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27 Summary

28 Intracellular bacterial pathogens harbor genes, the closest homologues of which are found in 

29 eukaryotes. Regulator of chormosome condensation 1 (RCC1) repeat proteins are 

30 phylogenetically widespread and implicated in protein-protein interactions, such as the 

31 activation of the small GTPase Ran by its cognate guanine nucleotide exchange factor, RCC1. 

32 Legionella pneumophila and Coxiella burnetii, the causative agents of Legionnaires’ disease 

33 and Q fever, respectively, harbor RCC1 repeat coding genes. L. pneumophila secretes the 

34 RCC1 repeat “effector” proteins LegG1, PpgA and PieG into eukaryotic host cells, where 

35 they promote the activation of the pleiotropic small GTPase Ran, microtubule stabilization, 

36 pathogen vacuole motility and intracellular bacterial growth as well as host cell migration. 

37 The RCC1 repeat effectors localize to the pathogen vacuole or the host plasma membrane and 

38 target distinct components of the Ran GTPase cycle, including Ran modulators and the small 

39 GTPase itself. C. burnetii translocates the RCC1 repeat effector NopA into host cells, where 

40 the effector localizes to nucleoli. NopA binds to Ran GTPase and promotes the nuclear 

41 accumulation of Ran(GTP), thus pertubing the import of the transcription factor NF-κB and 

42 innate immune signaling. Hence, divergent evolution of bacterial RCC1 repeat effectors 

43 defines the range of Ran GTPase cycle targets and likely allows fine-tuning of Ran GTPase 

44 activation by the pathogens at different cellular sites.

45

46 Legionella species – amoebae-resistant agents of Legionnaires’ disease

47 Legionella species are Gram-negative, ubiquitous environmental bacteria (Newton et al., 

48 2010, Whiley et al., 2011, Mondino et al., 2020). The bacteria thrive in natural and 

49 anthropogenic water systems, including lakes, ponds, rivers, hot springs, cooling towers, 

50 thermal spas and drinking or industrial water supplies. In these aquatic niches, Legionella can 

51 survive in planktonic form, in sessile biofilms or within phagocytic protozoa (Declerck, 2010, 

52 Hilbi et al., 2011).
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53 A total of at least 65 different Legionella species has been identified to date (Parte, 2018), 

54 of which almost half have been associated with human infections (Newton et al., 2010). 

55 Among the many Legionella species, Legionella pneumophila and Legionella longbeachae 

56 are the clinically most relevant and together account for approximately 95% of the reported 

57 Legionnaires’ disease cases. In most parts of the world, L. pneumophila causes more than 

58 90% of the infections; however, in Australia and New Zealand, L. pneumophila and L. 

59 longbeachae are responsible for approximately 46% and 30% of the cases, respectively (Yu et 

60 al., 2002, Newton et al., 2010, Whiley et al., 2011). Among the 16 different known L. 

61 pneumophila serogroups, the large majority of the human infections are caused by serogroup 

62 1, even though this serogroup is not overrepresented in the environment (Doleans et al., 

63 2004).

64 Legionella species are opportunistic if not “accidental” human pathogens, which are almost 

65 exclusively transmitted through contaminated aerosols from natural or technical water sources 

66 (Mercante et al., 2015). While the human lung is considered a dead-end for the pathogen, an 

67 isolated incidence of a person-to-person transmission of L. pneumophila has been reported 

68 (Correia et al., 2016). In this instance, the transmission of a clonal strain from an infected 

69 person to another caused the death of the two people involved due to legionellosis.

70

71 Intracellular growth of L. pneumophila and formation of the pathogen vacuole

72 L. pneumophila grows in free-living protozoa and macrophages of the innate immune system 

73 employing an apparently conserved mechanism (Gomez-Valero et al., 2011a, Al-Quadan et 

74 al., 2012). Macrophage resistance is a prerequisite for Legionella pathogenesis. In order to 

75 replicate within host cells, L. pneumophila forms a unique, degradation-resistant 

76 compartment, the Legionella-containing vacuole (LCV). In the course of its maturation, the 

77 LCV does not acidify or fuse with lysosomes, but the compartment extensively communicates 

78 with several vesicle trafficking pathways including the endosomal, secretory and retrograde 
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79 routes (Isberg et al., 2009, Asrat et al., 2014, Personnic et al., 2016, Bärlocher et al., 2017b, 

80 Steiner et al., 2018). The initial and decisive stage of LCV formation is characterized by a 

81 phosphoinositide lipid conversion, where endosomal phosphatidylinositol 3-phosphate 

