Skip to Main content Skip to Navigation
New interface
Journal articles

Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex

Abstract : Defects in myosin VIIA are responsible for deafness in the human and mouse. The role of this unconventional myosin in the sensory hair cells of the inner ear is not yet understood. Here we show that the C-terminal FERM domain of myosin VIIA binds to a novel transmembrane protein, vezatin, which we identi®ed by a yeast two-hybrid screen. Vezatin is a ubiquitous protein of adherens cell±cell junctions, where it interacts with both myosin VIIA and the cadherin±catenins complex. Its recruitment to adherens junctions implicates the C-terminal region of a-catenin. Taken together, these data suggest that myosin VIIA, anchored by vezatin to the cadherin±catenins complex, creates a tension force between adherens junctions and the actin cytoskeleton that is expected to strengthen cell±cell adhesion. In the inner ear sensory hair cells vezatin is, in addition, concentrated at another membrane±membrane interaction site, namely at the ®brillar links interconnecting the bases of adjacent stereocilia. In myosin VIIA-defective mutants, inactivity of the vezatin±myosin VIIA complex at both sites could account for splaying out of the hair cell stereocilia.
Complete list of metadata
Contributor : andrée DIAKITE Connect in order to contact the contributor
Submitted on : Friday, April 23, 2021 - 10:11:40 AM
Last modification on : Thursday, May 19, 2022 - 1:52:03 PM

Links full text




Polonca Küssel-Andermann, Aziz El-Amraoui, Saaid Safieddine, Sylvie Nouaille, Isabelle Perfettini, et al.. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO Journal, 2000, 19 (22), pp.6020-6029. ⟨10.1093/emboj/19.22.6020⟩. ⟨pasteur-03206251⟩



Record views