
HAL Id: pasteur-03325584
https://pasteur.hal.science/pasteur-03325584

Submitted on 25 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reconstructing unseen transmission events to infer
dengue dynamics from viral sequences

Henrik Salje, Amy Wesolowski, Tyler S. Brown, Mathew V. Kiang, Irina
Maljkovic Berry, Noemie Lefrancq, Stefan Fernandez, Richard G. Jarman,

Kriangsak Ruchusatsawat, Sopon Iamsirithaworn, et al.

To cite this version:
Henrik Salje, Amy Wesolowski, Tyler S. Brown, Mathew V. Kiang, Irina Maljkovic Berry, et al..
Reconstructing unseen transmission events to infer dengue dynamics from viral sequences. Nature
Communications, 2021, 12 (1), pp.1810. �10.1038/s41467-021-21888-9�. �pasteur-03325584�

https://pasteur.hal.science/pasteur-03325584
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ARTICLE

Reconstructing unseen transmission events to infer
dengue dynamics from viral sequences
Henrik Salje1,2,3,4✉, Amy Wesolowski 4, Tyler S. Brown5, Mathew V. Kiang 5,6, Irina Maljkovic Berry 7,

Noemie Lefrancq 1,2, Stefan Fernandez8, Richard G. Jarman 7, Kriangsak Ruchusatsawat9,

Sopon Iamsirithaworn10, Warunee P. Vandepitte11, Piyarat Suntarattiwong11, Jonathan M. Read12,

Chonticha Klungthong8, Butsaya Thaisomboonsuk8, Kenth Engø-Monsen 13, Caroline Buckee 5,15,

Simon Cauchemez 2,15 & Derek A. T. Cummings 3,14,15

For most pathogens, transmission is driven by interactions between the behaviours of

infectious individuals, the behaviours of the wider population, the local environment, and

immunity. Phylogeographic approaches are currently unable to disentangle the relative

effects of these competing factors. We develop a spatiotemporally structured phylogenetic

framework that addresses these limitations by considering individual transmission events,

reconstructed across spatial scales. We apply it to geocoded dengue virus sequences from

Thailand (N= 726 over 18 years). We find infected individuals spend 96% of their time in

their home community compared to 76% for the susceptible population (mainly children)

and 42% for adults. Dynamic pockets of local immunity make transmission more likely in

places with high heterotypic immunity and less likely where high homotypic immunity exists.

Age-dependent mixing of individuals and vector distributions are not important in deter-

mining spread. This approach provides previously unknown insights into one of the most

complex disease systems known and will be applicable to other pathogens.
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As with other endemic pathogens, widespread, sustained
co-circulation of dengue viruses (DENV), effectively
masks the dynamics of individual lineages1–3. The co-

occurrence of unrelated transmission chains means we still only
have a limited understanding of how DENV spreads, including
the role for human mobility of both infected individuals and
the surrounding susceptible population, age-specific mixing
and local heterogeneities in serotype-specific population immunity
and mosquito density. These mechanistic knowledge gaps help
explain our failures to control a pathogen that continues to cause
50 million annual symptomatic infections globally4. The use of
pathogen sequences has the potential to help. However, existing
phylogeographical approaches can only provide limited mechanistic
insight into drivers of spread as they focus on rates of flow between
locations present in a phylogeny, based on assumptions of mass
action and using traits attached to the observed sequences (i.e.,
cases) only5,6. In addition, fewer than 1% of dengue infections will
currently be sequenced from any one country4. Critically, existing
phylogeographic approaches do not consider that viral flow is made
up of sequential transmission events with each event arising from a
complex interplay of individual-, population-, environmental- and
viral-level factors. Further, the bulk of available sequences typically
come from a few locations with most locations providing no data.
Many existing phylogeographic approaches will infer a viral flow
between observed locations without consideration that transmission
events that link two observed sequences will be unobserved and
often in unsampled locations.

Here we develop an inference framework that fills this
knowledge gap by explicitly considering individual transmission
events. By using the generation time distribution for dengue
(Supplementary Fig. 1), we derive estimates of the number of
generations that separate each pair of sequences in a time-
resolved phylogeny and consider viral mobility for a single-
transmission generation. This shift of focus to single-transmission
generations, rather than overall viral flow, allows us to develop
detailed mechanistic models of how viruses are moving at a
tractable and interpretable scale. For example, we separately

model population movement for infected individuals, the sus-
ceptible population (mainly children) as compared to adults,
allowing for transmission to occur in the infector’s community, in
the infectee’s community or in a tertiary location. We assume the
local scale of movement of the Aedes mosquito means only
human mobility can drive spread between locations7. We allow
for the disabling symptoms from dengue to result in reduced
mobility in cases compared to the susceptible population8; that
transmission may occur in an age-structured manner3, and that
the spatial heterogeneity in vector distributions and the dynamic
nature of local serotype-specific population immunity may affect
where successful transmissions occur9. Using the transmission
probabilities for a single generation, we probabilistically integrate
over all possible pathways for the total number of transmission
generations that link the observed locations for each pair of
sequences, thereby capturing movement in unsampled locations.
In parallel, we incorporate the probability of sequencing (i.e.,
observing) an infection at each space–time unit, thereby explicitly
incorporating space–time biases in sampling. We fit our models
in a maximum likelihood framework that incorporates uncer-
tainty from the evolutionary processes, including topical uncer-
tainty in the phylogenetic trees, uncertainty in the generation
time distribution and sampling uncertainty using a bootstrap
approach.

We apply our framework to dengue in Thailand, a country that
has suffered from self-sustained dengue circulation for decades3,10.
We use 726 sequences obtained from seven different provinces
sampled over an 18-year period (1995–2012) (Fig. 1A, D), from
which we build time-resolved phylogenies (Fig. 1E–H and Sup-
plementary Figs. 2–5)11. In Bangkok, the home location of the
cases was also geocoded (N= 467) (Fig. 1B). To inform our model,
we use data from a major mobile phone operator in Thailand that
empirically captures how adults move (N= 11.4 million sub-
scribers; 26% market share), modelled estimates of the probability
of Aedes aegypti occurrence (Supplementary Fig. 6) and the long-
term spatiotemporal distribution of serotypes (Fig. 1C)3,12. We
explore viral movement over two different spatial scales: within
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central Bangkok (N= 337 1-km2 grid cells throughout the centre
of the city) and nationwide (N= 76 provinces with a mean area of
6700 km2 each).