82 (PtdIns(3)P) is replaced by secretory PtdIns(4)P (Weber et al., 2006, Weber et al., 2014, 

83 Weber et al., 2018, Swart et al., 2020a). This process is followed by the recruitment, 

84 activation and modification of small GTPases of the Arf (Nagai et al., 2002, Goody et al., 

85 2013), Rab (Kagan et al., 2004, Brombacher et al., 2009, Hoffmann et al., 2014, Sherwood et 

86 al., 2016), Rap (Schmölders et al., 2017) and Ran family (see below). Finally, at late steps of 

87 LCV maturation, the pathogen vacuole tightly associates but does not fuse with the 

88 endoplasmic reticulum (ER) in macrophages (Swanson et al., 1995, Tilney et al., 2001) and 

89 amoebae (Abu Kwaik, 1996, Lu et al., 2005, Weber et al., 2014).

90 In addition to small GTPases of several different families, large oligomeric GTPases also 

91 play a role in L. pneumophila infection (Escoll et al., 2017, Steiner et al., 2017). Atlastin3 

92 (Atl3/Sey1) localizes to ER tubules and catalyzes homotypic membrane fusion events. This 

93 large GTPase promotes ER remodeling around the LCV, pathogen vacuole expansion and 

94 intracellular bacterial replication (Steiner et al., 2017). Furthermore, the mitochondrial 

95 Dynamin1-like large GTPase (Dnm1l) mediates mitochondrial fragmentation during L. 

96 pneumophila infection (Escoll et al., 2017).

97 Arguably the most important L. pneumophila virulence factor essential for LCV formation 

98 is the Icm/Dot (intracellular multiplication/defective organelle trafficking) type IV secretion 

99 system (T4SS) (Segal et al., 1998, Vogel et al., 1998, Kubori et al., 2016). The Icm/Dot T4SS 

100 is conserved among Legionella spp. (Burstein et al., 2016, Gomez-Valero et al., 2019c), and 

101 in the case of L. pneumophila secretes more than 300 different “effector” proteins into 

102 eukaryotic host cells (Burstein et al., 2009, Zhu et al., 2011, Lifshitz et al., 2013, Qiu et al., 

103 2017). The effectors subvert pivotal process in target cells, including membrane trafficking, 

104 cytoskeleton dynamics or signal transduction, and some of them catalyze hitherto unknown 
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105 biological reactions (Hubber et al., 2010, Hilbi et al., 2012, Haneburger et al., 2013, 

106 Sherwood et al., 2013, Finsel et al., 2015, Qiu et al., 2017). A number of effectors target 

107 components commandeering eukaryotic membrane dynamics. These include small GTPases 

108 and PI lipids, but also the vacuolar H+-ATPase (Xu et al., 2010), the autophagy machinery 

109 (Choy et al., 2012, Horenkamp et al., 2015, Rolando et al., 2016, Arasaki et al., 2017, Yang 

110 et al., 2017), or the retromer coat complex and other components of the retrograde trafficking 

111 pathway (Weber et al., 2009, Finsel et al., 2013, Bärlocher et al., 2017a, Romano-Moreno et 

112 al., 2017, Welin et al., 2018, Yao et al., 2018).

113

114 Co-evolution of Legionella with protozoa and acquisition of eukaryotic genes

115 Free-living protozoa represent a privileged environmental niche of Legionella species. While 

116 some protozoa kill and digest L. pneumophila (Amaro et al., 2015, Boamah et al., 2017), 

117 there is indeed a tremendous diversity of environmental hosts, and L. pneumophila has been 

118 shown to replicate in at least 30 different protozoan species, including amoebae (e.g., 

119 Acanthamoeba, Hartmanella, Naegleria, Vahlkampfia and Dictyostelium spp.) and ciliates 

120 (e.g., Tetrahymena and Paramecium spp.) (Fields, 1996, Boamah et al., 2017, Swart et al., 

121 2018). The intimate contact and co-evolution with these primordial predators is believed to 

122 render environmental protozoa an “evolutionary crib” for pathogen evolution (Greub et al., 

123 2004, Molmeret et al., 2005, Gomez-Valero et al., 2013). In fact, it was recently 

124 experimentally demonstrated that the cumulative selective pressures of multiple and diverse 

125 amoebal hosts shapes the virulence of L. pneumophila for macrophages, and – as a corollary – 

126 determines pathogenesis in humans (Park et al., 2020).

