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Summary 

Terminal deoxynucleotidyltransferase (TdT) is a member of the polX family 

which is involved in DNA repair. It has been known for years as an untemplated DNA 

polymerase used during V(D)J recombination to generate diversity at the CDR3 

region of immunoglobulins and T-cell receptors. Recently, however, TdT was 

crystallized in the presence of a complete DNA synapsis made of two double-

stranded DNA (dsDNA), each with a 3’ protruding end, and overlapping with only one 

micro-homology base-pair, thus giving structural insight for the first time into DNA 

synthesis across strands. It was subsequently shown that TdT indeed has an in trans 

template-dependent activity in the presence of an excess of the downstream DNA 

duplex. A possible biological role of this dual activity is discussed. 

 

Bullet-points 

-TdT has been known for more than 50 years as an untemplated DNA polymerase 

-However, it was recently shown to be able to bind to a DNA synapsis in solution  

-It was subsequently shown that TdT has in-trans templated polymerase activity 

-New crystal structures show TdT caught in the act of DNA synthesis across strands 

-This dual activity of TdT can be understood in the context of its biological role. 
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Introduction 

Terminal deoxynucleotidyltransferase (TdT) was one of the the first eukaryotic 

DNA polymerases purified in the early 1960s [1], from calf thymus extracts. However, 

instead of the expected classical templated polymerase activity, the biochemical 

characterization of TdT revealed an efficient untemplated polymerase 

(nucleotidyltransferase) activity [2,3], especially in the presence of divalent transition 

metal ions [4]. In vivo, the function of TdT was only fully understood in the eighties 

[5–7], after the discovery of V(D)J recombination [8–10]. During this process, TdT 

adds random nucleotides (N-segments) at the V-D and D-J junctions in heavy chains 

of immunoglobulins (Ig) and T-cell receptors, thereby contributing significantly to the 

diversity of the immune repertoire [11,12]. Subsequently, it was revealed that the 

V(D)J uses the same machinery [13,14] as the one of Non-Homologous End Joining 

(NHEJ) that repairs DNA double-strand breaks (DSB). This machinery includes a 

recognition complex (Ku heterodimer, DNA-PKcs), DNA end-processing enzymes 

such as a nuclease (Artemis or Metnase) and a DNA polymerase (pol X), as well as 

a ligation complex (Lig IV, XRCC4, XLF) [15]. The DNA polymerase is a member of 

the family polX that includes not only TdT, but also pol λ [16] and pol μ [17,18], the 

last two participating to both NHEJ and V(D)J recombination [19–23]. All three 

polymerase domains X-ray structures have been determined to high resolution [24–

26] but the only one that was crystallized in a DNA-bridging context is TdT [27,28]. 

Here we focus on TdT and on the biological implications of these new structures.  

 

Structural and biochemical features of pol X family polymerases 

The X-family DNA polymerase (polX) is specialized in DNA repair. This family 

is composed of four different DNA polymerases: pol β, pol λ, pol μ and TdT. Only 
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three members of the polX family possess an N-terminal BRCT (BRCA1 carboxy-

terminal) domain (Figure 1A) that is essential for NHEJ activity both in vitro and in 

vivo [29,30]. Pol β participates only in base excision repair (BER) [31,32] and is 

devoid of this small domain (around 11 kDa), which mediates protein-protein or 

protein-DNA interactions [33]. Three individual structures of a BRCT domain from the 

polX family were solved by NMR [34,35]. BRCT domain is typically an αβα sandwich 

made up of a central antiparallel β-sheet flanked by three α-helices [36–38]. Although 

the structures of all known BRCT domains are highly conserved, their interaction 

mode with ligands is greatly variable and their role in the sequential recruitment of 

the different proteins during NHEJ repair is not completely understood [39]. Ligase IV 

contains 2 BRCT domains whose peptide junction interacts with XLF, XRCC4 [40,41] 

and which interact with Ku heterodimer [42]. The BRCT domain of pol μ binds DNA 

[43] but the precise mode of binding of the BRCT domain of either pol μ or TdT to Ku 

heterodimer remains to be elucidated, as well as its orientation with respect to the 

catalytic polymerase domain.  

