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Bacteria which grow not on the featureless agar plates of the microbiology lab but in the real world must
navigate topologies which are nontrivially complex, such as mazes or fractals. We show that chemo-
sensitive motile E. coli can efficiently explore nontrivial mazes in times much shorter than a no-memory
(Markovian) walk would predict, and can collectively escape from a fractal topology. The strategies used
by the bacteria include individual power-law probability distribution function exploration, the launching of
chemotactic collective waves with preferential branching at maze nodes and defeating of fractal pumping,
and bet hedging in case the more risky attempts to find food fail.

DOI: 10.1103/PhysRevX.10.031017 Subject Areas: Biological Physics

I. INTRODUCTION

The two topologies of mazes and fractals pose quite
different challenges to motile bacteria. A maze typically
has well-defined entrance and exit ports [1]. However,
within a maze there may be nodes leading to dead ends and
internal loops which greatly lengthen the time it takes to
exit from the maze if followed. While exit from a maze by a

stochastic random walk is inevitable, the time to escape
from a maze via a random walk can be quite long because
the distance covered scales as the square root of time [2].
There are many different kinds of fractals; the ones we
work with here are treelike fractals [3]. The key character-
istic of a fractal is self-similarity: A fractal looks locally the
same as you branch down into the fractal, hence there are
no obvious physical clues as to how deep you are into the
fractal, and this makes escape from a fractal more chal-
lenging from a maze. We show that chemotactic bacteria
get temporarily trapped in a fractal but eventually escape in
a collective manner.
The maze we designed is shown in Fig. 1(a). It is a

nontrivial, non-simply-connected maze [4]. A calculation
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given in the Appendix A shows that we can expect a
collection of identical random walkers to take anywhere
from 150 h (10 walkers) to 20 h (106 walkers) for the first
walker to emerge on average, where the walkers travel
along the shortest path of length L ¼ 3 × 103 μm, assum-
ing an effective diffusion coefficient Db of 300 μm2= sec
for each bacterium. Even a nonrandom walker, such as a
wall follower, will take a long time to exit (or even fail) if
the maze is not simply connected and contains internal
loops. Figures 1(a) and 1(b) show the schematic of our
maze, both the actual microfabricated design and broken
down into its elements. As in any maze, there is an entrance
and an exit, in our case the exit leads to a ring of
microhabitats which are connected to an external food
source by nanoslits [5].
The fractal tree we work with is presented in Fig. 1. It is a

physical fractal of circular microhabitat “leaves,” with
levels from 0 to N ¼ 6. The leaves of the fractal tree are
a series of microhabitats of radius Rn ¼ ζn × 425 μm. The
leaves are connected via long and narrow branches of width
wm ¼ ζm × 70 μm and length lm ¼ ζm × 2600 μm, hence

the aspect ratio σ is the same for every tunnel and preserves
self-similarity, with n∈ ½0;N�, m∈ ½0;N−1�, and ζ ¼ 5=8.
The number of microhabitats of level n > 1 is given by (see
Appendix B)

N ¼ ð3 − ffiffiffi
3

p Þð2þ ffiffiffi
3

p Þn þ ð3þ ffiffiffi
3

p Þð2 − ffiffiffi
3

p Þn
2

: ð1Þ

For large n ≫ 1, the value N obeys the self-similar power-
law growth ∼γn with γ ¼ 2þ ffiffiffi

3
p

, indicative of a scale-free
“heavy-tail” network with fractal dimension D given by

lim
n→þ∞

N ðnÞ ∼ ðζnÞ−D ⇒ D ¼ − ln γ= ln ζ: ð2Þ

For our fractal tree D ≈ 2.90. The fractal dimension of the
human lungDlung ≈ 2.5 [6], hence our fractal can be viewed
as rather similar to a human lung. Although E. coli do not
typically infect a lung, other species of bacteria can form
very serious resistant infections in the human lung [7].

FIG. 1. (a) A non-simply-connected maze. Bacteria are introduced in the center. The shortest path is shown in blue hexagons. (b) Three
nodes with high branching levels labeled A, B, and C are shown. (c) A fractal of dimension D ¼ 2.90. Bacteria are introduced in the
center hole.
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II. METHODS

The chip topologies were microfabricated on a 100-mm
silicon wafer using standard silicon etching techniques.
We grew at 1000 °C in an O2 atmosphere a 0.2-μm-thick
SiO2 layer to obtain a hydrophilic surface after the etching
step. We observed that bacteria left behind a surface
modification of the SiO2 which prevented stable rewetting
of the chip [8,9]. To enable fresh reruns the chip surfaces
were cleaned by a wet HF strip of the SiO2 surface
followed by thermal regrowth of the SiO2 surface.
The top of the etched chip was sealed by pressing a
20-μm-thick gas-permeable LUMOX polymer film
LUMOX (Sarstedt AB, Nümbrecht, Germany) using
pressurized air (104 Pa). Since LUMOX is highly gas
permeable the bacteria in the chip were in equilibrium with
21% O2 levels at all times. All experiments were done
at 20 °C.
The chip was sterilized with an initial 70% ethanol

rinse followed by 2 min of O2 plasma sterilization in a
Harrick PDC-001 plasma cleaner (Harrick Plasma, Ithaca,
NY). The plasma treatment was also important in making
the chip surface temporarily hydrophilic for enhanced
wetting. The sterilized chip was wet with 20 g=l Luria-
Bertani (LB) broth so the initial conditions were uniformly
high food concentrations everywhere.
We used the bacterial strains W3110 for chemotactic

experiments and isogenic W3110 cheA resulting from P1
transduction of a cheA deletion carrying strain (RP9535)
that has lost its chemotaxis ability. To capture bacteria
motion into the mazes, both strains express green fluores-
cent proteins (GFP) under the Plac promoter, which
intrinsically express GFP. The bacteria were cultured in
LB broth at 30 °C for 24 h to reach saturation, then 20 μL of
the culture transferred into a fresh 2-mL LB broth tube for
3 h at 30 °C to maintain motility under constant shaking
until mid-log phase (0.6 OD). Then 0.5 μL of the mid-log
bacterial growth was taken directly from the culture tube
and inoculated at the center of the chip, and immediately
covered with a 3-mm-diameter cover glass to prevent
evaporation.
Images were taken in a Nikon 90i upright microscope