Results and discussion
Mobility of susceptible and infected populations. Using our
framework, we estimate that in Bangkok, susceptible individuals
spend 76% (95% CI, 57–95%) of their time within their home cell
as compared to 42% for adults (95% CI, 41–43%) (Fig. 2A and
Supplementary Figs. 7–9). As dengue susceptibility is con-
centrated in children (Supplementary Fig. 10), our findings of
reduced mobility in susceptible individuals suggest that children
are less likely to travel far from their home than adults. To
explore the consistency of this finding with observed differences
in mobility by age, we use data from a separate study from
Thailand that asked individuals (N= 2011) of all ages about their
daily travel. Consistent with our findings of reduced mobility in
susceptible individuals, we find that there is a strong relationship
between age and reporting having stayed within 1 km of their
home in the prior week (Supplementary Fig. 10). Incorporating
the probability of being susceptible by age suggests that suscep-
tible individuals are 1.5 (95% CI: 1.2–1.9) times as likely to report
staying within 1 km of their home in the last 7 days, consistent
with the 1.8 (95% CI: 1.3–2.2) times difference estimated by our
model (Supplementary Fig. 10).

Using our model, we find that infected individuals in Bangkok
are even less mobile than susceptible individuals with 96% (95%
CI: 87–100%) of infected individuals’ time being within their home
cell (Fig. 2A). Importantly, these estimates of differential mobility
hold for the intervening unseen transmission events, as well as the
observed cases in the phylogeny. This shows that on average,
infected individuals are more likely to stay in and around their
home. This suggests that some subclinical DENV infections may

still result in severe enough symptoms to change the daily routine
and limit mobility. Further observational studies are needed to
understand how movement changes across the spectrum of disease
severity13. We also observed similar differences in mobility patterns
at the national scale, with cases spending 96% of the time within
their home province (95% CI: 86–100%), compared to 95% for the
susceptible population (95% CI: 89–100%) and 87% for adults
(95% CI: 86–88%) (Fig. 2B).

Role of local immunity, vector and age. Local serotype-specific
immunity also appears important, with transmission being more
likely to occur in places that have seen increases of other (het-
erotypic) serotypes circulating in the previous two years and less
likely to occur in places with increased cases of the same
(homotypic) serotype within the same timeframe (Fig. 2D, E and
Supplementary Figs. 8 and 9). However, the overall incidence of
reported cases in the home cell or province of the susceptible
population is not associated with differences in transmission risk,
highlighting the complex relationship between observed case
incidence and underlying infection risk. More direct measures of
local immunity through population-representative seroprevalence
studies may provide a more nuanced picture of the role of
immunity in patterns of spread14,15.

We find that the probability of Aedes aegypti presence is not
linked to transmission risk (Fig. 2F and Supplementary Figs. 8 and
9), although, for Bangkok, this may be driven by limited
heterogeneity in estimated presence across the city (Supplementary
Fig. 6). This does not rule out a role for the vector in characterising
heterogeneity in risk. In particular, the relationship between
modelled probabilities of occurrence that we have used and vector
density remains unclear. After accounting for age-specific patterns
of immunity, we find no evidence of age-dependent transmission,
with 0.12 (95% CI: 0.09–0.42) of sequential infections in a
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transmission chain occurring between individuals of <2 y in age
difference, which is not statistically different to models with no age
structure in transmission, suggesting that the intermediary vector
removes the effect of assortative mixing (Fig. 2G and Supplemen-
tary Fig. 11).

Characterising model fit. In order to assess the performance of
our model, we repeatedly refit the model on data where we remove
all sequences from a subset of locations (held-out locations). We
find our model is able to accurately estimate the probability of
observing viruses in the held-out locations, both within Bangkok
and at the nationwide scale (correlation between observed and
estimated locations of held- out sequences of 0.94 in Bangkok and
0.94 nationwide) (Fig. 2C). This demonstrates our framework can
characterise viral movement in unobserved locations and high-
lights how non-representative sequencing approaches can still
provide accurate descriptions of overall virus mobility. However,
sampling biases do need to be explicitly incorporated as assuming
unbiased observation results in very different parameter estimates,
including falsely high estimates of between-location population
movement (Supplementary Fig. 12). Using a simulation frame-
work, we show we are able to accurately recover known parameter
values, even under biased observation (Supplementary Fig. 13).

Simulating transmission across spatial scales. We use our fitted
model to characterise the movement of the virus at each trans-
mission generation. We use a simulation approach that

introduces viruses into randomly selected provinces and use the
fitted mobility matrices to see where transmission occurs over 20
transmission generations. Averaging over repeated simulations,
we find that the virus is 4.3 (95% CI: 2.4–7.0) times as likely to
have travelled to Bangkok after a single-transmission generation
as compared to a randomly selected province. After 20 trans-
mission generations (equivalent to ~1 year of sequential trans-
missions), we find the virus is 11.4 (95% CI: 6.3–19.4) times as
likely to have infected at least one individual in the capital as
compared to at least one individual living in a randomly selected
province (Fig. 3A and Supplementary Fig. 14). The flow to larger
cities is not restricted to Bangkok. with the likeliest destinations
after 20 generations also being where the largest population
centres are located (Fig. 3A). Substantial heterogeneity is also
observed at the local scale, with the virus tending to go to the
hyper-urban city centre in Bangkok (Fig. 3B). Overall, within
Bangkok, we find that 34% of infections occur outside the 1-km2

home grid cell of an infected individual (95% CI: 26–43%). This is
despite infected individuals spending only an average of 4% of
their time outside their home cells, highlighting the importance of
considering mobility in both infected and susceptible populations
when considering viral spread (Fig. 3C). After 20 generations,
only 2.6% of viruses are still within the same Bangkok cell and
34% are within the same province (Fig. 3D).