127 The genus Legionella belongs to the γ-proteobacteria and is characterized by a large 

128 genetic diversity (Gomez-Valero et al., 2013). To date, the genomes of 58 Legionella species, 

129 including L. pneumophila and L. longbeachae, have been fully sequenced and annotated by 

130 bioinformatics means (Burstein et al., 2016, Gomez-Valero et al., 2019b). The genomes show 
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131 a high plasticity, harbor many mobile genetic elements and contain around 10% strain-

132 specific genes. The large diversity among Legionella species is owing to widespread 

133 horizontal gene transfer among members of the genus, other bacterial species, and – given the 

134 omnipresence of “eukaryotic-like” genes – presumably also with eukaryotic host cells 

135 (Cazalet et al., 2004, de Felipe et al., 2005, Gomez-Valero et al., 2011b, Gomez-Valero et al., 

136 2019a).

137 Upon sequencing the genome of L. pneumophila, a wide variety of genes encoding 

138 eukaryotic-like proteins and eukaryotic domain-carrying proteins were identified, reflecting 

139 the long-standing co-evolution of the bacterium with eukaryotic host cells and highlighting 

140 potential virulence factors (Cazalet et al., 2004, de Felipe et al., 2005). Indeed, many of these 

141 proteins turned out to be substrates of the Icm/Dot T4SS and likely target host cell processes 

142 by functioning analogously to their eukaryotic homologues. However, only a few of these 

143 effector proteins have been biochemically and cell biologically characterized in detail to date.

144 The first Icm/Dot substrate identified, RalF, contains a Sec7 domain and functions as a 

145 guanine nucleotide exchange factor (GEF) for the ADP ribosylation factor (Arf) family of 

146 small GTPases, which recruits and activates Arf1 to LCVs (Nagai et al., 2002, Amor et al., 

147 2005, Alix et al., 2012, Folly-Klan et al., 2013). RomA (LegAS4) contains a SET domain and 

148 covalently modifies histones through its methyltransferase activity (Li et al., 2013, Rolando et 

149 al., 2013). LpSpl (LegS2) is a close relative of the eukaryotic sphingosine 1-phosphate lyase 

150 (Spl), additionally harbors a C-terminal type IV secretion signal, and inhibits the host cell 

151 autophagy pathway in L. pneumophila-infected cells (Degtyar et al., 2009, Abu Khweek et 

152 al., 2016, Rolando et al., 2016).

153 LubX (Kubori et al., 2008), LegU1 (Ensminger et al., 2010) and AnkB (Al-Khodor et al., 

154 2008, Price et al., 2009, Ensminger et al., 2010, Lomma et al., 2010) are Icm/Dot-translocated 

155 U-box or F-box-containing E3 ubiquitin ligases that catalyze ubiquitination reactions. 

156 Furthermore, AnkB (Ivanov et al., 2010, Price et al., 2010), as well as LegG1 (alias MitF, 

Page 6 of 36



7

157 Lpg1976) and PieG (Lpp1959) (Ivanov et al., 2010, Rothmeier et al., 2013, Swart et al., 

158 2020b) contain a C-terminal CAAX motif, which is lipidated by the host prenylation 

159 machinery to facilitate membrane localization.

160

161 Legionella species harbor eukaryotic-like RCC1 repeat coding genes

162 The human regulator of chromatin condensation 1 (RCC1) is the founding member of the 

163 RCC1 repeat family (http://pfam.xfam.org/family/PF00415). RCC1 harbors seven RCC1 

164 repeats of 51-68 residues and is a GEF for the small Ran (Ras-like nuclear) GTPase (Bischoff 

165 et al., 1991). Using the internal repeat profiles of the 7-bladed propeller structures of 

166 eukaryotic RCC1 and the prokaryotic β-lactamase inhibitor protein II (BLIP II) allowed the 

167 definition of the RCC1-like repeat family of propeller proteins (Stevens et al., 2008). The 

168 RCC1 repeats harbor only very little primary amino acid sequence identity and occur in 3-7 

169 repeats per protein. RCC1 repeats are wide-spread among metazoans (animals, plants, fungi), 

170 unicellular eukaryotes, archaea and prokaryotes. The wide distribution of RCC1 repeats and 

171 their conservation among a range of organisms likely reflects the versatile nature of this motif 

172 (Stevens et al., 2008).

