neurons that alternate
between low basal and burst firing, which integrate refractory
time periods due to the depletion of the calcium indicator
reservoirs.
Existing deconvolution techniques may be categorized in
three major groups (see table 1): 1) deterministic methods
that compute the optimal spike time series together with the
estimated calcium dynamic of the fluorescent indicator [10];
2) probabilistic approaches that compute the convolved time
series of spikes that maximises the likelihood of observed
data [5]; and 3) machine learning approaches [6]. We study
the robustness of four representative methodologies and eval-
uate to which extent they can be adapted on heterogeneous
simulated signals with strong underlying dynamic. Finally,
we show that the results provided by the simulator, and those
obtained within experimental dataset from Hydra Vulgaris
are correlated.

2. METHOD

Our simulator can be decomposed into four main parts, shown
in Fig. 2 : 1) the modeling of the spike impulse train using
the Firing Instantaneous Rate (FIR) function; 2) the model-
ing of the calcium trace from dirac impulse signal using a
kernel learned from experimental dataset; 3) the modeling of
the fluorescence trace from the calcium by handling the pho-
tobleaching effect through a Poisson-Gaussian noise; 4) an
additive non-linear baseline integration. Each step is detailed
hereafter.
To model the firing pattern s(t) of a single neuron, we imple-
ment a Poisson process with a FIR describing the probability
at each time step that the neuron fires. The FIR is modeled as
a piece-wise step function whose high constant steps corre-
spond to burst events, and low steps to the background spon-
taneous firing activity.

FIR(x) =
n∑

i=1

γiχ[ti,ti+di](x). (1)

Here χ is an indicator function, equals to 1 when x ∈
[ti, ti + di] and 0 otherwise. The firing-rate γi follows two
regimes (bursting event or not), and is modeled with a trun-
cated Gaussian law to keep frequencies positive. The number

of steps n is linked to the burst-rate parameter. The burst du-
ration di follows a Poisson law, and the spike burst locations
ti are drawn uniformly on the available time interval. The
spike impulse signal s(t) is then derived from the FIR using
an adaptation of inhomogeneous Poisson process simulation
by thinning [11]. An exponential course of return to the equi-
librium is used after each firing (the observed collapses of the
FIR shown in Fig. 2) to model calcium reservoir depletion.

c(t) = s(t) ∗ k(t) with k(t) =
Ae
−( t

τD
)β

1− e−
t−µ
τR

(2)

Here τD is the time constant of the calcium concentration
return to steady-state, β > 0 is a power law, µ is the median
time of calcium increase after the electrical spike. τR is the
corresponding rising time constant. In our simulations, we
calibrate the convolution kernel with data extracted from Hy-
dra calcium traces.
In the third step, we model the photo-bleaching of cal-
cium indicators with a mono-exponential decrease [12]
λ(t) = c(t)e

−t
τ , with τ being the photo-bleaching time con-

stant. To account for the Poisson shot noise of microscopes,
we further model the recorded signal as a Poisson process
such that P (t) ∼ Poisson(αλ(t)), where α is the gain of the
microscope [13].
To obtain a realistic calcium trace, we add a Gaussian noise
G ∼ N (m,σ2) with constant meanm and standard deviation
σ to the recorded Poisson signal (mixed Poisson-Gaussian
representation) and we also add a periodic deterministic
baseline B(t) = Asin(2πft) where A and f are tunable am-
plitude and frequency respectively. Finally, the fluorescence
calcium trace y(t) is derived from:

y(t) = P (t) +G+B(t) (3)

The photobleaching time constant and additive Gaussian
noise parameters are fitted to experimental datasets using least
square method. In our simulations, the SNR of generated cal-
cium traces is modulated using the gain α of the microscope
detector [13], an increased gain leading to higher SNR.



3. RESULTS

3.1. Benchmarking Deconvolution Algorithms

Using synthetic fluorescence traces, we benchmark four de-
spiking methods (two of them are issued from the CaImAn
library [9]): 1) Deterministic OASIS [14]; 2) Deterministic
CDfoopsi (Constrained Foopsi) [10]; 3) Probabilistic MLspike
[5] and 4) a Naive method that consists of smoothing the sig-
nal with a wavelet thresholding, before computing the first
derivative of the signal and estimates the spikes locations with
derivatives greater that one standard deviation of the deriva-
tive over the entire calcium trace. After having benchmarked
the methods using different pre-processings proposed in the
literature such as low-frequency filtering and normalization
[15] or polynomial detrending [16], we conclude that the ef-
ficiency of a pre-processing method depends on each decon-
volution algorithm, and we choose to perform a polynomial
detrending and data normalization for OASIS, and no prepro-
cessing for CDfoopsi and Mlspike.