While most transmissions occur within the home cell of an
infected individual, we find that when transmissions do occur
further away, local heterogeneity in patterns of serotype-specific
population immunity means that the pathway taken by viruses

Fig. 3 Mobility across spatial scales. A Relative risk of movement of virus to each province compared to moving to a randomly selected province after
20 generations. The black dots represent the ten largest cities in Thailand. B Relative risk of movement of virus to each grid cell within central Bangkok after
20 generations compared to moving to a randomly selected cell. The cumulative distance distribution for national (C) and central Bangkok (D) of how far
cases are from home (purple/brown), the distances of single transmissions (dark blue/dark green) and distances after 20 transmissions (light blue/light
green). The dashed line represents the cumulative distribution function of completely spatially random movement. E The number of Bangkok locations with
at least one case for different scenarios relative to that in the base model after 20 generations. The different scenarios are: initial introductions are in the
most connected location, initial introductions are in the least connected location; no reduced mobility in cases compared to the susceptible population,
case/susceptible population mobility is equal to adult mobility and no impact of local immunity on where transmission occurs. F For the same scenarios,
the number of provinces with at least one case relative to that in the base model after 20 generations. The boxplots in panels (E) and (F) represent the
mean estimate, with the bounds of the box representing 25th and 75th percentiles and the minima and maxima representing 95% bootstrap confidence
intervals.
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depends on the serotype (Supplementary Fig. 15). Within
Bangkok, on average, 85% (95% CI: 81–89%) of the likeliest
location after a single-transmission event was the same across
serotypes dropping to only 44% (95% CI: 38–53%) overlap after
20 generations. These effects are not observed at a larger scale,
where the likeliest destination province remained largely the same
across serotypes.

Using this same simulation approach, we explore how far a
virus will have spread a year following the introduction in a
randomly selected location. We find that the virus will have
infected individuals from, on average, 27% of all provinces (95%
CI 15–38) and in 32% of cells within central Bangkok (95% CI:
25–43) (Supplementary Fig. 16). We find that local immunity and
the reduced mobility of cases compared to the susceptible
population has minimal effect on the number of locations
affected; however, if the mobility of susceptible individuals
matched that of the adult population, there would be 1.9 times as
many infected provinces (95% CI: 1.4–3.3), with a similar effect at
the local Bangkok scale (RR: 1.5, 95% CI: 1.1–1.9) (Fig. 3E, F). For
arboviruses, such as Zika and chikungunya viruses, where limited
immunity means most infections are in adults, we could therefore
assume a more rapid dispersal of the virus compared to DENV16.
We observe consistent patterns across different effective repro-
ductive numbers and for overdispersed transmission (Supple-
mentary Figs. 16 and 17).

Summary. By explicitly characterising the mechanisms of indivi-
dual transmission generations and integrating the mobility of
populations, our framework brings inference to a tractable scale
and allows unbiased inferences to be made despite minimal and
heavily biased sequence availability. Individual transmission gen-
erations are also those most relevant for targeted interventions and
can help predict future flows. While we have used this framework
for DENV, it is applicable to other communicable pathogens
where there exists a time-resolved phylogeny, the generation time
distribution is known and is relatively short (days or weeks) and
there exists spatial information or other discrete traits.

Methods
Data sources
Sequence data and associated metadata. We use all available full genome sequence
data from all four serotypes from Thailand covering the period 1994 and 2012
where province-level spatial information is available. All sequences are available
from GenBank. The accession numbers are set out in Supplementary Data 1. For
sequences from Bangkok, we also have household coordinates for a subset of
432 sequences. In Bangkok, the sequences come from Queen Sirikit National
Institute of Child Health, a large children’s tertiary care hospital based in the centre
of the city. Outside Bangkok, most sequences come from the national surveillance
system of dengue run by the Ministry of Public Health. They perform confirmatory
testing and viral isolation and sequencing of samples from sentinel hospitals based
around the country. The hospitals are based in the following five provinces:
Lampang, Ratchaburi, Songkhla, Pathum Thani, Nakhon Ratchasima. In addition,
there are sequences available on GenBank from Kamphaeng Phet province.

Case data. All cases of dengue are notifiable and are reported to the Thai Ministry
of Public Health. We extract the number of cases per year for each year and each of
the 76 provinces in the country between 1994 and 2012. To estimate serotype-
specific case data in each year, we used the serotype distributions of geocoded cases
from QSNICH for Bangkok (N= 11,583 cases). For the rest of the country, we used
serotype-specific case data from the Ministry of Public Health. Outside the five
sentinel surveillance sites, these data mainly come from ad hoc samples sent to the
ministry for testing. Altogether, this represents a serotype-specific database of
27,586 cases covering 67 of the 76 provinces. For each province and year, we
calculated the proportion of cases that were caused by each serotype. Where there
were no samples from that province-year, we used data from the closest province in
that same time period where data were available.

Population data. In Bangkok, we initially placed a 1 × 1-km grid cell over the
central part of the city (337 grid cells) and estimated the population size using
population-size estimates from LandScan for 201017. We also identified the grid
cell for each of the Bangkok sequences. At the province level, we used population-

size estimates from the 2010 national census. We note that the Thai population has
been relatively stable over the study period (rising from 60 million to 64 million
between 1995 and 2012).

Call detail records (CDR). To estimate adult mobility across provinces and within
Bangkok, we used the call detail records (CDR) of over 11 million mobile phone
subscribers between August 1, 2017 and October 19, 2017 from the third-largest
mobile phone operator in Thailand (N= 11.4 million subscribers, 26% market
share). These data are described in more detail elsewhere18. Briefly, each subscriber
was assigned a daily home location based on their most frequently used cellular
tower. Travel between locations was estimated by tabulating the subscriber’s home
location on 1 day relative to the day before. The location-to-location transition
probability matrix was estimated by using the average travel from location i to
location j (weighted by the population at location i), and normalising travel such
that the sum of travel from location i is equal to 1. We note that the mobile phone
data were collected after our study period (2017 vs 1995–2012). Human mobility
may have changed and could help explain some of the differences in mobility
between the fitted models and that implied from the mobile phone data.