(Nikon Instruments Inc., Melville, NY) with an Andor Neo
5.5 sCMOS camera (Andor Inc., Concord, MA) using a
Nikon 4X Plan APO λ objective. A 3 × 3 stitch field was
used, with 0.5-sec exposure times per field, so each
stitched field took approximately 5 sec to accumulate.
Stitched fields were taken every 2 or 5 min. Images were
stitched together using NIKON ELEMENTS software [10] and
later analyzed with ImageJ software [11] and MATLAB

software (MATLAB and Statistics Toolbox Release
2019b, The MathWorks, Inc., Natick, MA). Stitching of
high-magnification images allowed us to detect individual
bacteria while still observing the global dynamics of the
bacteria.

III. RESULTS

A. Mazes

We first show the maze escape experiments. In a
microfabricated maze with one inlet and one outlet but a
large internal array of paths, it is virtually impossible to
have zero pressure difference between the input and output
ports, and thus there is typically a very gentle fluid flow
through the device. We use 40-nm-diam red fluorescent
beads in an attempt to track the flow, but the velocity of the
flow, estimated to be under 1 μm= sec in the narrow
channels and under 0.01 μm= sec in the open areas, is
low and overwhelmed by diffusion of the beads, while
larger beads simply sink and stick to the surfaces and are
immobile.
Motile bacteria are sensitive to net biases in flow, called

rheotaxis [12], and may also simply be unable to swim
against too strong a flow velocity. As we show, depending
on the sign of the flow into or out of the maze entrance, the
collective bacteria population escape dynamics are quite
different, which we attribute here to changes in the bacterial
population dynamics rather than rheotaxis. Since the flow
velocities are so low that they are difficult to directly
measure, we assume a net flow to be outbound from
the entrance to the exit if individual bacteria when
inoculated immediately enter the maze. Figure 2 shows a
series of images of a run with single bacterial resolution.
Supplemental Material video smovie-1 [13] shows the full
movie. Visualization of individual bacteria at the movie
length scale shown is difficult to detect by eye, but easily
captured using ImageJ software.
For an outflow situation, it should be no surprise that

bacterial flow out of the maze along the shortest path even
if they are not chemotactic, or even not motile due to pure
advection of the medium. Since we are able to track the
bacteria individually in the case of low number density it is
also possible to measure the number density ρðx; tÞ of
the number of bacteria along the shortest path through
the maze.
We compute at time t the number of bacteria Sðx; tÞ

which have gotten to a distance x or greater for both
chemotactic and nonchemotactic bacterial strains, a form of
a survival function [14]:

Sðx; tÞ ¼ 1 −

R
x
Lent

ρðx0Þdx0R Lexit
Lent

ρðx0Þdx0 ; ð3Þ

where Lent → Lexit is the path of length L ¼ Lexit − Lent
from entrance to exit. Figure 2 shows Sðx; tÞ as a function
of distance along the shortest path out of the maze versus
time at 270 and 360 min for chemotactic bacteria and
nonchemotactic bacteria. Figure 2 shows that the chemo-
sensitive and chemoinsensitive bacteria have very different
survival functions Sðx; tÞ, with the chemosensitive bacteria
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presenting a power-law decay for Sðx; tÞ, while chemo-
insensitive bacteria have an exponential survival curve.
We are most interested in the number distribution of the

bacteria in the maze versus time. Since we see power-law
distributions and not exponentials, this indicates some form
of chemotaxis is occurring. One possibility is a biased
random walk, which in the limit of all bacteria having the
same bias still yields exponentials in contradiction to the
data, but could yield rapid passage. However, we do not
explicitly introduce known powerful chemoattractants such
as L aspartate, and whatever gradient exists must be quite
gentle since our path is 3 × 104-μm long. Thus, we would
guess that the results of Nagy et al. [15] for weak
chemoattractants such as L lysine over gradients on the
order of 100 mM=1000 μm to be UPPER values for what
biased chemotaxis in LB would yield since our gradient is
about 1=20 their gradient. In the work of Nagy et al. it takes
about 4 h for E. coli to segregate over 1=20 our length scale.
With weak-biased chemotaxis a weak-biased random walk
should take least 80 h. We believe a homogeneous-biased
walk does not explain our result.
Power-law probability distributions are indicative of a

non-Markov (persistent) walk where the bacteria do not
randomly choose step sizes after each step, but rather show
a persistent distribution in step sizes gðlpÞ, where lp is the

persistent step size of a given bacterium, which is main-
tained from step to step. Assuming then a power-law
distribution of gðlp; tÞ, we map this step size over to an
effective diffusion constant distribution gðD; tÞ. The prob-
ability Pðx; tÞ then of finding a bacterium at position x at
time t becomes, assuming a Gaussian kernel for PDðx; tÞ
for a given diffusion constant,

