Skip to Main content Skip to Navigation
Journal articles

Joint Analysis of Multiple Interaction Parameters in Genetic Association Studies

Abstract : Despite the extensive literature on methods for assessing interactions between genetic and environmental factors, approaches for the joint analysis of multiple G-E interactions are surprisingly lacking. Kim et al. compare the power and robustness.... With growing human genetic and epidemiologic data, there has been increased interest for the study of gene-by-environment (G-E) interaction effects. Still, major questions remain on how to test jointly a large number of interactions between multiple SNPs and multiple exposures. In this study, we first compared the relative performance of four fixed-effect joint analysis approaches using simulated data, considering up to 10 exposures and 300 SNPs: (1) omnibus test, (2) multi-exposure and genetic risk score (GRS) test, (3) multi-SNP and environmental risk score (ERS) test, and (4) GRS-ERS test. Our simulations explored both linear and logistic regression while considering three statistics: the Wald test, the Score test, and the likelihood ratio test (LRT). We further applied the approaches to three large sets of human cohort data (n = 37,664), focusing on type 2 diabetes (T2D), obesity, hypertension, and coronary heart disease with smoking, physical activity, diets, and total energy intake. Overall, GRS-based approaches were the most robust, and had the highest power, especially when the G-E interaction effects were correlated with the marginal genetic and environmental effects. We also observed severe miscalibration of joint statistics in logistic models when the number of events per variable was too low when using either the Wald test or LRT test. Finally, our real data application detected nominally significant interaction effects for three outcomes (T2D, obesity, and hypertension), mainly from the GRS-ERS approach. In conclusion, this study provides guidelines for testing multiple interaction parameters in modern human cohorts including extensive genetic and environmental data.
Complete list of metadata

https://hal-pasteur.archives-ouvertes.fr/pasteur-03278700
Contributor : Hugues Aschard Connect in order to contact the contributor
Submitted on : Monday, July 5, 2021 - 7:44:49 PM
Last modification on : Tuesday, October 19, 2021 - 10:29:31 PM

Links full text

Identifiers

Collections

Citation

Jihye Kim, Andrey Ziyatdinov, Vincent Laville, Frank Hu, Eric Rimm, et al.. Joint Analysis of Multiple Interaction Parameters in Genetic Association Studies. Genetics, Genetics Society of America, 2019, 211 (2), pp.483-494. ⟨10.1534/genetics.118.301394⟩. ⟨pasteur-03278700⟩

Share

Metrics

Record views

21