Aedes aegypti abundance estimates. We used previously published estimates of the
probability of Aedes aegypti presence for 5 × 5-km grid cells around the globe19.
These estimates were generated by incorporating information on temperature,
rainfall, vegetation indices from satellite imagery and fitting models to a large
dataset of Aedes occurrence records. The fitted models were then used to predict
elsewhere. For Bangkok, we extracted the Aedes aegypti estimate using the centroid
of each grid cell. For the province level, for each province, we used the simple
average across all the raster cells from the Aedes map that were contained within
that province.

Generation time distribution for dengue. To estimate the generation time dis-
tribution for dengue, we combined data on the incubation period, extrinsic incu-
bation period and the lifespan of the Aedes aegypti mosquito as has previously been
used for chikungunya20.

Human incubation period (HI). We used a truncated log-normal distribution with a
mean of 5.6 days and a standard deviation of 1.41 days and a maximum time of
two weeks21. The stated mean and standard deviation are the values prior to
truncation.

Human-to-mosquito transmission (HM). Based on the estimated durations of vir-
emia, we used a truncated exponential distribution with a mean of 4.5 days and a
maximum period of 7 days22.

Mosquito infectiousness (MI). The period of mosquito infectiousness depends on
the mosquito lifespan and the extrinsic incubation period. The average daily
probability of survival for Aedes aegypti, has been estimated at 0.87 for up to
30 days23, equivalent to a mean lifespan of 7.2 days. The extrinsic incubation
period has been estimated at 6.1 days24. To calculate the period of mosquito
infectiousness, we initially draw the mosquito lifespan (MLS) using a truncated
exponential distribution with a parameter of 7.2 days and a maximum value of
30 days. Next, we draw the age at which the mosquito gets infected (MAI) from a
uniform distribution between 0 and the lifespan of the mosquito. Next, we draw the
extrinsic incubation period (EIP) as a random exponential distribution with mean
of 6.1 days. The total period of mosquito infectiousness (MI) is then equal to
MLS–MAI–EIP. Values of MI <0 were considered unsuccessful onward infections.

Generation time distribution. We derived the empirical distribution of the gen-
eration time by simulating 10,000 values for HI, HM and MI and summing them.
Individuals who are viremic for longer are more likely to infect mosquitoes.
Similarly, mosquitoes that are infectious for longer are also more likely to infect
more individuals. We, therefore, weighted the probability of each generation time
by the length of HM multiplied by the length of MI. We obtained a mean gen-
eration time of 18.2 days and a standard deviation of 6.1 days, which we
approximated using a gamma distribution with the same mean and standard
deviation (Supplementary Fig. 1).

Time-resolved phylogenetic trees. Taking each serotype in turn, we aligned the
full genome sequences using the Muscle algorithm in MEGA25. We built Bayesian
time-resolved phylogenetic trees using BEAST 2.5.011. We used a strict clock, a
General Time Reversible nucleotide substitution model, as determined by
jModelTest226, and a Bayesian skyline prior. Similar coalescence times were found
using a relaxed clock.

Probabilistic model
Overall inferential strategy. We use a likelihood-based approach to model the
probability of the observed location of pairs of sequences in a time-resolved
phylogeny. We initially use the time-resolved phylogenies and information on the
generation time distribution to estimate the number of generations that separates
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each member of a pair of sequences in the phylogeny from their Most Recent
Common Ancestor (MRCA). This then allows us to consider single-transmission
generations rather than overall viral flow. We develop models of viral movement
between each location in our study area (whether it was sampled or not) for each
transmission step. These viral movement models incorporate estimates of human
mobility with the potential for differences in the movement for cases compared to
the susceptible population, as well as incorporating effects of time-varying ser-
otype-specific immunity and vector distributions. We allow for infection to occur
at the infector’s home location (which requires the infectee travelling to the
infector’s home location), the infectee’s home location (which requires the infector
to travel to the infectee’s home location) or in a tertiary location (where both
parties would have to travel there).

We use the viral movement matrix for a single transmission to calculate the
viral movement after G generations via matrix multiplication. This approach
integrates over all possible pathways that link two locations. To specifically
incorporate observation processes, we consider the probability of sequencing an
infection at each space–time unit.

To inform this model, we use an integrative approach that brings in detailed
data from mobile phone operators that capture how people move and interact with
each other, maps that estimate how populations are distributed, maps on vector
suitability and the long-term spatiotemporal distribution of serotypes.

Notation. For a pair of cases, CA and CB, in a phylogenetic tree: CA has home
location LA, was sick at time TA and has sequence SeqA; case CB has home location
LB, was sick at time TB and has sequence SeqB. The time of the MRCA between CA

and CB is Tm and the location of the MRCA is Lm. We denote GA and GB the
number of transmission generations that separate CA and CB from their MRCA.
ObsLiTA is 1 if a sequence was observed at location Li at time TA and 0 otherwise.
ObsLiTB is defined in a similar manner for time TB.

The single-transmission generation matrix. Initially let us consider a single-
transmission generation. The probability that two individuals, i and j, are in the
same location and are in contact (via a mosquito) given i lives in location a and j
lives in location b can be written down as

Pðpersons i and j are in contactjLi ¼ a; Lj ¼ bÞ ¼
X
k

PðVi ¼ kjLi ¼ aÞ � PðVj ¼ kjLj ¼ bÞ � βk

ð1Þ
where P(Vi= k|Li= a) is the probability of individual i, whose home location is in
a, visiting location k and P(Vj= k|Lj= b) is the probability that individual j also
visits location k and βk is the location-specific probability of transmission.

At time τ, one infector i that lives in location a is expected to transmit to the
following number of persons living in location b:

E number of persons from b infected at time τjLi ¼ að Þ
¼

X
k

P Vi ¼ kjLi ¼ að Þ � PðVj ¼ kjVj ¼ kjLj ¼ bÞ � βk � Sb;τ;ser ð2Þ

where Sb,τ,ser is the number of susceptible people to serotype ser living in
location b at time τ. The total expected number of persons infected by the infector
is i:

E number of persons from all locations infected at time τjLi ¼ að Þ
¼ PN

m

PN
k
P Vi ¼ kjLi ¼ að Þ � PðVj ¼ kjLj ¼ mÞ � βk � Sm;τ;ser

ð3Þ

Conditional on transmission occurring, the probability that the infectee has a
home location in cell b is the ratio of these terms:

πa;b;τ;ser ¼ P Lj ¼ bjLi ¼ a
� �

¼
PN

k P Vi ¼ kjLi ¼ að Þ � P Vj ¼ kjLj ¼ b
� �

� βk � Sb;τ;serPN
m

PN
k P Vi ¼ kjLi ¼ að Þ � P Vj ¼ kjLj ¼ m

� �
� βk � Sm;τ;ser

ð4Þ
We can create a N ×N transmission matrix, ∏τ,ser,gen = 1, where N is the total

number of locations, that sets out the transmission probabilities between all pairs of
locations at a point in time for a single transmission. The element [a,b] of the
matrix is πa,b,τ,ser.