Sequence analysis of the polymerase domain of polX polymerases allows to 

divide this family into two sub-groups [44]. Pol β is closer to pol λ (34% of pairwise 

sequence identity) and TdT is closer to pol μ (44% of pairwise sequence identity). 

The structures of all four polymerases belonging to X-family have been solved by X-

ray crystallography. Pol β was the first polX to be solved, alone and with different 

binary and ternary complexes [45–47]. The overall structure of the catalytic domain 

shares the same general architecture (but not the topology) of all DNA polymerases, 

namely a finger domain, a palm domain and a thumb domain (Figure 1). The 

additional 8-kDa domain in pol β and pol λ contains a deoxyribose phosphate (dRP) 

lyase activity required in base excision repair (BER) of oxidative DNA damage 
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(Figure 1). The amino acids necessary for dRP lyase activity are not conserved in 

TdT and pol μ, which do not participate in BER. 

One striking feature common to all polX is the high degree of conservation of 

the catalytic site, with three strictly conserved Aspartates (Figure 1B) that coordinate 

two essential metal ions, involved in the so-called two-metal ions mechanism, first 

described in [48] and later shown to be present also in DNA polymerases [47]. Metal 

A activates the 3’OH of the last nucleotide to allow the attack of the alpha phosphate 

while Metal B that comes in with the incoming nucleotide triphosphate stabilizes the 

leaving group (PPi) (Figure 1B). In TdT, the coordination geometry of the divalent 

metal ions was studied in atomic detail during a full catalytic site, including transition 

metal ions such as Mn++, Co++ and Zn++ which are known to be more efficient than 

Mg++ for the nucleotidyltransferase activity. It was concluded that Metal A has to 

leave and be replaced by Na+ in order to allow translocation of the newly extended 

primer strand into a catalytically competent position for a new addition [49]. A movie 

of the reaction cycle, based on thirteen different structures was built [49]. This 

scenario was also described in even greater details for pol β where it was also found 

that binding of Na+ in Metal A binding site, after nucleotide incorporation, is a key 

step for DNA translocation [50]. In addition, time-lapse crystallography showed that in 

pol β, there is an additional divalent ion (a third Mg++, Metal C) that comes during the 

reaction to counter-balance the apparition of a charge on the beta phosphate, and 

then leaves before the end-state is reached [50,51]. This situation was also observed 

for pol μ, in the case of Mn++ ions [52].  

 

Common features of TdT, pol μ and pol λ 
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TdT, pol μ and pol λ remain in a closed conformation throughout their catalytic 

cycle, contrary to pol β [24,53,54]. One possible explanation for this observation is 

that they have traded fidelity (which requires open-to-closed transition) for a very tight 

binding of the DNA synapsis, a very fragile structure. One unique feature revealed 

when the first x-ray structure of TdT was solved [24], is a specific Loop (Loop1), 

composed of 20 amino acids (382-401), located between the β3 and β4 strands 

(Figure 1B), that prevents the binding of a 5’ overhang of the template strand. More 

than 30 structures of TdT (wild-type or mutants in different complexes) are available 

on PDB and in all of them, Loop1 adopts the same lariat-like conformation that 

prevents the binding of an uninterrupted template strand on TdT (Figure 2). Perhaps 

somewhat deceptively, in all known structures of pol μ, Loop1 (also about 20 amino 

acids long) is invisible in the electron density map, meaning that this region is 

disordered (Figure 2 and 3A). In pol λ, Loop1 is comparatively shorter (8 aa), but still 

longer than in pol β (Figure 3). However, pol λ has an additional Loop, called Loop3, 

that, interestingly, is located precisely where another form of TdT resulting from 

alternative splicing has an insertion of 20 additional residues [55,56] (Figure 3B) and 

where it is ideally placed to control bulges or insertions just before the in-trans 

templating base [28] (Figure 3A). Mutations experiments have consistently shown 

the importance of Loop1 for the substrate specificity not only in TdT [27,57] but also 

in pol μ [58–60], as well as pol λ [61]. 