Pðx; tÞ ¼
Z

Dmax

Dmin

gðD; tÞPDðx; tÞdD: ð4Þ

If we assume that gðD; tÞ ∼D−γðtÞ, the spatial-dependence
part of the survival function becomes

Sðx; tÞ ∼ x1−2γðtÞ: ð5Þ

Since we see a power-law survival distribution as is
predicted by Eq. (5), the conclusion seems to be that in
a maze in outflow conditions the bacteria lock into a power-
law distribution of step sizes in a non-Markovian walk,
which is different from the Markovian-Levy random flight
model of bacterial searching since each bacterium chooses
stochastically a different step size with each iteration
[16,17]. Here, we have long steppers and short steppers
which are fixed phenotypes. Note that this distribution

FIG. 2. (a) Stitched traces of chemotactic bacteria entering the maze with an outward flow from time of entry to the maze to exit of the
maze. We have superposed the maze with red hexagons; the shortest path is shown with blue hexagons. (b) Survivor curves for bacteria.
The solid green and blue lines are for nonchemotactic and chemotactic bacteria respectively at t ¼ 360 min from maze entry; the dashed
green and blue lines are for nonchemotactic and chemotactic bacteria respectively at t ¼ 270 min from maze entry. The solid and
dashed red straight lines are power-law fits to the survival function for chemotactic bacteria.
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gðlp; tÞ is rather like the power-law distribution of relax-
ation times seen in proteins frozen in at low temperatures
[18]. The work of the Emonet group analyzing the motion
of chemosensitive bacteria and spatial self-organization is
related to what we see here [19].
The evolutionary advantage to such a power law might

be that there exist chemotactic “pioneers” which explore
regions rapidly tumbling, and conservatives which explore
spaces more slowly, a theme which is now becoming
evident from agar plate work [20,21] and now reveals
itself in a more realistic maze environment with outflow.
The bacterial population dynamics in a maze for inflow

conditions are very different but perhaps connected to the
outflow situations we just presented. Figure 3 shows as a
series of stitched images of a population of bacteria
introduced to the center of the maze with what we believe
was a net inward speed from the exit to the entrance in the
narrow channels of under 1 μm= sec (which corresponds to
about 0.03 μm= sec in the open hexagonal habitats). For a
period of approximately 6 h the bacteria basically do not
(possibly cannot individually) enter the maze but rather

build in density by reproduction until suddenly a collective
surge of bacteria enters the maze, conquering the inward
flow. Once the collective entry occurs a solitary wave of
bacteria penetrates the maze and after a period of several
hours collectively exits the maze, in a time far shorter than a
simple random walk. Note that the maze fills out in a
nonergodic manner, but not the sole path shown for outflow
conditions. The full movie can be found in Supplemental
Material video smovie-2 [13].
The average speed of the wave moving through the maze

is approximately 1 μm= sec in the open habitat hexagons
moving toward the exit. Note also that by no means do all
of the bacteria track with the main wave front: There are
bacteria which lead the main front; there are also bacteria
which do not continue to move with the wave front through
the maze but drop out, as shown in Fig. 3. These front-
leading bacteria are presumably different from the bacteria
which entered the maze before the wave formed. The wave
also leaves behind “bet hedgers” bacteria no longer
traveling with the wave front. Although passive chemical
waves can navigate mazes [22], they show little of this

FIG. 3. Stitched images of bacteria entering a maze with a net collective inward flow at selected times. We have superposed the maze
as red hexagons, the shortest path is shown with blue hexagons, in every other time slice.
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complexity. The biological origins of this complexity,
which we assume provides a fitness advantage, we do
not know.
It is clear from Fig. 3 that the wave-propagating bacterial

front does not uniformly fill the array but rather that some
areas are populated more than others. If the collective wave-
propagation front is merely due to classic bacterial Patlak-
Keller-Segel (PKS) chemotactic response [23,24], at every
maze path junction the wave should bifurcate equally into
all exiting channels since initially there is no chemical clue
which way to go. However, the wave seems to preferen-
tially choose the path which has the shortest path to the next
node. Figure 4 shows graphically an example of this: At
node C in the maze an incoming solitary wave is faced exits
to five outgoing channels, only one of which leads to the
shortest path to the next major node. Although all five

nodes are entered, the majority of the wave population
entering the node chooses the correct shortest path. Exactly
how this preferred selection of the “correct path” occurs we
do not know, but it may be connected to the leading edge
pioneer bacteria.

B. Fractals

Fractals pose a different challenge to bacteria but we see
strategies related to the maze solutions. Since the fractal
had no exit the flow issues of the maze work are not
present, but we see both strategies observed in the maze
experiment used in a fractal to good effect. Figure 5
presents six time frames of bacterial density vs time
after bacterial inoculation in our fractal. A video of
this can be seen in the Supplemental Material video
smovie-3 [13]. In the first three frames the fractal traps