Characterising human mobility. We use mobile phone data to characterise human
mobility. Initially, we extract a matrix from the CDR data that set out the prob-
ability that an individual that lives in location a visits location k.

CDRs come from adults, whereas dengue is concentrated in children, who are
potentially more likely to spend more of their time at home. In addition, sick
individuals may travel differently than healthy individuals and spend more time at
home. In this way, the mobility of infectors may differ from susceptible
information.

To allow for different periods at home for susceptible individuals compared to
those in the CDR data and to assess whether there exists differential mobility by
illness status, we incorporate separate parameters for the probability of being at
home for infectors and the susceptible population (θinfector.home, θpopulation.home) to
reflect the additional time at home compared to that extracted from the CDR data.

For the home cells of infected individuals:

P Vi ¼ ajHi ¼ að Þ ¼ minð0:999; CDR½a; a� � θinfector: homeÞ ð5Þ
For the home cells of the rest of the population:

P Vi ¼ ajHi ¼ að Þ ¼ minð0:999; CDR½a; a� � θpopulation: homeÞ ð6Þ
In each case, for non-home cells, we rescale the probabilities so that the sum of

all movements remains equal to 1.

P Vi ¼ kjHi ¼ a; k ≠ að Þ ¼ CDR½a; k�=ð1� P Vi ¼ ajHi ¼ að ÞÞ ð7Þ

where CDR[a,k] reflects the movement probabilities from the CDR data.
As the sum of movements to the destinations in the matrix is equal to 1, we are

assuming that the spatial unit of analysis contains all possible mobility (of the virus
and people). It has previously been shown that the dengue epidemic in Thailand is
self-sustaining with few external introductions3. Applications of this approach to
small spatial units should consider that some mobility may be missed.

Dengue transmission is more likely to occur during daylight hours, due to the
feeding behaviour of Aedes mosquitoes. Therefore, it would be optimal to use CDR
data from daylight hours only. However, as is often the case, our CDR data
represent an aggregate from all hours of the day. Nevertheless, as the majority of
cell phone calls are made during daylight hours (it has been estimated that 67% of
calls are between 8 am and 7 pm)27,28—it is reasonable to assume that this estimate
is largely representative of daytime mobility.

Factors affecting transmission. As there may be factors that allow for different
probabilities of transmission across locations, we allowed for differential prob-
ability of infection by location based on the mosquito presence in that location

βk ¼ D1 �mosqγ1k ð8Þ

where parameter γ1 is to be estimated, mosq represents the estimated suitability for
Aedes aegypti mosquitoes in location k. D1 is a proportionality constant (which gets
cancelled out).

Factors affecting susceptibility. The number of susceptible individuals living in a
location will depend on the level of historic infection in that location, in a
potentially time-varying serotype-specific manner.

Sk;τ; ser ¼ D2 � hetβ1k;τ;ser � homoβ2k;τ;ser � incidenceβ3k ð9Þ
where hetk,τ,ser is the incidence of cases caused by different serotypes in the two

prior years in location k, homok,τ,ser is the incidence of cases caused by the same
serotype in the two prior years in location k, incidencek is the incidence of all cases
over the study period in location k. We choose a window of 2 years to define recent
immunity as serotype-specific incidence has previously been shown to be spatially
correlated over this time range, presumably due to serotype-specific local herd
immunity9. For the Bangkok analyses, we use the serotype-specific geolocated case
data. For the nationwide analysis, we use the national reporting system from the
Ministry of Public Health (MOPH). The national MOPH system is not serotype-
specific; however, a small number of cases from all around the country are
serotyped each year by the national reference centre in Bangkok. To obtain
serotype-specific incidence estimates for each year, we multiplied the proportion of
cases that came from each serotype within each province-year by the overall
number of cases for each province-year. Where there were no serotyped cases for a
province-year, we used the closest province where there were serotyped cases.

Probability of virus being within each location after G transmission generations. To
calculate the probability of the home location being within location k after G
transmission generations, we can use matrix multiplication that integrates over all
possible pathways connecting two locations

Πτ¼TG ; ser;gen¼G ¼
YG
l¼2

Πτ¼tl�1 ;ser;gen¼l�1 Πτ¼tl ;ser;gen¼1 ð10Þ

where tl is the time of generation Gl.

Probability of observing a pair of cases in two specific locations. Conditional on
sequences being observed in location LA at time TA and LB at time TB, the prob-
ability that CA has home location LA and CB has home location LB can be written
down as

PðLA; LBjObsLA ;TA
;ObsLB ;TB

; SeqA; SeqB;TA;TBÞ

¼ PðObsLA ;TA
; ObsLB ;TB

jLA; LB; SeqA; SeqB;TA;TBÞPðLA; LBjSeqA; SeqB;TA;TBÞRR
Li ;Lj

PðObsLi; LA;ObsLj ;TB
jLA; LB; SeqA; SeqB;TA;TBÞPðLi; LjjSeqA; SeqB;TA;TBÞdLidLj

ð11Þ
We can consider that the location of the two cases is dependent on the location

of their MRCA and the number of transmission generations that separate them
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from the MRCA.

P LA; LB SeqA
�� ; SeqB;TA;TB

� �

¼
Z Z Z

Lm ;GA ;GB

P LA; LBjLm;GA;GBð Þ � P Lmð Þ � P GA;GBjSeqA; SeqB;TA;TBð ÞdLmdGAdGB
ð12Þ

We consider that the observation processes across locations are independent of
each other. In addition, each transmission event is considered independent of other
transmission events. The probability of observing a case at location Li at time TA

does not depend on the location of the MRCA or the number of generations
separating the case from the MRCA. We can also substitute in Eq. (12) into
Eq. (11). Finally, we consider discretized space—either 337 1 × 1-km grid cells
throughout central Bangkok or the 76 provinces of Thailand.