Early sequence comparisons in a structural context helped to define two 

important regions for the specificity of TdT vs pol μ [24], later named SD1 and SD2 

[57] (Figure 3): they are located at the C-terminal border of Loop1, and in a b-turn-b 

structure close to Loop1, which can also bind an extra Zn++ ion [49] but the precise 

role of this additional divalent ion is currently unknown. Mutations in these two 
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regions profoundly affect the activity of both TdT [27,28] and pol μ [60]. Mutation of 

only one amino acid in SD1 region (F401A) confers to Tdt an in cis templated 

polymerase activity, even in the presence of Co++ [57]. 

A remaining puzzle concerns the conformation of Loop1 in pol μ, and its role in 

binding the DNA synapsis substrate. Experiments are currently underway in our lab 

using a TdT-pol μ chimera to determine the conformation of Loop1 of pol μ and they 

indeed suggest that Loop1 plays the crucial role of a gate that can be open or closed 

(disordered or ordered) when pol μ searches for a micro-homology region across a 

DNA synapsis (Loc’h et al., submitted). 

 

Nucleotidyltransferase activity of TdT 

 Extensive biochemical experiments have demonstrated that TdT can add 

random deoxyribonucleotides (dNTPs) on a ssDNA primer, which has to be at least 

three nucleotides long, in a template-independent manner [2]. In vitro experiments 

show that TdT can use all four natural dNTPs with a preferential incorporation of 

dCTP and dGTP compared to dATP and dTTP [3]. Pol μ also has a significant 

nucleotidyltransferase activity in the presence of Mn++ [57,62,63]. Interestingly, TdT 

nucleotide binding site can accommodate both deoxyribo-nucleotide and ribo-

nucleotide triphosphates (dNTPs and rNTPs). TdT shares this property with pol μ, but 

not with pol λ and pol β (Figure 1A). Indeed, the presence of a YF sequence motif, 

the so-called steric-gate at the vicinity of the 2’ OH of the nucleotide, prevents the 

binding of rNTPs in pol λ and pol β, whereas a GW sequence motif in TdT and pol μ 

(Figure 1B) increases the size of the nucleotide binding pocket, allowing binding of 

both dNTPs and rNTPs [64,65]. However, addition of rNTPs by TdT stops after few 

incorporations on ssDNA [66,67]. This can be interpreted by noting that the path of 
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the primer is constrained in a B-DNA form by the protein, especially through a Na+ 

ion coordinated by the HhH2 motif (Figure 1B) at the level of the penultimate 

phosphate of the primer, and this B-DNA form is not suitable for an RNA backbone. 

TdT can also incorporate efficiently various un-natural bases [68,69]. An interesting 

consequence of the large tolerance of TdT on the incoming nucleotide is to use it for 

making polymers of un-natural DNA, using nucleotides modified either in the sugar 

moiety or the base moiety [70] or for click chemistry [71]. Also a recent application for 

FISH experiments and the design of RNA capture probes can be found in [72]. 

 

In trans-templated polymerase activity across strands breaks 

In 2015-2016, half a century after its first biochemical characterization as a 

template-independent polymerase, it was shown that TdT can i) assemble a DNA 

synapsis by itself, optimally with one micro-homology base-pair between strands [27] 

and ii) perform a template-dependent nucleotide incorporation across strands breaks 

[28] in the presence of an excess of downstream dsDNA with a 3’ protruding end. 