3.2. Comparing the accuracy and robustness of methods
Deterministic methods (OASIS and CDfoopsi) do not han-
dle non-linear baseline. Therefore, high baseline amplitude
A will lead to false spike burst detections. To tackle this
technical issue, we filtered the inferred spikes with respect
to their estimated amplitude using a user-defined Decisional
Amplitude Threshold (DAT). The DAT is the only parameter
we optimize in tested deterministic methods since the oth-
ers have been exhaustively analysed in previous study [7].
For Naive thresholding method, the only parameter is the
threshold (typically a multiplicative factor of the derivative
standard deviation). The probabilistic method MLspike that
concomitantly estimate the spike locations and the underly-
ing fluorescence baseline presents four hyper-parameters: the
relative amplitude a of the spikes, the decay time constant τ
of the calcium fluorescence trace after a spike, the a priori
level of Gaussian noise σ and the drift d of the estimated
stochastic baseline. To compare the performances of the dif-
ferent deconvolution methods over a large range of simulation
parameters, we compute for each method the rate of missing
and false positive spike detections and summarize detector
performances using the Error Rate (ER) indicator proposed
in [5].
We first evaluate the accuracy of each method by varying the
different parameters of our synthetic simulator (see Fig. 3) :
the gain α that modulates the SNR, the rate of burst events,
the spiking rate inside bursts and the baseline amplitude A
and frequency f (n = 10 simulations per set of simulation
parameters). The method hyperparameters are calibrated us-
ing a grid-search which minimizes the error rate with the
available ground-truth. Each method calibration is performed
once for a reference set of simulator parameters: Gain of the
detector α = 1, Firerate In Burst fIB = 0.75 Hz, Firerate Out
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Fig. 3: Accuracy of deconvolution methods over simulation pa-
rameters. (a) Variation of the detector gain α (i.e. level of noise).
(b) Variation of the firing rate in burst. (c) Variation of the baseline
amplitude.

of Burst fOB = 0.15 Hz (firerates correspond to γi in/out
burst regime respectively see Eq. 1), Burstrate B = 0.02
Hz, Baseline Amplitude ALF = 50, Baseline frequency
fLF = 2e−3 Hz (see Eq. 3). These values have been chosen
to make the simulator relevant with the experimental Hydra
Vulgaris dataset.
We find that, after hyperparameter calibration, the probabilis-
tic MLspike is overall the most accurate method for each
set of parameters. However, we observe that MLSpike per-
formance rapidly degrades as simulation parameters change,
especially for the gain α (SNR) and baseline amplitude. The
other methods are overall much more robust to parameter
variations while being less accurate for the specific set of
calibration parameters. We highlight that the naive derivative
thresholding produces good results for isolated spikes but can
not properly handle bursts. CDfoopsi method [10] seems to
provide the best compromise between accuracy and robust-
ness to parameter variations.

3.3. Correlating simulation results with Hydra experi-
mental dataset
The trade-off between accuracy and robustness of a despiking
method is important for experimental in vivo applications as
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Fig. 4: Spike Inference techniques performed on real Hydra Vul-
garis’ Rythmic potential (RP) and Contraction Burst (CB) neu-
ron fluroscence traces.

different neurons can present different firing patterns (iso-
lated or burst) and SNR for example. We therefore compare
despiking methods using experimental dataset composed by
∼ 250 single neurons imaged over 2000 frames at 10 Hz
inside freely-behaving animal Hydra [17]. This dataset was
obtained thanks to the robust monitoring of single neuron
activity with tracking algorithm EMC2 [4].
Method parameters (DAT for deterministic methods and
hyper-parameters for MLspike) were calibrated by manu-
ally labelling spike locations on real fluorescence traces, and
by minimizing the distance between the inferred spikes and
the manual annotation. Hydra calcium traces are heteroge-
neous in terms of baseline, noise and spiking dynamics, with
neurons spiking quite sparsely and other in bursts (Fig. 4,
[17]). As observed with previous simulations, the second
deterministic method [10] is the most robust to calcium trace
heterogeneity and presents the best average Error Rate com-
pared to manual labelling (OASIS: ERavg = 0.40, CD-
foopsi : ERavg = 0.18, Naive : ERavg = 0.28, MLspike :
ERavg = 0.42) The average poor performance of MLspike
is likely due to its poor robustness to changes in experimental
conditions (see MLspike in Fig. 5).