Equation (11) therefore becomes

PðLA; LBjObsLA ;TA
;ObsLB ;TB

; SeqA; SeqB;TA;TBÞ

¼
P

Lm

P
GA

P
GB

PðObsLA;TAÞPðObsLB ;TB
ÞPðLAjLm;GAÞPðLBjLm;GBÞPðLmÞPðGA;GBjSeqA; SeqB;TA;TBÞP

Li

P
Lj

P
Lm

P
GA

P
GB

PðObsLi ;TA
ÞPðObsLj ;TB

ÞPðLijLm;GAÞPðLjjLm;GBÞPðLmÞPðGA;GBjSeqA; SeqB;TA;TBÞ

ð13Þ
Probability of G generations between the MRCA and a case. We can extract the joint
probability that case CA is separated from the MRCA by GA transmission gen-
erations and case CB is separated from the same MRCA by GB transmission gen-
erations using the generation time distribution, for dengue and the time-resolved
phylogenetic tree.

If we assume that the generation time distribution is gamma distributed with
parameters aG and βG and that all transmission events are independent of each
other, the sum of g gamma distribution is also gamma distributed with parameters
gαG and βG. In addition, from a genealogy, Ri, we can extract the evolutionary time,
EA, separating CA from the MRCA and EB, separating CB from the MRCA. We can
therefore estimate the probability of g transmission events over many trees as
follows:

P GA;GB SeqA; SeqB;TA;TB

��� � ¼
P

i
f EA;Ri ;GA �αG ;βGð Þ�f EB;Ri ;GB �αG ;βGð ÞP

i

P
l

P
m
f EA;Ri ;l�αG ;βGð Þ�f EB;Ri ;m�αG ;βGð Þ ð14Þ

This approach allows us to incorporate uncertainty in the phylogeny, including
uncertainty in the evolutionary parameters and tree structure.

As any spatial signal will be heavily diluted after many transmission
generations, to optimise computational performance, we restrict our analyses to
pairs where the mean estimated number of transmission generation is <25, we
perform a sensitivity analysis where this is extended to 40 generations with very
similar results (Supplementary Fig. 3).

Observation probability (P(ObsLi,TA)). We cannot know the true number of infec-
tions occurring within each space–time unit. Given the long-term endemicity of
dengue in the region, we assume that the number of infections will be approxi-
mately proportional to the size of the population within each location. Therefore,
the probability of observation (the probability of sequencing the virus causing an
infection event) at location k at time point t is approximately proportional to the
number of sequenced viruses from that year and location for that serotype divided
by the size of the population in that location.

We conducted a sub-analysis where we assumed unbiased observation. In this
analysis, we assumed that the probability of observation was 1 across all space–time
locations, we obtained very different results (Supplementary Fig. 6).

We further assessed the performance of this approach using a simulation model
that imposed a heavily biased observation process. Our inference framework was
able to correctly identify all parameters (Supplementary Fig. 7, see below for
simulation model details).

The location of the MRCA (P(Lm)). The probability of the MRCA for each pair of
cases will depend on the long-term history of dengue in the communities, which
cannot be estimated using the presented approach. Instead, we assume that P(Lm)
is proportional to the size of the population in that location. To assess the sensi-
tivity of this assumption, we conducted a separate analysis where P(Lm) was
assumed to be the same across all locations, with identical results (Supplementary
Fig. 4). This suggests that we do not need to probabilistically assess where the start
point is for the MRCA that links two cases in a phylogeny.

Likelihood. We can calculate the likelihood using all pairs of available sequenced
viruses as follows:

L /
Y4
ser¼1

Ynser
i¼1

Y
j≠i

PðLi; LjjObsLi;Ti; ObsLj;Tj; Seqi; Seqj;Ti;TjÞ ð15Þ

where nser are the number of sequences available from serotype ser.

Identifying the maximum likelihood estimate. We use a maximum likelihood
approach to estimate the parameters linked to the mobility, transmission and sus-
ceptibility (θhome.sick, θhome.population, β1, β2, β3, γ1). We identify the maximum likelihood
estimate using an unconstrained nonlinear quasi-Newton optimisation approach29.

In order to incorporate uncertainty, we use a bootstrapping approach where we
randomly sample all the available sequences with replacement over 100 iterations

and recalculate the maximum likelihood estimate for each parameter each time.
The 95% confidence intervals are then calculated using the mean and the standard
deviation of the resulting distribution, assuming that they follow a normal
distribution.

Using fitted values to estimate patterns of viral flow at each transmission generation.
Once we have fitted values for the parameters, we can calculate the Πτ;ser;gen matrix
for each month between 1994 and 2012, each serotype and each transmission
generation. From these matrices, we can extract the probability that the virus is in
each location given a specified serotype, location and time of introduction and
number of generations. From these matrices, we calculate the cumulative dis-
tribution function of the distance between where the virus started and where it is
after different numbers of generations, averaging over time and serotype. We
compare this to the cumulative distribution function of how far cases are from their
home at any time. This highlights that viral mobility requires both movement of
cases and the susceptible population.

We also calculate the mean proportion of times that the most likely (non-home)
destination is the same across serotypes. This allows us to assess whether viruses
across the serotypes take the same routes or whether serotype-specific immunity
changes the most likely pathways.

Model fit. In order to assess the model fit, we perform held-out validation. In
Bangkok, we remove all sequences from 10% randomly chosen locations, we then
refit the model and then estimate the probability of observing sequences in the
locations not included in the model fitting process. For the nationwide analysis, as
we have fewer locations with sequences available, we undertake the same process
but hold out a single province in turn.

For incremental windows of probability between 0 and 1, we identify all
location-years where a virus was predicted to have been observed within the held-
out locations. We then calculate the mean proportion of times a sequence was
observed within those identified location-years.