173 Bioinformatics analysis revealed that among the genomes of Legionella species sequenced 

174 more than 57% (32 out of 56) are predicted to produce one or multiple RCC1 repeat proteins 

175 (Gomez-Valero et al., 2019b) (Figure 1). The seemingly random distribution of RCC1 repeat 

176 proteins throughout the genus Legionella, together with the observation that not all species 

177 within the same clade contain RCC1 repeat proteins, suggests that the proteins were 

178 independently acquired rather than originating from a common ancestor. Furthermore, recent 

179 studies concluded that DNA interchange between different Legionella species is rare 

180 (Burstein et al., 2016, Joseph et al., 2016). An independent and exogenous acquisition of 

181 RCC1 repeat coding genes is in agreement with a vital role for Legionella-host cell 

182 interactions.
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183 Nonetheless, RCC1 repeat effectors are apparently not essential for Legionella 

184 pathogenicity, since there is no correlation between the presence of RCC1 repeat proteins and 

185 the source of the isolate (clinical or environmental). L. longbeachae, the second most 

186 common etiological agent of Legionnaires' disease, apparently lacks RCC1 repeat effectors 

187 (Cazalet et al., 2010) (Figure 1). In contrast, L. waltersii, which has also been linked to a 

188 clinical case (König et al., 2005), harbors as many as 15 RCC1 repeat coding genes. 

189 Phylogenetic analyses of these homologues revealed a cluster, indicating that they might have 

190 evolved through gene duplication. However, the functional significance of this high number 

191 of RCC1 repeat coding genes is not known.

192 Little is known about the origin of RCC1 repeat proteins, although it is suggested that 

193 prokaryotes acquired their RCC1 repeats via horizontal gene transfer from eukaryotes 

194 (Gomez-Valero et al., 2013). In order to obtain further insights into the origin of L. 

195 pneumophila RCC1 repeat effectors, we constructed a phylogenetic tree for one of the 

196 proteins, PieG (Figure 2). Phylogenetic trees obtained with either distances and likelihood 

197 methods were similar and indicated clustering of L. pneumophila PieG with eukaryotic 

198 proteins closer than with prokaryotic proteins. The closest eukaryotic sequence belongs to the 

199 amoeba Naegleria fowleri, an experimentally validated host of L. pneumophila (Boamah et 

200 al., 2017). Moreover, amoebae-infecting viruses such as Marseillevirus (La Scola, 2014), also 

201 harbor RCC1 repeat proteins, which group close to L. pnemophila PieG (Figure 2). These 

202 findings support the notion of horizontal gene transfer from a protozoan hosts or from a co-

203 infecting virus as the origin of Legionella RCC1 repeat coding genes.

204

205 L. pneumophila RCC1 repeat coding genes are distributed in two main strain clusters

206 RCC1 repeat coding genes are conserved in the genomes of all 59 L. pneumophila strains 

207 sequenced to date (Swart et al., 2020b). While some L. pneumophila strains contain two 

208 distinct RCC1 repeat coding genes (e.g., strain Philadelphia-1: legG1/lpg1976 and 
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209 ppgA/lpg2224), others contain only one single gene (e.g., strains Paris or Lens: pieG/lpp1959) 

210 or additionally a duplicated ppgA gene. Accordingly, the RCC1 repeat coding genes are 

211 distributed in two main clusters: the “Philadelphia-1” cluster and the “ Paris-Lens” cluster, 

212 respectively (Swart et al., 2020b).

213 Another emerging pattern is that all but one strains in the “Philadelphia-1” cluster contain a 

214 split pieG gene (yielding lpg1975 and legG1). Based on the distribution pattern, it is more 

215 likely that the ppgA gene was acquired by an ancestral L. pneumophila strain harboring pieG 

216 rather than that the ppgA gene was lost from a genome. This further suggests that the split of 

217 pieG (or duplication and modification of ppgA) happened as a subsequent step, and possibly 

218 as a result of the acquisition of ppgA (Swart et al., 2020b).

219 Many RCC1-repeat proteins adopt the complex β-propeller fold (Renault et al., 1998, Lim 

220 et al., 2001, Stevens et al., 2008), possibly aided by specific eukaryotic chaperones. PpgA and 

221 PieG are predicted to have a similar seven-bladed tertiary structure, whereas LegG1 is 

222 truncated and thus lacks three blades. Arguably, production of two full-length, eukaryotic-like 

223 RCC1 repeat proteins is challenging for the bacterial folding machinery, which resulted in the 

224 split of pieG and production of the more easily foldable LegG1. In agreement with this notion, 

225 LegG1 is soluble and can easily be purified from E. coli, whereas PpgA and PieG form 

226 aggregates upon heterologous production in E. coli (Swart et al., 2020b).

