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ABSTRACT

The observation of physical phenomena often goes through the
recording of discrete time series of events, that can be represented
with marked point processes. The robust estimation of the corre-
lation between two point processes can, therefore, unveil physical
mechanisms underlying the observed phenomena. However, the ro-
bust estimation of correlation between two, or more, point-processes
is hindered by the signal noise (leading to false and missing point
detections), the important density of points, and possible time-shift
between coupled points. We propose a statistical framework that
uses hypothesis testing to estimate coupling between time point-
processes. Using simulations, we show that our framework accu-
rately estimates the coupling between two time point-processes even
for noisy signal (with false point detections), for high density of
points and in the presence of a time shift between coupled points.
By applying our statistical framework to the recordings of neuron
population activity in mouse visual cortex, we measure the func-
tional coupling between individual neurons, and cluster neurons into
functional ensembles.

Index Terms— Time point-processes - Ripley’s K function -
Statistical coupling - Neuronal spikes - Functional connectivity

1. INTRODUCTION

In many fields, the observation of physical events can only be done
through discrete time series of events. This is the case, for example,
of volcanic eruptions [1] and earthquakes [2] in geology, molecules
arrival and departures form specific processes sites in cellular biol-
ogy (e.g. endocytosis and pathogen entry [3], and neuronal activity
through the firing of action potentials from individual neurons [4]
which the study case of the experimental part of our article. The
statistical characterization of relations (coupling) between two (or
more) time series of events can unveil important mechanisms that
underly the observed processes. For example, the observation of the
sequential arrival of molecules at endocytic sites with fluorescence
microscopy helped to unravel the mechanisms of cell entry [3]. An-
other example is given by the observation of the firing of individual
neurons within a population that provides information on neuronal
communication and coding [5].
Observed time series of events can often be modeled as marked point
processes [6], with the point being the time location of an event and
the mark its attributes (e.g. intensity, color, duration...). Therefore,
the characterization of the correlation between different time series
of events reduces to the estimation of the coupling between time
point-processes. In the case of neuronal activity studies, the two
main methods used to estimate the coupling between point-processes
are either based on the estimation of underlying firing rates (i.e.
the intensity of associated point-processes) [7] and the analysis of

the correlation between estimated intensities, or coupling estimation
is directly performed with colocalization analysis between discrete
time point-processes [4]. While the methods using the estimation
of firing rates are more robust to the missing and false detections
of single point events, they depend on the robust estimation of firing
rates and are not well-suited for detecting the synchronization of sin-
gle point events. On the other hand, the colocalization methods are
sensitive to false and missed point detections. Moreover, high point
density can lead to fortuitous point colocalization and overestimation
of processes’ coupling, whereas time shifts between coupled points
can lead to coupling underestimation.
To tackle these technical issues in colocalization analysis, we de-
veloped a statistical method to robustly evaluate the coupling be-
tween time point-processes, even in the presence of a time-shift be-
tween individual coupled points. Our method uses the multi-distance
Ripley’s K function [8] to measure the time-shifted accumulation
of points from one time point-process relatively to the other. It
corresponds to an adaptation of state-of-the-art statistics of point-
processes to 1-dimensional temporal case of spiking events. This
method has been developed to account for false inferred spike de-
tections and potential time-shifts that results from spike deconvolu-
tion methods in calcium imaging [14]. As our method is based on
statistical characterization of the Ripley’s K function and hypothe-
sis testing, it is robust to noise (false point detections) and remains
accurate even for high point density. We assess the robustness of
our method with synthetic simulations, and show that it outperforms
state-of-the-art colocalization metrics. Finally, we use our method
to compute the functional relations within a population of neurons
in the visual cortex of mice, from their individual spiking activity.

2. METHOD

2.1. Measuring the coupling between time point-processes with
the Ripley’s K function

Ripley’s K function introduced by Brian Ripley in the 70’s [8] re-
mains the gold-standard to measure the coupling between spatial
point processes.
The idea of our temporal adaptation is to measure the coupling
between two time point-processes s1 = [t1, . . . , tn1 ] and s2 =
[t′1, ..., t

′
n2

] by creating a regular mesh grid whose topology is
dependent on s1 point locations in time and by comparing the
effective distribution of s2 points falling in each mesh to the dis-
tribution expected under a random distribution assumption through
a statistical hypothesis rejection test. Thus, the Ripley’s vector
GN = [G0, . . . , Gi, . . . GN−1] embeds a 1-dimensional mathe-
matical mesh grid implementation composed by an ensemble of N
fixed size rings of radius [ri, ri+1] centered around s1 points. Thus,
Ripley’s function just corresponds to a statistical effective counter



of s2 points that fall into rings around s1 objects with a boundary
corrective term w which corrects for the potential underestimation
of neighbors to points that are close to the starting- and ending-
points of the time study period. This correction is inspired by the
2-dimensional corrective term used by Ripley in [8].