Estimates of spread using a transmission simulation. Using the fitted parameter
values, we conduct a forward simulation at both the Bangkok and province levels.
Taking each month between 1994 and 2012 and each serotype in turn, we apply the
following algorithm:

(I) Randomly introduce a single infection in one location where all locations
have the same probability of being the source.

(II) We generate daughter infections from the index using a random draw from
a Poisson distribution with mean Reff (representing the effective reproduc-
tive number).

(III) We identify the location for each daughter infection using a random draw
where the probability of each location is taken from the Πτ,ser,gen matrix.

(IV) Repeat (ii) and (iii) for 20 generations.
(V) Repeat (i)–(iv) 50 times

For each iteration, we calculate the average number of locations that have had at
least one infection at each generation, average over all time points and all serotypes.

To assess the impact of mobility patterns and immunity on the number of
locations affected, we repeated the analysis with the following adjustments:

Scenario a: All initial introductions were in the most connected location only
(as defined as the location with the lowest probability of staying within your home
location).

Scenario b: All initial introductions were in the least connected location only (as
defined as the location with the highest probability of staying within your home
location).

Scenario c: No difference in the mobility of the cases as compared to the
susceptible population. This was achieved by forcing the θinfector: home parameter to
be the same as the fitted θpopulation: home parameter.

Scenario d: Susceptible population mobility is equal to that of the adult
population. This was achieved by forcing the θpopulation: home and θinfector: home

parameters to be zero.
Scenario e: No impact of immunity. This was achieved by forcing the β1 and β2

parameters to be zero.
For each scenario, we calculated the proportion of locations affected at each

generation and the relative number of locations affected compared to the base model.
We also conducted sensitivity analyses where the Reff was varied from 1.3 to 1.1 and 1.6.

Age-mixing model. We use an equivalent approach to characterise the age-
dependent mixing of the population. Instead of considering the probability of the
virus transitioning between two locations, we consider the probability of transi-
tioning between individuals of two ages.

P AgeA;AgeB
��ObsAgeA ;TA

;ObsAgeB ;TB
; SeqA; SeqB;TA;TB

� �

¼
P ObsAgeA ;TA

;ObsAgeB ;TB

���AgeA;AgeB; SeqA; SeqB;TA;TB

� �
P AgeA;AgeB

��SeqA; SeqB;TA;TB

� �
RR

Agei ;Agej
P ObsAgei ;TA

;ObsAgej ;TB
jAgeA;AgeB; SeqA; SeqB;TA;TB

� �
P Agei;Agej

���SeqA; SeqB;TA;TB

� �
dAgeidAgej

ð16Þ
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We can consider that the age of the two cases is dependent on the age of the
MRCA and the number of transmission generations that separate them from the
MRCA.

P AgeA;AgeB
��SeqA; SeqB;TA;TB

� �

¼
Z Z

Agem ;GA ;GB

P AgeA;AgeB
��Agem;GA;GB

� � � P Agem
� � � P GA;GBjSeqA; SeqB;TA;TBð ÞdAgemdGAdGB

ð17Þ
We consider that the observation processes across ages are independent of each

other. In addition, each transmission event is considered independent of other
transmission events. The probability of observing a case at age Agei at time TA does
not depend on the location of the MRCA or the number of generations separating
the case from the MRCA. We can also substitute Eq. (12) into Eq. (11). Finally, we
consider the discretized ages.

P AgeA;AgeBjObsAgeA ;TA
;ObsAgeB ;TB

; SeqA; SeqB;TA;TB

� �

¼
P

Agem

P
GA

P
GB

P ObsAgeA ;TA

� �
P ObsAgeB ;TB

� �
P AgeAjAgem;GA

� �
P AgeBjAgem;GB

� �
P Agem
� �

P GA;GBjSeqA; SeqB;TA;TBð Þ
P

Agei

P
Agej

P
Agem

P
GA

P
GB

P ObsAgei ;TA

� �
P ObsAgej ;TB

� �
P AgeijAgem;GA

� �
P AgejjAgem;GB

� �
P Agem
� �

P GA;GBjSeqA; SeqB;TA;TBð Þ

ð18Þ

The age transition matrix. Initially let us again consider a single-transmission
generation. We assume that the age-specific susceptibility of the population is
stable over time and that the probability of exposure does not differ by age group or
serotype. The probability that two individuals, i and j, of ages Agei and Agej are in
contact (via a mosquito) can be written down as

P persons i and j are in contactjAgei ¼ a; Agej ¼ b
� �

¼ βa;b ð19Þ

where βa,b is the age-specific probability of contact between individuals of ages a and b.
The expected number of infected persons coming from individuals of age b

conditional on an infector, i, being of age a is

E number of persons age b infectedjAgei ¼ a
� � ¼ βa;b � Sb ð20Þ

where Sb is the number of susceptible people of age b.
The expected number of infected persons coming from individuals of all ages,

conditional on an infector, i, being of age a is

E number of persons of all ages infectedjAgei ¼ a
� � ¼ XN

m

βa;m � Sm ð21Þ

Conditional on one transmission generation where the infector i is of age a, the
probability of the infectee with age b is, therefore, the ratio of these terms. We
define this probability as ϕa,b.

ϕa;b ¼ P Agej ¼ bjAgei ¼ a
� �

¼ βa;b � SbPN
m βa;m � Sm

ð22Þ

We can create an Nage ×Nage transmission matrix, Φ, that sets out the
transmission probabilities between all ages for a single transmission where element
[a,b] of the matrix is ϕa,b. We use a maximum age of 70 years.

Age contact matrix. To parametrically characterise the age contact matrix, we use
a discretised exponential decay parameter, θage, that captures the probability that
two people interact, as a function of the difference in their ages, such that
βa;b ¼ f ða� b; θageÞ.

βa;b ¼
gða� b; θageÞP
m gða�m; θageÞ

ð23Þ

where g x; θage
� �

¼ θage � expð�θage � xÞ:

Age-specific susceptibility. To characterise the susceptibility, we assume that the
number of susceptible people of age a is equal to Nagea

� expð�λ � ageaÞ, where Nagea
is the number of people of age a in the national census and the force of infection, λ,
is assumed to be 0.0430. We conduct a sensitivity analysis where the force of
infection is varied to 0.02 and 0.06 with unchanged results (Supplementary Fig. 5).