227

228 L. pneumophila RCC1 repeat effectors target different Ran GTPase cycle components

229 The 25 kDa Ran protein is the most abundant small GTPase in the cell and a pleiotropic 

230 regulator of different processes in eukaryotic cells (Joseph, 2006, Yudin et al., 2009). Ran 

231 GTPase is the master regulator of nucleo-cytoplasmic transport (Stewart, 2007), controls 

232 mitotic spindle assembly during cell division and post-mitotic nuclear envelope formation 

233 (Goodman et al., 2006, Clarke et al., 2008), and governs non-centrosomal microtubule 

234 dynamics in the cytoplasm (Schulze et al., 2008). Ran is activated by the GEF RCC1, which 
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235 facilitates the exchange of GDP with GTP (Bischoff et al., 1991). RCC1 is regulated by 

236 phosphorylation, e.g., during mitosis by the tumor suppressor RASSF1A, which induces 

237 Ran(GTP)-dependent microtubule hyperstability. Moreover, the cytoplasmic Ran GEF 

238 RanBP10 positively regulates the stability of non-centrosomal microtubules in non-mitotic 

239 cells, and accordingly, depletion of RanBP10 disrupts the microtubule cytoskeleton (Schulze 

240 et al., 2008). Ran is inactivated by the Ran GTPase-activating protein 1 (RanGAP1) together 

241 with Ran binding protein 1 (RanBP1), which exclusively binds to activated Ran (Joseph, 

242 2006, Yudin et al., 2009).

243 L. pneumophila strains produce the Icm/Dot-translocated RCC1 repeat proteins LegG1 (31 

244 kDa, 3 repeats) (de Felipe et al., 2005, de Felipe et al., 2008), PpgA (66 kDa, 2 repeats) 

245 (Ninio et al., 2009), and PieG (53 kDa, 2 repeats) (Ninio et al., 2009, Ivanov et al., 2010) 

246 (Figure 3). LegG1, PpgA and PieG play important roles in pathogen-host interactions, since L. 

247 pneumophila mutant strains lacking the corresponding genes (single or double mutants) are 

248 impaired for intracellular replication in macrophages and Dictyostelium discoideum, and 

249 outcompeted by the parental strain in amoebae competition assays using Acanthamoeba 

250 castellanii as a host cell (Rothmeier et al., 2013, Swart et al., 2020b).

251 LegG1, PpgA and PieG target distinct components of the Ran GTPase cycle, thereby 

252 promoting Ran activation (Rothmeier et al., 2013, Swart et al., 2020b). Namely, LegG1 

253 interacts with the GEF RanBP10, PpgA with RanGAP1, and PieG with both Ran GTPase as 

254 well as RanGAP1 (Swart et al., 2020b). Since all three L. pneumophila RCC1 repeat effectors 

255 increase the cellular amount of Ran(GTP), we hypothesize that LegG1 activates the GEF 

256 RanBP10, PpgA inhibits the GAP RanGAP1, and PieG stabilizes Ran(GTP) by binding to the 

257 active GTPase, and/or inhibiting RanGAP1 (Figure 4). By targeting a Ran GEF or a Ran 

258 GAP, the L. pneumophila RCC1 repeat effectors act differently from other Icm/Dot 

259 substrates, which directly show GEF or GAP activity or covalently modify small GTPases (of 
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260 the Rab family) to modulate their activity (Machner et al., 2006, Ingmundson et al., 2007, 

261 Goody et al., 2013, Sherwood et al., 2013).

262 Unexpectedly, LegG1 (the N-terminal part of PieG) targets a different component of the 

263 Ran GTPase cycle than full-length PieG. Hence, the split of pieG – the hallmark of the L. 

264 pneumophila “Philadelphia-1” cluster – alters the target of the corresponding protein. This 

265 substrate switch can be experimentally reversed upon fusion of legG1 with the upsteam ORF, 

266 lpg1975 (Swart et al., 2020b) (Figure 3). By targeting the Ran modulator RanBP10, instead of 

267 the small GTPase itself, LegG1 might exert an additional level of control in the modulation of 

268 the Ran GTPase cycle. Furthermore, through acquisition of PpgA, strain Philadelphia-1 

269 targets not only a Ran GEF, but additionally also a Ran GAP. Overall, divergent evolution of 

270 L. pneumophila RCC1 repeat effectors expands the range of target components of the Ran 

271 GTPase cycle and thus might fine-tune Ran activation in L. pneumophila-infected cells.

272

273 L. pneumophila RCC1 repeat effectors localize to distinct cellular compartments

274 The small GTPase Ran has pleiotropic functions in different cellular compartments (Joseph, 

275 2006, Yudin et al., 2009). Hence, the unrestricted activation of Ran is likely detrimental to 

276 host cells. To avoid interference with Ran-regulated processes at different subcellular sites, 

277 Ran modulation needs to be spatially controlled. Nucleo-cytoplasmic transport, e.g., is tightly 

278 regulated by chromatin-bound RCC1 and cytoplasmic RanGAP1, and a re-distribution of the 

279 regulators leading to disruption of the Ran(GTP) gradient across the nuclear envelope has 

280 disastrous consequences for RNA export from the nucleus (Izaurralde et al., 1997).