Because this template-dependent activity of TdT is achieved by using an in trans 

template strand, instead of the usual in cis template strand, we refer to it as the in 

trans activity. Interestingly, this in trans templated activity was also described for pol 

μ [60,73], but without the need of an excess of the downstream DNA duplex [28]. In 

vitro biochemical experiments on chimeric constructs of TdT, involving substitution of 

Loop1 by pol μ’s sequence and/or reconstitution of the 5’-phosphate binding site 

(Figure 1), show an activity similar to pol μ, with a protein/DNA ratio of 1:1 [28]. The 

existence of templated synthesis across strand breaks has recently been described 

in vivo for both pol μ and pol λ [74–77]. 
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The structure of TdT in complex with a DSB-DNA substrate [28] is the first of 

its kind to be solved for a polX (Figure 2). It looks as if TdT was designed to “isolate” 

a mini-helix made of only two base pairs to stabilize and establish a fragile bridge 

between the upstream and downstream duplexes (Figure 1). The two upstream and 

downstream dsDNA are in B-DNA conformation, while the micro-homology (MH) 

mini-helix between them is in A-DNA conformation. L398 in Loop1 is crucial to break 

the helical path from the upstream dsDNA to the MH-mini helix and its role has been 

verified by site-directed mutagenesis [27]. 

 

Function of polX during V(D)J recombination 

Expression of TdT is only observed in the primary lymphoid organs, thymus 

and bone marrow where V(D)J recombination is active [78]. Indeed, expression of 

TdT is only detected during heavy chain rearrangements, but is absent from the next 

step where light chain rearrangements occurs [79] (Figure 4). The expression of TdT 

is also tightly regulated in time as it is not expressed in fetal or neo-natal life. One 

way this regulation is done is probably through ubiquitylation [80]. Interestingly, two 

TdT interacting factors (TdIF1 and TdIF2) have been identified and characterized to 

inhibit Tdt activity [81,82]. Pol μ participates in light chain rearrangements during 

V(D)J recombination, whereas pol λ participates only in heavy chain rearrangements 

[83] (Figure 4). It should be noted that when TdT is made to express in non-lymphoid 

cells, it participates in NHEJ DNA repair [84]. Also, when expressed constitutively in 

B-cells, it generates N-regions in both heavy and light chains [85]. 

It was found that inhibiting TdT in some cancer cells can kill them, such as in 

acute lymphoblastic leukemia cells [86]. Chemical compounds were designed and 
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synthesized using TdT as a drug target [87,88] and the structure of some of these 

compounds was solved in their bound form [89]. 

The length of the N-segments incorporated by TdT ranges from 2 to about 15-

20, with two clearly different regimes in its probability distribution function: a rising 

phase with a peak at 4, followed by a decreasing phase [90,91]. Loc’h and 

colleagues proposed that the dual activity of TdT may correspond to these two 

regimes [28]: after the addition of a few random nucleotides on the 3’ end DNA, the 

downstream DNA is finally reached/sensed, at which point TdT switches to an in-

trans template-dependent synthesis (Figure 4). This synthesis will stop if the micro-

homology base pair is of Watson-Crick type and continue otherwise, which occurs in 

three out of four possible cases; strikingly, this quantitatively explains the size-

distribution law of the N-regions of the second phase, that exponentially decreases 

with a slope of -¼ [91].  

After incorporation of random nucleotides by TdT during heavy-chain 

rearrangements, both TdT and pol λ may perform in-trans polymerase activity (in 

unknown proportions), whereas synthesis of the complementary strand can only be 

achieved by pol λ using its gap-filling activity, which TdT lacks because of its Loop1 

(Figure 4). In light-chain gene rearrangements Pol μ can perform not only template-

independent, but also in-trans polymerase and gap-filling activities (Figure 4). 