Gi =
|Ω|
n1n2

∑
tk∈s1

∑
t′
l
∈s2

1{ri≤|tk−t′
l
|≤ri+1}w(tk, t

′
l) (1)

with w(tk, t
′
l) = 1 + 1{|tk−t′

l
|>|tk−δΩ(tk)|} (2)

where |Ω| is the length of the time period over which the two time
point-processes are observed, 1 is an indicator function such that
1{A} = 1 if A is True, 0 otherwise. δΩ is the coordinate of the clos-
est boundary of the study domain ie δΩ(tk) = 0 if tk ≤ |Ω|/2,Ω
otherwise.
To detect a significant coupling between time series (point-processes)
s1 and s2, we design an hypothesis testing approach. We compare
how far is the effective Ripley’s function counter in the rings re-
garding the number of points expected under a null hypothesis H0

of Complete Spatial Randmness where points are located accord-
ing to an homogeneous Poisson distribution for s2 point-process.
Analytical mean and standard deviation parameters are derived by
calculating intersection of 1-dimensional volumes corresponding to
the overlapping of rings. Under H0, Ripley’s K function tends to a
normal distribution [9] in accordance with the central limit theorem.
Thus, the distribution of G = [Gi]i=0..N−1 is fully characterized by
its mean MN = [E{Gi} = µi]i=0..N−1 and its standard deviation
ΣN = [E{G2

i }−µ2
i = σ2

i ]i=0..N−1. Using the CSR hypothesis for
s2 time points and the boundary correction (Eq. 2), we compute that

µi =
1

n1

∑
tk∈s1

∫
y∈Ω

1{ri≤|tk−y|≤ri+1}(
1 + 1{|tk−y|>|tk−δΩ|}

)
dy (3)

and σ2
i =

|Ω|
n2
1n2

∑
tk∈s1

(
I21(tk, ri, ri+1)

+
∑

tj∈s1,tj ̸=tk

I22(tk, tj , ri, ri+1)

)
(4)

with
I21(tk, ri, ri+1) =

−µ2
i

|Ω| +

∫
y∈Ω

1{ri≤|tk−y|≤ri+1}(
1 + 3× 1{|tk−y|>|tk−δΩ|}

)
dy

I22(tk, tl, ri, ri+1) ≈ − µi

|Ω| + 1{|tk−δΩ|>ri+1}1{|tl−δΩ|>ri+1}

×
∫
y∈Ω

1{ri≤|tk−y|≤ri+1}1{ri≤|tl−y|≤ri+1}dy

The size and number of the rings provide a maximum duration be-
yond which colocalization can no longer be detected and a temporal
resolution to distinguish two close interactions.

2.2. Statistical test of time point-processes’ coupling

To build a statistical test of time point-processes’ coupling, we intro-
duce the reduced statistics

G̃ = A−1G−MN

ΣN
(5)
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Fig. 1: Statistical analysis of time point-processes A- Stochastic time-
point processes (e.g. rasterplot of individual neurons’ spiking). B- Multi-
time-shift analysis of the coupling between two time point-processes. De-
pending on the accumulation of points from one point-process around the
other for different time-shifts, a coupling probability is assigned to each pair
of time points.

with A a correction matrix for ring’s overlapping [10]. Under the
null hypothesis of s2 randomness, G̃ is a standard normal vector
(i.e. each of its component G̃i ∼ N (0, 1). Therefore, a significantly
high value of a vector component G̃i would indicate an accumula-
tion of coupled points around reference points corresponding to a
positive coupling (while a low value would indicate a depletion of
s2 points corresponding to a negative coupling).
Similarly to the statistical test introduced for spatial point-processes
[10], we use the maximum component of reduced Ripley vector
G̃max = sup0≤i≤N−1G̃i to test if there is at least one ring [ri; ri+1]
where s2 time points accumulate significantly. To compute the p −
value associated with the observed maximum component G̃max, we
compute that, ∀x > 0,

Pr{G̃max ≥ x} = 1− Pr{∀i ∈ [1..N − 1], G̃i < x}
= 1− (Pr{N (0, 1) < x})N = 1− cdfN (x),

where cdf(x) is the cumulative density function of the standard nor-
mal law. Finally we obtain the p− value

p-value = 1− cdfN (G̃max) (6)

2.3. Quantitative characterization of time point-processes’ cou-
pling

To further characterize the putative coupling between two time point-
processes, we determine the components of Ripley’s reduced vec-
tor G̃ that are significantly high by using the universal threshold
T (N) =