281 The L. pneumophila RCC1 repeat effectors LegG1, PpgA and PieG localize to different 

282 subcellular compartments (Figure 4). Upon ectopic production in mammalian cells, D. 

283 discoideum or yeast, LegG1 and PieG are prenylated at their C-terminal CAAX site and 

284 localize to vesicular structures in the cells, or to LCVs in L. pneumophila-infected D. 

285 discoideum (Ninio et al., 2009, Ivanov et al., 2010, Swart et al., 2020b). Moreover, upon 
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286 translocation by the Icm/Dot T4SS in L. pneumophila-infected cells, LegG1 also localizes to 

287 LCVs and activates Ran in the vicinity of the pathogen vacuole (Rothmeier et al., 2013). In 

288 contrast, ectopically produced PpgA exclusively localizes to the plasma membrane in D. 

289 discoideum amoebae as well as in the yeast model (Swart et al., 2020b). Analogously to a 

290 LegG1-dependent Ran(GTP) gradient emanating from the LCV, PpgA might activate Ran at 

291 the plasma membrane and promote the formation of a Ran(GTP) gradient and microtubule 

292 stabilization at the cell cortex (Figure 4).

293 In agreement with a distinct subcellular activity of LegG1 on LCVs, the RCC1 repeat 

294 effector does not seem to affect the nuclear localization of the Icm/Dot substrate RomA. The 

295 L. pneumophila effectors RomA (LegAS4) is transported across the nuclear envelope 

296 dependent on its nuclear localization signal (NLS), likely driven by the Ran(GTP) gradient 

297 (Li et al., 2013, Rolando et al., 2013). Overall, these observations suggest that the modulation 

298 of Ran by L. pneumophila RCC1 repeat effectors is strictly controlled by their distinct cellular 

299 localization.

300

301 L. pneumophila RCC1 repeat effectors promote LCV motility and host cell migration

302 The host components of LCVs are instrumental for its architecture and function. In order to 

303 determine these components, proteomics analysis was performed using pathogen vacuoles 

304 purified from infected D. discoideum amoebae (Urwyler et al., 2009, Schmölders et al., 

305 2017), murine RAW 264.7 macrophage-like cells (Hoffmann et al., 2014) and primary bone-

306 marrow-derived macrophages from A/J mice (Naujoks et al., 2016). This approach revealed 

307 that α- and β-tubulin, Ran GTPase, RanBP1, RanBP2, RanGAP1, RCC1 and RCC2 are LCV 

308 components, and accordingly, might be host components functionally implicated in pathogen 

309 vacuole formation and function. Indeed, Ran and RanBP1 were validated as LCVs 

310 components by fluorescence microscopy, and Ran, RanBP1 as well as RanGAP1 were 
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311 implicated in intracellular replication of L. pneumophila by RNA interference (Rothmeier et 

312 al., 2013, Swart et al., 2020b).

313 Microtubules, alongside with actin and intermediate filaments, form the cytoskeleton that 

314 maintains cell shape and internal organization and plays an essential role for intracellular 

315 trafficking processes and cell migration (Etienne-Manneville, 2013). Microtubules are tubular 

316 polymers of α- and β-tubulin heterodimers, which originate from a membrane-less organelle 

317 called MTOC (microtubule organizing center) located in the vicinity of the nuclear envelope. 

318 Long-range vesicle movements inside a cell as well as the distribution and stability of 

319 organelles and endocytic compartments require microtubules and associated motor proteins 

320 called kinesins, dyneins and myosins, which via specific adaptors transport cargoes along the 

321 microtubular tracks (Etienne-Manneville, 2013).