 

Perspectives and Conclusion 

Due to its ability to add random sequences to a DNA primer, TdT is an 

intrinsically “unpredictable” polymerase (rather than a “misguided” one [12]). This 

explains its tight regulation both in time and space, in order to restrict its use to V(D)J 

recombination. Here we suggest that not only its recruitment but also its gradual stop 
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is programmed, by switching to a previously unsuspected templating mode across 

strand breaks after the addition of 4-5 random nucleotides. This would be due to the 

spatial constraints of the architecture of the whole NHEJ apparatus, a very active 

field in structural biology that achieved impressive progress recently, first for the 

structure of the ligation complex [92], and more recently for the structure of the huge 

loading complex of NHEJ [93–95]. It is known that TdT interacts with Ku heterodimer 

through its BRCT domain, as does pol μ [13,14]. If the interaction of the BRCT 

domain with Ku heterodimer could be mapped, then it would be possible to place the 

polX with respect to the DNA-PKcs-DNA complex and thereby to shed light on spatial 

constraints at work. On the evolutionary level it would be interesting to do it for both 

pol mu and TdT, so as to assess how similar are the positioning of TdT and pol μ in 

this integrated view of the NHEJ complex.  

From Figure 1, it appears that TdT has lost just the 5’ phosphate binding site 

of pol mu and that its Loop1 is of the same length, but with a different sequence. 

Regarding Loop1 and its vexing property of escaping structural characterisation in 

pol mu, we expect that the structure of the TdT chimera containing Loop1 of pol mu 

will inform us on its conformation and also allow, eventually, a comparison with the 

LigD polymerase that performs NHEJ in bacteria. 
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Legends of Figures 

 

Figure 1 

A. Domain organization of eukaryotic polX family; the pol IV of S. cerevisiae and S. 

pombe have been omitted. B. Three-dimensional structure of TdT bound to a DNA 

synapsis [28]. The color code for essential specific features (HhH motif, 5’-phosphate 

binding site, Loop1, steric gate) is the same as in panel A. The catalytic aspartates 

are shown in ball-and-stick representation, as well as residues from the steric gate 

(GW) and the HhH2 motif (GVG). The DNA synapsis is in cyan, the 3’ end of the 

primer strand is in pink, the two catalytic divalent ions, Metal A and Metal B, are 

shown as a CPK sphere and a dotted circle, respectively (in green), the Na+ ion 

bound to the HhH2 motif and a phosphate of the primer strand is in blue. 

 

Figure 2 

Schematic representation of all available structures for TdT, pol μ, pol λ and pol β: 

the apo form, complexes with the incoming dNTP, with a downstream (D/S) dsDNA 

substrate, a gap-filling DNA substrate or a true DNA synapsis. Loop1 conformation is 

highlighted, when visible in the electron density map. The DNA substrates are 

explained in the top panel. 

 

Figure 3 

A. Superposition of the DNA synapsis region in the four known polX-DNA complexes, 

highlighting the conformations of Loop1 and Loop3, as well as the position of the 

motifs SD1 (purple) and SD2 (dark blue). TdT is in green, pol μ is in blue, pol λ is in 

brown and pol β is in red. 
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B. Multialignment of murine sequences of TdT (with its two main forms resulting from 

alternative splicing), pol μ, pol λ and pol β, in the region of Loop1 and Loop3. The 

essential Sequence Determinants motifs [24], that maximally discriminate TdT and 

pol μ [27,57] are highlighted and referred to as SD1 and SD2. 

 

Figure 4 

Proposed scenario of the different DNA polymerase activities occurring at a V(D)J 

junction site for light-chain rearrangements (right panels) and heavy-chain 

rearrangements (left panels). From top to bottom: template-independent activity, in 

trans template-dependent activity and gap-filling activity. A putative arrangement of 

the DNA-PK complex is shown in the background, merely to indicate the scales. The 

ligation step by Ligase IV is omitted for clarity. The definition of the V, D, J regions, 

constant and variable regions in light chains and heavy chains is recalled in the 

central panel. 