FIG. 4. (a) Inflow maze at t ¼ 710 min after inoculation. The dotted square is node C in Fig. 1. (b) Enlarged view of node C at
710 min. (c) Bacteria number per hexagon at t ¼ 650 min. The red line is a fit to the solitary-wave solution of the PKS equations:
a sech2ðxÞ function [25]. (d) Sequence of the scattering of a wave as it enters and leaves node C, frames taken every 2 min. (e) Bacterial
wave entry and exit populations in maze node C. The width of the line presents the bacteria density at the peak of the wave, the slope of
the line indicates the wave speed.
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the chemosensitive bacteria, that is the fractal serves as a
pump to chemotactic swimmers to the smallest length scale
of the fractal.
We measure the probability distribution of this initial

trapping by measuring the local bacterial density ρðr; tÞ at
radius r from the inoculation center occupied by bacteria.
This trapping only occurs for chemosensitive bacteria.
Simple random walkers, even in a fractal landscape,
should show a Gaussian distribution for ρðr; tÞ, which
we verify both by running nonchemosensitive bacteria
(strain RP9535 Δ cheA) as seen in Fig. 5, and by running
a simulation on MATLAB (see Supplemental Material
smovie-4, smovie-5, and Appendix D [13]).
For chemosensitive bacteria after inoculation the bacte-

rial density distribution is initially a power-law distribution
in space like the bacteria moving into a maze as we
discussed above, as seen in Fig. 5(a). Because of the
termination of fractal at the smallest scale, the leading
bacteria become trapped and the distribution becomes
inverted, with a probability distribution increasing with
radius, rather than decreasing with distance, as seen in
Fig. 5(b). This initial fractal trapping of bacteria shows no
collective dynamics and can be compared to the outflow
bacterial dynamics of the maze followed by pileup at the
fractal cutoff scale due to fractal pumping.

After the fractal trapping stage, counterpropagating
collective waves are launched throughout the fractal, one
set is launched from the inoculation port side outward, the
other set is launched from the fractal pumped termini of the
smallest scale fractal leaves inward. These outgoing and
ingoing waves collide, bifurcating and scattering as we
show in Fig. 4 at fractal levels, with the scattered waves
moving into all arms of the fractal tree. The synchroniza-
tion of the two counterpropagating waves and the bifurca-
tion of the colliding waves into regions of low bacterial
density would seem to strongly argue for a high degree of
bacterial communication during this collective dynamics.
Although these synchronized waves are best appreciated in
the Supplemental Material video smovie-3 [13], Fig. 6
shows some stages of the collective dynamics.
The net effect of these counterpropagating collective

waves is to defeat the fractal-pumping phenomena and end
with a uniformly filled (ergodic) fractal tree.

IV. ANALYSIS

There are four fundamental phenomena seen here as we
challenge bacteria with complex topologies: (1) individual
bacterial exploration with a time-invariant non-Gaussian
probability distribution; (2) collective waves which solve

FIG. 5. (a) Sequence of stitched images of chemosensitive bacteria after inoculation in a fractal at the indicated times.
(b) Nonchemosensitive bacteria slowly diffuse into the fractal and show no pumping or collective dynamics.

BACTERIAL ROUTE-FINDING AND COLLECTIVE ESCAPE IN … PHYS. REV. X 10, 031017 (2020)

031017-7



mazes by path selection at maze nodes; (3) bet hedging
for a fraction of the collective wave bacteria; (4) escape
for bacteria from fractal pumping by collective wave
scattering.
The collective waves we see are not due to a Fisher-

Kolmogorov population nonlinearity [26] because they are
only observed for chemotactic bacteria, but rather are
connected to PKS chemotactic waves. These waves are
not true solitons since they collapse and scatter when they
collide with each other. In the maze we constructed with
loops this collapse of colliding waves serves to facilitate
killing the endless looping in the maze: Awave that enters a
loop can collide with another wave and the resultant
collapse stops the entry process. However, the scattering
process also seems to direct the incident wave into shortest
path exit channels.
That the PKS equations by no means represent the full

range of bacterial approaches to exploring a nontrivial maze
can be seen from the outflow maze experiments, where no
obvious collective waves form yet the maze is rapidly
solved with a non-Gaussian probability distribution. For the

fractal a different phenomenon occurs: Fractal pumping
traps bacteria and collective waves untrap the bacteria. The
challenge in a fractal is different from a maze; unlike a
maze a fractal is self-similar, there are no topological clues
in a fractal as to where a walker is within the structure.
Furthermore, scale invariance predicts that the habitat area
Si and channel lengths li connecting areas as your proceed
down the fractal must satisfy the following scaling laws for
a systems of habitats of size fSng connected via tunnel of
width fwng and length flng with the scale decreasing at a
constant factor ζ between consecutive levels:

Snþ1

Sn
¼ ζ2;

wnþ1

wn
¼ lnþ1

ln
¼ ζ: ð6Þ

In such a train of decreasing areas Sn we expect that for
chemosensitive bacteria there will be a continuous cascade
of population collapse because the sign of κ in the PKS
equations drives bacterial aggregation. In our fractal device
ζ ¼ 5=8. Chemotactic signaling driven collapse favors
bacteria moving from large areas Slarge to smaller adjacent

FIG. 6. (a) Bacterial density (in unit of 8 × 108 cells=mL) vs distance from the inoculation port at t ¼ 45 min after inoculation.
The red line is a fit to power law. (b) Bacterial density (in unit of 8 × 108 cells=mL) from inoculation port to furthest fractal level at
t ¼ 240 min from inoculation showing population inversion due to fractal pumping. The red line is a fit to theoretical model using PKS
equations (see Appendix C). (c) Image sequence of colliding collective waves scattering into adjacent fractal leaves. Green arrows
display the incident and scattering waves.
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areas ζSlarge because for the movement of a given bacteria
from large to small the effective density of the bacteria
increases ρ, and so does the effective concentration of the
chemoattractant c. The actual time dependent nonlinear
dynamics of this process is extremely complex (see
Appendix C), but in the limit of assuming that the food
concentration f is fixed and ignoring bacterial growth and
death processes, the bacterial density difference Δρ ¼
ρnþ1 − ρn is roughly given by

