Skip to Main content Skip to Navigation
Journal articles

Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells

Abstract : Extracellular vesicles (EVs), including exosomes, are thought to mediate intercellular communication through the transfer of cargoes from donor to acceptor cells. Occurrence of EV-content delivery within acceptor cells has not been unambiguously demonstrated, let alone quantified, and remains debated. Here, we developed a cell-based assay in which EVs containing luciferase- or fluorescent-protein tagged cytosolic cargoes are loaded on unlabeled acceptor cells. Results from dose-responses, kinetics, and temperature-block experiments suggest that EV uptake is a low yield process (~1% spontaneous rate at 1 h). Further characterization of this limited EV uptake, through fractionation of membranes and cytosol, revealed cytosolic release (~30% of the uptaken EVs) in acceptor cells. This release is inhibited by bafilomycin A1 and overexpression of IFITM proteins, which prevent virus entry and fusion. Our results show that EV content release requires endosomal acidification and suggest the involvement of membrane fusion.
Document type :
Journal articles
Complete list of metadata

https://hal-pasteur.archives-ouvertes.fr/pasteur-03697043
Contributor : Isma Ziani Connect in order to contact the contributor
Submitted on : Thursday, June 16, 2022 - 2:04:36 PM
Last modification on : Saturday, June 25, 2022 - 3:44:04 AM

File

s41467-021-22126-y.pdf
Publication funded by an institution

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Collections

Citation

Emeline Bonsergent, Eleonora Grisard, Julian Buchrieser, Olivier Schwartz, Clotilde Théry, et al.. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nature Communications, Nature Publishing Group, 2021, 12 (1), pp.1864. ⟨10.1038/s41467-021-22126-y⟩. ⟨pasteur-03697043⟩

Share

Metrics

Record views

0

Files downloads

0