In vivo commensal control of Clostridioides difficile virulence - Institut Pasteur Access content directly
Journal Articles Cell Host & Microbe Year : 2021

In vivo commensal control of Clostridioides difficile virulence

Abstract

Leveraging systems biology approaches, we illustrate how metabolically distinct species of Clostridia protect against or worsen Clostridioides difficile infection in mice by modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survive infection with reduced disease severity, while mice colonized with the butyrate-producer, Clostridium sardiniense, succumb more rapidly. Systematic in vivo analyses revealed how each commensal alters the gut-nutrient environment to modulate the pathogen's metabolism, gene regulatory networks, and toxin production. Oral administration of P. bifermentans rescues conventional, clindamycin-treated mice from lethal C. difficile infection in a manner similar to that of monocolonized animals, thereby supporting the therapeutic potential of this commensal species. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biology approaches to define host-commensal-pathogen interactions in vivo.

Dates and versions

pasteur-03580039 , version 1 (18-02-2022)

Identifiers

Cite

Brintha P. Girinathan, Nicholas Dibenedetto, Jay N. Worley, Johann Peltier, Mario L. Arrieta-Ortiz, et al.. In vivo commensal control of Clostridioides difficile virulence. Cell Host & Microbe, 2021, 29 (11), pp.1693-1708.e7. ⟨10.1016/j.chom.2021.09.007⟩. ⟨pasteur-03580039⟩
52 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More