√
2 log(N) [11], which is widely used in image process-

ing to determine the significant component of a signal corrupted with
standard white noise. Thus, G̃i > T (N) indicates that there is a
significant accumulation of s2 points at a time shift comprised be-
tween ri and ri+1 from s1 points. This allows the detection of cou-
pling between two time point-processes at different distances and not
only the detection of points co-occurence at the same time. Hence,
our framework can handle coupling estimation with time shifts and
varying delays. Finally, we convert the reduced Ripley vector com-
ponents into a coupling probability between all the points (tk, tl) of
time point-processes s1 and s2

P (tk, tl) =

N−1∑
i=0

1{ri≤|tk−tl|<ri+1}
σiG̃i1{G̃i>T (N)}

Gi
(7)

and extract a global coupling metric on the entire time series

GC(s1, s2) =
1

n1

∑
tk∈s1

1

nl

∑
tl∈s2

P (tk,tl )̸=0

P (tk, tl) (8)

where nl is the number of tl coupled points in s2, i.e. such that their
coupling probability with tk in s1 is strictly positive.
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Fig. 2: Robustness of correlation metrics to different coupling time
shifts. Our statistical method (red) is compared with standard correlation
metrics (Pearson correlation coefficient (purple), F1 score (blue) and C3I
(green)) for increasing simulated coupling level and different time shifts
(A- tshift ∼ N (µs = 0, σs = 0), B- tshift ∼ N (0, 0.3), C-
tshift ∼ N (1, 0), and D- tshift ∼ N (1, 0.3).)

3. RESULTS

3.1. Synthetic simulations

To validate our proposed statistical framework we use simulations
where the coupling characteristics between time point-processes are
known, and we compare the results of our method to standard mea-
sures of signals’ correlation.

3.1.1. Robustness to variations of coupling level and time shift

Using simulations of time point-processes with varying coupling
level and time shifts, we compare the accuracy of our statistical
method with standard correlation metrics (see Appendix for details):
1) the Pearson correlation coefficient, 2) F1 score and 3) the Clus-
ter Core Index (C3I) [12]. To simulate coupled time point-processes
with effective coupling level pc, we first generate a reference homo-
geneous Poisson point-process s1, with n ∼ 30 points over Ω, with
length |Ω| = 3700. Then, a proportion pcn of point process s2 are
coupled to random s1 points with a time shift tshift ∼ N (µs, σs),
the other n(1 − pc) points of s2 being randomly distributed (ho-
mogeneous Poisson process over Ω). Finally, to simulate a video
acquisition in biological imaging, we discretize the time period Ω =
{Ωt}1≤t≤T , where each Ωt is a time step with length ∆t = 1.
For increasing simulated levels of coupling and several time shifts
((µs, σs) = (0, 0), (1, 0), (0, 0.3), and (1, 0.3), we compare our
statistical method with other standard methods (Figure 2). For µs =
0, i.e. when most coupled time points are co-occurring in same
time steps Ωt, all methods provide a correct estimation of the ef-
fective coupling between time point-processes. We highlight that
the non-linear, convex shape of C3I curve is due to the used index
of correlation [12]. However, when the mean time shift increases
to µs = 1, our statistical framework and C3I outperform classical
correlation coefficients that are not well-equipped for time-shifted
coupled point-processes. We conclude that our framework can han-
dle coupling with or without time-shifts between coupled points and
correctly estimates the simulated level of coupling.
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Fig. 3: Robustness to false (A) and missed (B) detections, and to an
increased intensity of the time point-process (C).

3.1.2. Robustness to false and missed detections

A common issue when dealing with point-processes is the presence
of false and missed detections in time point series. These artefacts
are due to the presence of noise in the acquired biological signal.
For example, when analyzing the spiking activity of individual neu-
rons with calcium imaging, noise in calcium intensity traces and
imperfections in deconvolution algorithms used for extracting neu-
ron discrete spikes (time points) lead to false and missed detections
(see section 3.2). In Figure 3, we measure the robustness of our
method to increased levels of false and missed detections. We plot
the F1 score of the proportion of couples estimated with our method.
For any simulated level of false detections (0%, 10%, 30% and 50
%), our method estimates an accurate number of points’ couples
(> 80% of couples are recovered). Conversely, our method is much
more sensitive to missed detections. Indeed, an increased number
of missed detections reduces the number of observable couples.
Typically, for a percentage 0 ≤ p ≤ 1 of missed points in processes
s1 and s2, the expected proportion of missed couples will be equal
to 1 − p2. Finally, we also test the sensitivity of our method to the
intensity λ0 of underlying point-processes. Indeed, an increased
intensity (i.e. overall number of points over the observed period
∼ λ0|Ω|), can lead to an increased number of points’ couples due
to chance. We observe that, actually, our statistical method is very
robust to an increased intensity of underlying point processes from
λ0 = 0.1 Hz to 1 Hz.
From previous simulations, we conclude that our method outper-
forms other standard correlation methods when there is a time-shift
between the coupled points of the two time point-processes, i.e.
when coupled points are not necessarily co-occurring in the same
time steps. Moreover, we assessed the robustness of our method
when false detections (i.e. random points) are added to the original
coupled time point-processes, as well as when the intensity of pro-
cesses is overall increased. The only sensitive parameter is the level
of missing points that leads to an expected decreased of detected
points’ couples.