The lack of ground truth for validating the deconvolu-
tion methods on experimental dataset imposes to analyse the
consistency of the inferred spike locations. This evaluation
hinges on biological assumption of existing neuronal ensem-
bles (e.g. RP and CB neural networks in Hydra [17]) that are
supposed to provide correlated spiking patterns. Also, a suffi-
cient and balanced average number of spikes per trace should
reflect the robustness of each method to heterogeneous base-
line variation and noise level.
In this regard, the spike distributions over the dataset are sum-
marized in the raster-plots (see Fig. 5-a). We also calculate the
average number of spikes per neurons (OASIS : 12.61±4.43,
CDfoopsi : 22.62 ± 14.70, Naive : 19.22 ± 4.47, MLspike
: 17.51 ± 26.10) and the neuron pair-wise correlation matri-
ces using a Jaccard distance relaxed by a time tolerance (see
Fig. 5-b). dJ(ni∗, nj∗) =

s(ni∗)∩(nj∗)
s(ni∗)∪(nj∗) = TP

TP+FP+FN where
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distribution. b) Global Relaxed Jaccard Correlation.

s(n∗i) is the binarized impulse spike signal inferred for neu-
ron n∗i.

The heterogeneity in spike distribution varies between the
methods. MLSpike computes many false spike detections
(horizontal lines in raster-plot combined with a high stan-
dard deviation of the average number of spikes per sequence),
while the naive thresholding method misses more spikes, but
provides more balanced impulse spike signals in terms of av-
erage number of spikes per fluorescence trace. We observe
that the highest global average Jaccard distance is obtained
for the naive thresholding and CDfoopsi methods (see Fig. 5-
b).
Finally, we conclude that CDfoopsi appears as the best trade-
off solution since it provides the best reconstruction results
compared to our manual labelling, a sufficient and balanced
number of spikes per trace and one of the highest global Jac-
card correlation. The results obtained on experimental Hydra
Vulgaris dataset are congruent with the ones derived from the
proposed simulator which enforces the conclusion drawn by
[7] about the versatility of CDfoopsi, especially within dataset
with heterogenous baselines.

4. CONCLUSION

In this paper, we provided a mathematical framework for
a fluorescence trace simulator to objectively compare and
validate spike deconvolution techniques. State-of-the-art de-
convolution methods were benchmarked on synthetic and
experimental datasets. Such comparative analysis is neces-
sary to account for complex underlying biological processes
and the lack of ground-truth in neurosciences. We even argue
that a quantitative benchmarking of methods on synthetic data
without a qualitative and statistical analysis on experimen-
tal dataset make them unsuitable. Future efforts will focus
on improving our simulator by modeling neuron ensemble
effects, and go further in an automatic pipeline to break the
neural code.
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Balázs Rózsa, and Ivo Vanzetta, “Accurate spike esti-
mation from noisy calcium signals for ultrafast three-
dimensional imaging of large neuronal populations in
vivo,” Nature Communications, vol. 7, no. 1, pp. 12190,
Nov. 2016.

[6] Lucas Theis, Philipp Berens, Emmanouil Froudarakis,
Jacob Reimer, Miroslav Román Rosón, Tom Baden,
Thomas Euler, Andreas S Tolias, and Matthias Bethge,
“Benchmarking spike rate inference in population cal-
cium imaging,” Neuron, vol. 90, no. 3, pp. 471–482,
2016.

[7] Marius Pachitariu, Carsen Stringer, and Kenneth D. Har-
ris, “Robustness of spike deconvolution for neuronal
calcium imaging,” Journal of Neuroscience, vol. 38, no.
37, pp. 7976–7985, 2018.

[8] Fabrice De Chaumont, Stéphane Dallongeville, Nico-
las Chenouard, Nicolas Hervé, Sorin Pop, Thomas
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