∂tΔρ ∼ κα

�
1

ζ
− 1

�
ΔρΔc; ð7Þ

where we have lumped all fixed parameters in α, and Δc is
the (time and bacterial density dependent) chemoattractant
concentration difference cnþ1 − cn. Equation (7) although
an approximation, cannot be integrated analytically but it
demonstrates the qualitative phenomena of fractal pump-
ing: There is no pumping if ζ ¼ 1 (see Appendix D), while
decreasing ζ results in more rapid population collapse.
Figure 6(b) shows a fit of Eq. (7) of the bacterial density
along one sector of the fractal at t ¼ 240 min after
inoculation. This pumping is not stable but decays due
to backward wave propagation.
In the absence of backward propagating collective waves

a fractal is then a trap for chemosensing bacteria and there
is no escape from the smallest structures of area ζ12So. This
makes the fractal structures extremely dangerous both to
the individual infected with bacteria and to the bacteria
themselves since they will increase in numbers to very high
densities driven by fractal pumping. The only way out is to
launch collective waves in both directions; when two of the
waves collide this results in the scattering of both waves,
as is seen in Fig. 6, and the eventual ergodic filling of the
entire fractal.

V. CONCLUSIONS

Natural complex topologies form challenging existential
puzzles for bacteria. Billions of years of evolution have
shaped the response of bacteria to these puzzles, whose
solutions can be found in how bacteria such as the common
E. coli respond collectively and individually to challenges.
We pose challenges to bacteria in forms of mazes and
fractal spaces, and show the unexpected and clever, if we
can say that word about bacteria, way in which they are
able to path find their way through a non-simply-connected
maze, and escape from the trap of fractal pumping.
There are controversial aspects of this work we freely

admit. Modeling of the collective dynamics is difficult.
Unfortunately the PKS equations are highly nonlinear and
cannot be solved analytically. Assumption of fixed food
concentration such as we have done is the simplification
needed to get the solution of fractal pumping in a nice
analytic form, which we expect to be due to geometric
reasons (or at least insensitive to the food change).

We believe that you need both geometry and also chemo-
tactic sensing to fully understand our results.
Even modeling of the individual bacterial behavior is

challenging. While using the random-walk results provides
a useful benchmark, we find that the biased random walk is
informative for the presumed outflow case, but it fails
miserably for the inflow case which is really driven by
collective dynamics, launching wave against the flow.
A third possibility to help understand our results is

modification of the environment itself by the bacteria
in a semipermanent way by surface modification. In fact,
we think something like this could be happening in the
maze (this is called in the mathematics of maze solving
literature the “Hansel and Gretel” mode of solving
a maze, where an agent leaves a trail behind which can
be followed later.
There are many puzzles to be continued as we explore

these ancient organisms. Although we know a great deal
about the basic biological physics of chemotaxis [27], it is
clear that much remains to be done to clarify more complex
collective aspects.
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APPENDIX A: SEARCH TIMES IN MAZES

Finding the exit from a maze for bacteria can be quite
formidable in terms of time if a simple random-walk
algorithm is used because typically a very circuitous path
of long length must be followed to the exit. If we assume
that bacteria simply do a random walk over the shortest
path of length xfinal, it is straightforward to calculate the
mean first-arrival time of N bacteria at a position xfinal,
ignoring the effects of dead ends and branching decisions.
The probability density ρðx; tÞ of a bacteria to arrive at
position x after time t for a random (Markov process)
walker is given by a Gaussian distribution:

ρðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
πDbt

p e−x
2=4Dbt; ðA1Þ

where Db is the effective diffusion coefficient of a swim-
ming bacteria. Hence, the probability PLðtÞ for a bacteria to
reach the exit of the maze at time t is

PLðtÞ ¼
Z

∞

L
dxρðx; tÞ ¼ erfc

�
Lffiffiffiffiffiffiffiffiffiffi
4Dbt

p
�
; ðA2Þ
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where erfc is the error function. Therefore, the expected
time T for 1 bacterium out of N total bacteria to reach the
exit can be estimated to be

T ¼
�
erfcI

�
1

N

��
−2 L2

4Db
; ðA3Þ

where erfcI is the inverse error function. Assuming forDb a
diffusion coefficient of 300 μm2= sec [28], this yields
formidably long first-arrival times for bacteria. Increased
numbers does not help much, the mean first-arrival times
scale inversely with the log of the number of bacteria using
the generalized Puiseux series for N ≫ 1:

T ≈
�
lnN −

1

2
ln

�
π lnN −

π

2
ln
π

2

��
−1 L2

4Db

∼
1

lnN
: ðA4Þ

APPENDIX B: FRACTAL ENVIRONMENT

1. Generating our fractal

Our fractal is built from habitats and tunnels at many
different scales (see Fig. 7). A leaf is a single habitat with a
single tunnel, connected to another habitat that we add it
on. A linking number of a habitat is the number of tunnel
connected to it. Our α-fold fractal is generated step by step
as follows:

Step 0.—Create a single habitat.
Step 1.—Add α leaves to the habitat.
Step n ≥ 2.—For every habitat, given its linking number
p: (1) If p ¼ 1, add α − 1 leaves to it. (2) If p > 1, add
p leaves to it.

It should be noted that the physical size of the leaves is
decreasing with steps. The difference in length scale
between leaves of consecutive steps is a constant scale
factor ζ ≤ 1.