3.2. Functional coupling between individual neurons

We apply our method to measure the functional coupling between
individual neurons from their monitored spiking activity. We use
the online dataset from [13], corresponding to two-photon imag-
ing of neuron activity in mouse visual cortex (File M1d1AS in the
dataset). From calcium fluorescence traces, the exact spiking times
can be obtained using spike inference techniques with variable ac-
curacy and robustness [14]. A representative rasterplot of neuron
spiking activity obtained with the constrained FOOPSI deconvolu-
tion algorithm [15] is shown in Figure 1-A (|Ω| = 5 minutes, image
acquisition rate = 12.3 Hz). We measure the coupling between in-
dividual neurons using the coupling index (eq. 8) (Figure 4-A). Size
of used Ripley’s vector (eq. 2) is equal to N = 4, with identical
time-shifts ri+1 − ri = 1 frame (∼ 80 ms) for i = 0..3. Propor-
tions of coupled spikes for the different time shifts are respectively
equal to [65%, 13%, 12%, 10%], meaning that 2/3 of the coupled
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Fig. 4: Analyzing functional coupling between individual neurons in
mouse visual cortex. A- Coupling index (eq. 8) between individual neurons
computed from their extracted spiking activity (rasterplot). B- Network rep-
resentation and Louvain clustering of neuronal ensembles.

spike times are co-occuring in the same time step Ωt, while 1/3
are time-shifted by more than one frame. These latter, time-shifted
coupled spikes are completely missed by standard correlation tech-
niques. Using the coupling information between individual neurons,
we represent neurons’ couples with an undirected network graph,
with edges corresponding to strictly positive coupling indexes (Fig-
ure 4-B). We identify neuronal ensembles with a Louvain clustering
algorithm [16] which maximizes graph modularity, and obtain 3 neu-
ronal ensembles (with n ≥ 10 neurons), in agreement with [13].
We conclude that our statistical framework allows the robust esti-
mation of functional coupling between individual neurons from the
calcium imaging of their spiking activity. Contrary to standard cor-
relation metrics, it allows the estimation of points’ coupling even in
the presence of time-shifts, and does not require any thresholding of
correlation coefficients for the network representation and clustering
of neuronal connectivity.

4. CONCLUSION

We have proposed a statistical method for estimating the coupling
between time point-processes that use the multi-distance Ripley’s
K function and hypothesis-testing framework. Our method is able
to accurately estimate the coupling between time-shifted correlated
point processes, and is robust to high intensity of point processes
and false detections. The unique ability of our framework to com-
pute the coupling between time-shifted point-processes is used to
quantify the functional coupling between individual neurons imaged
with fluorescent calcium indicators in mouse visual cortex [13].

5. APPENDIX

Pearson correlation coefficient For a discretized time period
Ω = {Ωt}1≤t≤T , we introduce the indicator functions δt(sk) =
1 {∃tl ∈ sk|tl ∈ Ωt} for each time-process {sk}k=1,2 that deter-
mines whether at least one point of each time point-process falls into
the time step Ωt. The Pearson correlation coefficient is then given
by

r(s1, s2) =

∑
1≤t≤T δt(s1)δt(s2)− T s̄1s̄2√∑

1≤t≤T δt(s1)− T s̄12
√∑

1≤t≤T δt(s2)− T s̄22
,

with s̄k = T−1 ∑
1≤t≤T δt(sk).

F1 score
To compute the F1 score between time point-processes s1 and s2,
we set a tolerance for point-matching (tol = 2 frames) and de-
fine true positive (TP) as TP =

∑
1≤t≤T δt(s1)δt±tol(s2) with

δt±tol(s2) = 1
{
∃tl ∈ s2|tl ∈

⋃
t−tol≤j≤t+tol{Ωj}

}
. False pos-

itive (FP) and false negative (FN) are respectively given by FP =

∑
1≤t≤T δt(s2)(1 − δt±tol(s1)) and FN =

∑
1≤t≤T δt(s1)(1 −

δt±tol(s2)). Finally F1 score is equal to

F1 =
2× TP

2× TP + (FP + FN)
.
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