322 The L. pneumophila RCC1 repeat effectors LegG1, PpgA and PieG promote the 

323 intracellular motility of LCVs, and for LegG1 it has been shown that this occurs by stabilizing 

324 microtubules on the LCV membrane and also throughout the host cell (Rothmeier et al., 2013, 

325 Hilbi et al., 2014, Swart et al., 2020b). LegG1 interacts with the Ran GEF RanBP10 (see 

326 above), which also harbors a β-tubulin binding domain (Schulze et al., 2008). Accordingly, 

327 LegG1 might directly link Ran activation and microtubule stabilization through this 

328 cytoplasmic Ran GEF.

329 Besides their involvement in trafficking of endocytic compartments and the LCV, 

330 microtubules are also of key importance for the structure, distribution and function of 

331 organelles such as the mitochondria and the Golgi apparatus. Accordingly, microtubule 

332 stabilization likely accounts for the effect of LegG1 (MitF) on mitochondrial dynamics and 

333 function during L. pneumophila infection (Escoll et al., 2017), as well as for the LegG1-

334 dependent disruption of Golgi cisternae in L. pneumophila-infected cells (Rothmeier et al., 

335 2013). Taken together, the studies reveal that the modulation of the microtubule cytoskeleton 
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336 by LegG1 affects pathogen vacuole dynamics, host cell vesicle trafficking and organelle 

337 integrity.

338 Another cellular process depending on the microtubule cytoskeleton is cell migration 

339 (Friedl et al., 2009). Migration is a polarized cellular process, where a protrusive leading edge 

340 is opposed to a retracting trailing edge. At the cell front, cortical actin is the primary stimulus 

341 for motion, while the microtubule network undertakes a regulatory function in coordinating 

342 rear retraction. During migration, the MTOC undergoes reorientation towards the side facing 

343 the direction of motion, allowing the microtubules to polarize from the center to the periphery 

344 of the cell (Wehrle-Haller et al., 2003, Kaverina et al., 2011).

345 L. pneumophila inhibits chemotaxis as well as random host cell migration by means of the 

346 small signaling molecule LAI-1 (Legionella autoinducer-1, 3-hydroxypentadecane-4-one) 

347 (Simon et al., 2015b) as well as through Icm/Dot-translocated effectors (Simon et al., 2014, 

348 Simon et al., 2015a). While the effector(s) inhibiting cell migration are not known, LegG1, 

349 PpgA and PieG rather promote the random and chemotactic migration of protozoan or 

350 mammalian phagocytes (Rothmeier et al., 2013, Simon et al., 2014, Swart et al., 2020b). At 

351 least in the case of LegG1, the inhibition of phagocyte migration proceeds through Ran. 

352 Similar to LegG1, overproduction of PpgA positively affects host cell motility (Swart et al., 

353 2020b). Moreover, migration of amoeba infected with the ∆legG1-∆ppgA double mutant is 

354 “hyper-inhibited”, suggesting that both proteins function in concert to stimulate host cell 

355 motility. However, LegG1 and PpgA probably employ distinct mechanisms to promote host 

356 migration since the former localizes to the LCV membrane and the latter to the plasma 

357 membrane, where the local accumulation of Ran(GTP) is expected to increase microtubule 

358 stability and hence, promote forward movement. LegG1-dependent microtubule modulation 

359 affects vesicular trafficking and thus, might indirectly enhance host cell migration. In 

360 summary, the L. pneumophila RCC1 repeat effectors promote cell migration either directly or 

361 perhaps indirectly through the activation of Ran and microtubule stabilization.
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362

363 Coxiella burnetii – an obligate intracellular pathogen causing Q fever

364 Coxiella burnetii is the causative agent of a zoonotic disease called Q (“querry”) fever, which 

365 is transmitted through aerosols and manifests as an acute or chronic ailment (Dragan et al., 

366 2020). The obligate intracellular bacterium replicates in a large lysosomal/autophagosomal 

367 compartment, the Coxiella-containing vacuole (CCV), characterized by an acidic pH, acid 

368 hydrolases and cationic peptides (Voth et al., 2007). Like L. pneumophila, C. burnetii 

369 employs an Icm/Dot T4SS to translocate ca. 150 effector proteins into host cells (Qiu et al., 

370 2017). In fact, T4SS-dependent secretion appears to function very similarly in the two 

371 pathogens (Zamboni et al., 2003, Lifshitz et al., 2013), and L. pneumophila can be used as a 

372 surrogate host to deliver C. burnetii effectors (Carey et al., 2011).