2. Calculating the fractal dimension

We follow Ref. [29] to calculate the fractal dimension. In
short, given the number of structures N ðnÞ (the number of
leaves at step n) at the characteristic length scale λðnÞ ∼ ζn

(the length scale of the leaves at step n), the fractal
dimension D can be estimated by

D ¼ − lim
n→þ∞

lnN ðnÞ
ln λðnÞ : ðB1Þ

If this limit is well defined, our geometry has a definite
fractal dimension.
Note that the number of added leaves is equal to the

number of added habitats at every step n > 0. For n ¼ 0,
the number of added habitats is simply 1. Define the
number of habitats added at step n to be N ðnÞ, then

N ð0Þ ¼ 1; N ð1Þ ¼ α;

N ð2Þ ¼ αðα − 1Þ þ α ¼ α2: ðB2Þ

Given the rules generating our fractal, any habitat added at
step n > 0 will be added (α − 1) leaves at step nþ 1, α
leaves at step nþ 2, 2α leaves at step nþ 3; ...; 2kα leaves
at step nþ kþ 2;…. Therefore, for every step n > 1 one
has the recursion relation

N ðnÞ ¼ ðα − 1ÞN ðn − 1Þ þ
Xn−2
j¼0

2n−2−jαN ðjÞ: ðB3Þ

Consider a shift by 1 in the recursion relation

N ðnþ 1Þ ¼ ðα − 1ÞN ðnÞ þ
Xn−1
j¼0

2n−1−jαN ðjÞ: ðB4Þ

Therefore,

N ðnþ 1Þ − 2N ðnÞ

¼
�
ðα − 1ÞN ðnÞ þ

Xn−1
j¼0

2n−1−jαN ðjÞ
�

−
�
2ðα − 1ÞN ðn − 1Þ þ

Xn−2
j¼0

2n−1−jαN ðjÞ
�

¼ ðα − 1ÞN ðnÞ þ ð2 − αÞN ðn − 1Þ: ðB5Þ

The recursion relation now becomes much more local:

N ðnþ 1Þ ¼ ðαþ 1ÞN ðnÞ þ ð2 − αÞN ðn − 1Þ: ðB6Þ

Since Eq. (B3) holds only when n > 0, we can rewrite
Eq. (B6) as followed when n > 2:

N ðnÞ ¼ ðαþ 1ÞN ðn − 1Þ þ ð2 − αÞN ðn − 2Þ: ðB7Þ

From the initial values (B2), one solves the above recursion
relation and arrives at a complicated expression of the form

FIG. 7. The building of our fractal with a-fold, step-by-step
from left to right. Here the parameter α ¼ 3.
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N ðnÞ ¼ cþγnþ þ c−γn−;

c� ¼ −
α½α − 5�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − 1Þ2 þ 8

p
�

2ðα − 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − 1Þ2 þ 8

p ;

γ� ¼ αþ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − 1Þ2 þ 8

p
2

: ðB8Þ

Plug this into (B1), one gets

D ¼ −
ln γþ
ln ζ

¼ ln 2 − ln ½αþ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα − 1Þ2 þ 8

p
�

ln ζ
: ðB9Þ

For ζ ¼ 1=2 and α ¼ 3, D ≈ 1.90. For ζ ¼ 5=8 and α ¼ 3,
the dimensionality is close to that of a human lung
D ≈ 2.80.

APPENDIX C: GEOMETRICAL INFLUENCE
ON BACTERIAL COLLECTIVE DYNAMICS

The amplification of bacterial collapse in a multiscale
environment can be explained theoretically with a non-
linear model of E. coli chemotaxis signaling network,
which will be described in this section.
Consider a simple geometry that captures the multiscale

nature—a system of habitats of size fSng connected via
tunnel of width fwng and length flng with the scale
decreasing at a constant factor between consecutive levels.
We end this multiscale series at level N (see Fig. 8):

S0→
w1;l1 S1→

w2;l2 S3→
w3;l3

…

→
wn;ln Sn→

wnþ1;lnþ1

…→
wN;lN SN: ðC1Þ

For level 0 being the largest structure, the factor ζ has to be
smaller than unity. The relation between consecutive levels’
geometrical values, as the length scale goes for a constant
scale factor ζ:

Snþ1

Sn
¼ ζ2 ⇒ Sn ¼ ζ2ðn−NÞSN;

wnþ1

wn
¼ ζ ⇒ wn ¼ ζn−NwN;

lnþ1

ln
¼ ζ ⇒ ln ¼ ζn−NlN: ðC2Þ

The basic starting point for understanding collective
bacteria dynamics is the Patlak-Keller-Segel equations
[30,31], which in general are of the form

∂tb ¼ χbðb; c; fÞ þDb∇2b − κbc∇ðb∇cÞ; ðC3Þ
∂tc ¼ χcðb; c; fÞ þDc∇2c; ðC4Þ
∂tf ¼ −χfðb; c; fÞ þDf∇2f: ðC5Þ

The densities of bacteria, chemoattractants, and food are
given by the field b, c, and f; the reproduction rate χb of
bacteria, the production rate χc of chemoattractants, and the
consumption rate χf of food in general depends on both b,
c, and f; the diffusivity coefficients of bacteria, chemo-
attractants, and food are Db, Dc, Df; the chemotaxis
signaling can be represented by the sensitivity of bacteria
to the chemo gradients, which has the sensitivity coef-
ficient κbc.
For simplification, wewill look at the limit where there is

no bacterial production and food concentration stays fixed:

χb → 0; f → f� ¼ const: ðC6Þ

Now, for the explicit form of χc, we will use the model in
Brenner et al. [25]:

χcðb; c; fÞ ¼ βfb: ðC7Þ

Equations (C3) and (C4) become

∂tb ¼ Db∇2b − κbc∇ðb∇cÞ; ðC8Þ

∂tc ¼ βf�bþDc∇2c: ðC9Þ

1. Bacteria collapse due to chemotaxis

Consider the geometry given in Fig. 8 with N ¼ 1 (a
small habitat size S1 connects to a big one size S0 ¼ ζ−1S1
via a long and narrow tunnel w1 × l1), using the mean-field
approximation inside the habitats and across the tunnels
with the bacteria density fb0; b1g and chemo concentration
fc0; c1g, the dynamics becomes