Observation probability (P(ObsAgei,TA)). We assume that the probability of
observing a case of age a is proportional to the number of sequenced viruses of that
age for that serotype divided by the estimated size of the susceptible population of
that age (Sa).

Likelihood for the age model. We can calculate the likelihood using all pairs of
available sequenced viruses as follows:

L /
Y4
ser¼1

Ynser
i¼1

Y
j≠i

P Agei;AgejjObsAgei;Ti; ObsAgej;Tj; Seqi; Seqj;Ti;Tj

� �
ð24Þ

where nser are the number of sequences available from serotype ser.

We use a maximum likelihood approach to estimate the parameter θage. In
order to incorporate uncertainty, we use a bootstrapping approach where we
randomly sample all the available sequences with replacement over 100 iterations
and recalculate the maximum likelihood estimate for each parameter each time.
The 95% confidence intervals are then calculated using the mean and the standard
deviation of the resulting distribution, assuming that they follow a normal
distribution.

Once we have fitted the θage parameter, we calculate from the matrix of ϕa,b, the
proportion of transmissions that are between individuals that have <2 y in age
between them. We use an equal weight for the age of the infector across all ages and
only consider individuals between the ages of 1 and 15 as they represent the
majority of the susceptible population. We compare this to the scenario where all
individuals have the same probability of contact, irrespective of age (i.e., βa,b= 1/
70, for all a and all b), which is the minimum possible value.

Simulation study. In order to ensure that our model is able to correctly
identify parameters, we built a simulation framework with known parameters
using 50 randomly selected grid cells from the Bangkok dataset where the popu-
lation size, the historic incidence and the probability of between cell movement
were taken from the observed data. As the observed heterogeneity in mosquito
presence was limited in Bangkok (Supplementary Fig. 2), we simulated mosquito
presence in each location using a Uniform distribution between 0 and 1. For the
recent heterotypic and homotypic cases, we used a randomly selected time point
from the observed distributions of cases and assume all cases came from
serotype DENV1.

We fixed the parameter values as follows:

– Additional time being at home for a susceptible population compared to adults
(θsusceptible: home) (logit scale): −0.5

– Additional time being at home for cases compared to adults (θinfector: home)
(logit scale): −0.05

– Mosquito exponent: 1.0
– All incidence exponents: 0.5
– Recent heterotypic incidence exponent: 0.3
– Recent homotypic incidence exponent: −0.3

We then calculated the Πτ;ser;gen transmission matrix using these known
parameters and simulated transmission events using the following algorithm:

1. Randomly select a starting location (H0) by randomly choosing a location,
weighted by the population in that location. This will represent the MRCA
case (C0) between the two observed viruses.

2. Draw the number of generations (g) between the MRCA and one of the
observed isolates, where the number of generations is between 15 and 19
generations and the probability of 15 generations is 0.1, 16 generations is
0.2, 17 generations is 0.4, 18 generations is 0.2, 19 generations is 0.1.

3. For case C0 identify where they will transmit to (H1) using a random draw
with the probabilities of each destination location coming from the H0 row
of the Πτ;ser;gen matrix.

4. Repeat step (3) g times using the destination of the previous step as the start
location each time

5. Repeat steps 1–4 2000 times to generate 2000 pairs of cases
6. We assumed that the probability of observing (i.e., sequencing) the virus

from a case was unequal across locations. The probability of observing a case
at a location (ρl) is taken from a random uniform distribution (U(0,1)). We
randomly select 500 pairs of cases where the probability of observation of
each pair is the product of the probability of observation at each of the two
locations.

Using the observed pairs, we then used our framework to estimate the
parameters of the model. We repeated the simulation 50 times and report the mean
and 2.5 and 97.5 percentiles of the distribution for each parameter estimate.

To assess the importance of incorporating sampling bias in our estimates, we
repeated the inference on our simulated data but assumed that all space–time
locations had the same, equal chance of being observed.

SMILI data and analysis. In order to understand the consistency of our estimated
differences in human mobility between susceptible individuals and adults, we used
data from the Social Mixing for Influenza-Like Illness (SMILI) project. This project
asked 2011 individuals about their mobility patterns. Here we used the responses to
the question ‘what is the farthest distance you have travelled within the last
7 days?’. We dichotomised the results into those that had not travelled >1 km and
those that had travelled >1 km.

To reconstruct the probability that a susceptible individual had not travelled
more than 1 km within the last 7 days, we used data on the population size from
the 2010 census and assumed a constant force of infection (foi) of 0.04 per year.
Using a catalytic model, we can calculate the probability that an individual of age a
has never been infected by dengue as pnaivea= exp(−4*a*foi). The probability
of being monotypically immune (i.e., being infected by one of the serotypes but
still susceptible to one of the other ones) is pmonoa= exp(−3*foi*a)*(1− exp
(−foi*a)). The probability of being susceptible as the sum of psusa= pnaivea+
pmonoa (Supplementary Fig. 3B). To calculate the average probability that a
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susceptible individual has not travelled further than 1 km from their home within
the last 7 days, we take a weighted average across all ages:

pTravelsus ¼
X
a

pTravela � pSusa � pPopa=
X
a

pSusa � pPopa ð25Þ

where pTravela is the proportion of individuals of age a that have not travelled
more than 1 km within the last 7 days and pPopa is the proportion of the
population that is of age a.

To calculate the average probability that an adult has not travelled further than
1 km from their home within the last 7 days, we use a similar approach where we
calculate a weighted average across all individuals that are over 15 years of age (the
mobility data are available in 5-year increments).

Ethical approval. This study was approved by the ethical review boards of Queen
Sirikit National Institute of Child Health, and Walter Reed Army Institute of
Research and the University of Florida. Case data were obtained from the results of
standard confirmatory testing for dengue and therefore did not require informed
consent.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in the analyses are available on Zenodo (https://doi.org/10.5281/
zenodo.4543279). In addition, GenBank references for the sequences are available in
Supplementary Data 1. LandScan data are available from https://landscan.ornl.gov/
landscan-datasets.

Code availability
R code used for the analyses is available on Zenodo (https://doi.org/10.5281/
zenodo.4543279).
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