373

374 The C. burnetii RCC1 repeat effector NopA activates Ran GTPase in host cell nucleoli

375 Among the few characterized C. burnetii effectors one is called NopA (Nucleolar protein A) 

376 (Burette et al., 2020). NopA is a Icm/Dot-translocated effector, which contains 4 RCC1 

377 repeats in the C-terminal part. As only few amino acids define an RCC1 repeat, the repeats 

378 share only little sequence identity. Accordingly, C. burnetii nopA does not show significant 

379 homology with the L. pneumophila RCC1 repeat genes. Upon infection or ectopic production, 

380 NopA localizes to nucleoli in the host nucleus, where it binds to and activates the small 

381 GTPase Ran. The nucleolar accumulation of Ran(GTP) perturbs nucleocytoplasmic transport 

382 and the import of the transcription factor NF-κB. As a result, the production of cytokines and 

383 innate immune signaling is impaired by the C. burnetii effector NopA (Burette et al., 2020).

384

385 Conclusions and outlook

386 Intracellular bacterial pathogens produce RCC1 repeat effectors, which localize to different 

387 subcellular compartments and subvert the host cell Ran GTPase cycle. L. pneumophila 
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388 produces the RCC1 repeat effectors LegG1, PpgA and PieG, which divergently evolved to 

389 target distinct components of the Ran GTPase cycle. The RCC1 repeat effectors localize to 

390 different subcellular compartments, such as the LCV or the plasma membrane, allowing 

391 spatial regulation of Ran activation and the generation of local Ran(GTP) gradients leading to 

392 microtubule stabilization. C. burnettii produces the RCC1 repeat effector NopA, which 

393 localizes to nucleoli, binds to and activates Ran GTPase, and perturbs nucleocytoplasmic 

394 transport and NF-κB-dependent gene expression. These features of bacterial RCC1 repeat 

395 effectors – the expansion of host cell targets as well as distinct subcellular localizations – 

396 likely allow the pathogens to fine-tune Ran activation rather than risking unrestricted 

397 activation of the pleiotropic small GTPase. Future studies will address the biochemical 

398 characterization of bacterial RCC1 repeat effectors and the mechanism(s), by which these 

399 effectors subvert pivotal Ran-dependent host processes, such as LCV motility, vesicle 

400 trafficking, organelle integrity, cell migration and gene expression.
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414 Figure legends

415 Figure 1. Phylogenetic tree of the genus Legionella and the distribution of RCC1 repeat 

416 proteins. Distribution and number (orange bars) of proteins containing RCC1 repeats in 58 

417 different species/subspecies of the Legionella genus according to the Pfam database (El-

418 Gebali et al., 2019). The phylogenetic tree of select strains is based on the Legionella core 

419 genome (Gomez-Valero et al., 2019b), and branches are colored according to the clade they 

420 belong to. The scale bar represents the estimated evolutionary distance (number of amino acid 

421 substitutions per site).

422

423 Figure 2. Phylogenetic tree of the RCC protein Lpp1959 from Legionella species and 

424 homologous sequences. The sequences were retrieved with blastp searches, and the unrooted 

425 phylogenetic tree was constructed by likelihood using the method PhyML implemented in the 

426 program SeaView (Gouy et al., 2010). Numbers on the branches indicate bootstrap support 

427 for nodes from 100 bootstrap replicates (only values above 75 are shown). The scale bar 

428 represents the estimated evolutionary distance (number of amino acid substitutions per site).

429

430 Figure 3. L. pneumophila RCC1 repeat proteins. Schematic overview and position of 

431 RCC1 repeats in L. pneumophila PpgA, LegG1/Lpg1976, Lpg1975, Fusion (LegG1-

432 Lpg1975) and PieG/Lpp1959. Scale bar (corresponding gene size), 1 kb.

433

434 Figure 4. Distinct subcellular localization of L. pneumophila RCC1 repeat effectors and 

435 Ran GTPase cycle targets. The Icm/Dot T4SS-translocated L. pneumophila RCC1 repeat 

436 effectors LegG1, PpgA and PieG target distinct members of the Ran GTPase cycle to activate 

437 Ran, namely LegG1 interacts with RanBP10, PpgA with RanGAP1 and PieG binds both Ran 

438 and RanGAP1. The effectors localize to the LCV or the plasma membrane, respectively, thus 

439 likely creating local Ran(GTP) gradients leading to microtubule stabilization. The endogenous 
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440 Ran(GTP) gradient across the nuclear envelope is created by the Ran GEF RCC1 and 

441 RanGAP1 localizing in the nucleus or cytoplasm, respectively. The Ran(GTP) gradient is 

442 depicted ranging from yellow (high Ran(GTP) concentration) to white (high Ran(GDP) 

443 concentration). MTOC: microtubule organizing center.

444

445
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