∂tðS0b0Þ ¼ Db
w1

l1
ðb1 − b0Þ − κbc

w1

l1

b0 þ b1
2

ðc1 − c0Þ;

∂tðS1b1Þ ¼ Db
w1

l1
ðb0 − b1Þ − κbc

w1

l1

b0 þ b1
2

ðc0 − c1Þ;

ðC10Þ

∂tðS0c0Þ ¼ S0βf�b0 þDc
w1

l1
ðc1 − c0Þ;

∂tðS1c1Þ ¼ S1βf�b1 þDc
w1

l1
ðc0 − c1Þ: ðC11Þ

FIG. 8. A simple multiscale geometry that can be used to
demonstrate the amplification of bacterial collapse and fractal
attraction.
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To demonstrate how chemotaxis signaling leads to the
bacterial collapse phenomenon, drop diffusion terms from
the equations. Define

Δb ¼ b1 − b0; Δc ¼ c1 − c0: ðC12Þ

Since there is no bacteria growth,

b̄ ¼ S1b1 þ S0b0
S1 þ S0

¼ b0 þ ζ−1b1
1þ ζ−1

¼ const: ðC13Þ

From Eqs. (C10) and (C11), after some algebraic manip-
ulations,

Δb ¼
1

βf�
∂tΔc;

ζ

1þζ
S0∂2

tΔc ¼
κbc
2

w1

l1

�
2b̄þ 1−ζ

1þζ

1

βf�
∂tΔc

�
Δc: ðC14Þ

Linear order gives instability

∂2
tΔc ≈ ð1þ ζÞκbcb̄

w1

S1l1
Δc

⇒ Δb ∼�e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þζÞκbcb̄ðw1=S1l1Þ

p
t: ðC15Þ

Note that we arrive at the same behavior found by Park
et al. [32]—an exponential collapse.
The � indicates that the collapse seems to be able to

happen both ways—into the small habitat or into the large
one, in which the later is not physical and has not been
observed experimentally. Indeed, to get rid of the unphys-
ical solution from a theoretical point of view, one has to
keep the full nonlinear order

∂2
tΔc ¼ð1þζÞκbc

2

w1

S1l1

�
2b̄þ 1−ζ

1þζ

1

βf�
∂tΔc

�
Δc: ðC16Þ

From here then on, to get the positive or negative sign
correctly, without loss of generality we consider ζ ≤ 1 as
similar considerations can be donewith ζ ≥ 1with sign flips.
For Δb ∼ ∂tΔc (C14) negative < 0, the difference Δc

cannot grow arbitrarily large negatively—it is bounded
from below:

∂tΔc ≥ −2
1þ ζ

1 − ζ
βf�b̄

⇒ Δb ≥ Δb

����
min

¼ −2
1þ ζ

1 − ζ
b̄: ðC17Þ

Hence, collapse will not happen in that direction, and even
fluctuation of density due to bacteria randomly walking
around can already surpass such a limit (make the bacteria
go back) when the number of bacteria in the system (as the
average density) is low enough:

−Δb

����
min

≲ 1

hS0
þ 1

hS1
⇒ b̄ ≲ 2ð1 − ζÞ

hS1
: ðC18Þ

Note that h is the depth of the environment. The above
estimation is done by letting one single bacterium going
from S1 to S0 cause a density change high enough to
surpass Δbjmin. For ζ ≪ 1, just a few bacteria getting inside
S1 might already make the density b1 much larger than that
of b0.
For Δb ∼ ∂tΔc (C14) positive > 0, the difference Δc can

grow arbitrarily large positively—it is unbounded from
above. At large time t behavior,

∂tΔc ≫ 2
1þ ζ

1 − ζ
βf�b̄

⇒ ∂tΔc ≈ ð1þ ζÞ κbc
4βf�

w1

S1l1
∂tðΔ2

cÞ: ðC19Þ

Note that the solution here is singular—the bacteria density
can grow to infinity in finite time, and the smaller S1 the
stronger the collapse. However, physically, there should be
a cutoff on how much the density can be due to the volume
Ω of a bacterium:

bjmax ≲ 1

Ω
: ðC20Þ

This concludes our theoretical analysis on how bacteria
collapse n into smallest structures.

2. A physical model for fractal pumping

Consider the geometry given in Fig. 8 with N ≫ 1, using
the mean-field approximation inside the habitats and across
the tunnels with the bacteria density fbng and chemo
concentration fcng, the dynamics becomes

∂tðSnbnÞ ¼ Db
wn

ln
ðbn−1 − bnÞ þDb

wnþ1

lnþ1

ðbnþ1 − bnÞ

− κbc
wn

ln

bn−1 þ bn
2

ðcn−1 − cnÞ

− κbc
wnþ1

lnþ1

bnþ1 þ bn
2

ðcnþ1 − cnÞ; ðC21Þ

∂tðSncnÞ ¼ Snβf�bn þDc
wn

ln
ðcn−1 − cnÞ

þDc
wnþ1

lnþ1

ðcnþ1 − cnÞ: ðC22Þ

Since the physical cutoff comes from the smallest struc-
tures, having the length scale comparable to that of a
bacteria, we will keep SN , wN , and lN fixed while the total
number N of levels can be changed:

SN ¼ S�; wN ¼ w�; lN ¼ l�: ðC23Þ
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Note that, for every tunnel, the aspect ratio is the same:

wn

ln
¼ w�

l�
¼ σ: ðC24Þ

Using the multiscale relations—Eq. (C2)—one arrives at

ζ2ðn−NÞS�∂tbn ¼ σDbðbnþ1 þ bn−1 − 2bnÞ

− σκbc

�
bn−1 þ bn

2
ðcn−1 − cnÞ

þ bnþ1 þ bn
2

ðcnþ1 − cnÞ
�
; ðC25Þ

ζ2ðn−NÞS�∂tcn ¼ ζ2ðn−NÞS�βf�bn
þ σDcðcnþ1 þ cn−1 − 2cnÞ: ðC26Þ

The above system of 2N ordinary differential equations is
very hard to deal with, analytically. To go further, we will
use the continuous representation for n so that the system
becomes 2 partial differential equations:

bn → bðnÞ; cn → cðnÞ; ðC27Þ
ζ2ðn−NÞS�∂tb ¼ σDb∂2

nb − σκbc∂nðb∂ncÞ; ðC28Þ
ζ2ðn−NÞS�∂tc ¼ ζ2ðn−NÞS�βf�bn þ σDc∂2

nc: ðC29Þ
At stationary distribution of bacteria, Eq. (C28) leads to

∂tb ¼ 0 ⇒ Db∂2
nb ¼ κbc∂nðb∂ncÞ

⇒ b ∼ eðκbc=DbÞc: ðC30Þ
Bacteria density depends exponentially on chemo concen-
tration is a feature of the nonlinearity of bacteria-chemo
interaction.
To get some intuition, note that the physical role of the

chemo to the random-walking self-propelled E. coli are
similar to that of the energy potential (profile V) to particles
(with density ρ) at thermal equilibrium (at temperature T):

b ∼ eκbc=Dbc ↔ ρ ∼ e−V=kBT

c ↔ −V: ðC31Þ
Hence, we will quantify the bacterial attraction with the
chemo density c.
Equation (C29) can be rewritten as

∂tc ¼ βf�bþ ζ−2ðn−NÞ σ
S�

Dc∂2
nc: ðC32Þ

In the fast chemoattractant diffusion limit Dc ≫ Db, for
linear terms one can ignore the time-variation contribution
∼∂tc compared to that of the spatial-variation contribution
∼∂2

nc and do the approximation

Dc → þ∞ ⇒ 0 ≈ βf�bþ ζ−2ðn−NÞ σ
S�

Dc∂2
nc: ðC33Þ

Physically speaking, the chemoattractant field is treated as
background. It should be noted that this approximation is
also made in Brenner et al. [25].
Since bacterial collapse happens most strongly at the

smallest scale structures, let us use the maximum possible
bacteria density there bðNÞ ¼ B. Define

ΔðnÞ ¼ cðnÞ − cðNÞ: ðC34Þ

The boundary conditions for Δ at the smallest structure
(level N):

ΔðNÞ ¼ 0; ∂nΔðNÞ ¼ 0: ðC35Þ

Bacteria density can now be written as

b ¼ Beðκbc=DbÞΔ: ðC36Þ

Equation (C33) becomes

0 ¼ eðκbc=DbÞΔ þ ζ−2ðn−NÞ σ
S�

Dc

βf�B
∂2
nΔ: ðC37Þ

Redefine

Δ̃ ¼ κbc
Db

Δ; ζ̃ ¼ ζ−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDbDc=κbcβf�BÞðσ=S�Þ

p
;

ñ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κbcβf�B
DbDc

S�
σ

s
ðN − nÞ: ðC38Þ

One then arrives at

0 ¼ eΔ̃ þ ζ̃ñ∂2
ñΔ̃: ðC39Þ

The general solution of this equation has the form

Δ̃ ¼ ln

�
δ1
2
sech2

� ffiffiffiffiffi
δ1

p
2

ðδ2 þ ñÞ
��

− lnðζ̃Þñ: ðC40Þ

From Eq. (C35), the boundary conditions are

Δ̃ðñ ¼ 0Þ ¼ 0; ∂ ñΔ̃ðñ ¼ 0Þ ¼ 0: ðC41Þ

The matching gives

δ1 ¼ 2þ ln2ðζ̃Þ;

δ2 ¼ −
ln½1þ ln2ðζ̃Þ þ lnðζ̃Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ln2ðζ̃Þ

q
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ ln2ðζ̃Þ
q : ðC42Þ

It is quite a complicated expression. In the limit of a large
number of fractal orders N ≫ 1 and drastic change of scale
ζ ≪ 1, as n → N one has the approximation Δ̃ ∼ ñ2.
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To get bacteria distribution b from Δ, use Eq. (C36). The
function can then be used to compare with results observed
from experiments [see Figs. 9 and 6(b)].

APPENDIX D: NONCHEMOSENSITIVE
BACTERIA AND NO FRACTALS

We test the role that chemotaxis plays in the role of
fractal pumping by inoculating a fractal with a strain of
bacteria which while motile has no chemotaxis sensitivity,
strain RP9535 Δ cheA. Supplemental Material video

smovie-4 [13] shows a full video of the bacterial move-
ment, while Fig. 10 shows a snapshot of a simulation at
250 min. Without chemotaxis there is no fractal pumping.
The role of the fractal structure in driving bacteria can be

tested using a simple branching with ζ ¼ 1. An example is
shown in the Supplemental Material video smovie-6 [13].
This structure has branches which both simply terminate in
dead ends and branches connected via nanoslits to food
sources. There is no strong collective collapse into the dead
ends and no back propagation away from food sources.
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