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Abstract

Infection with ®vere acute respiratory syndrome coronavirus 2 (SBB&?2) inducesa complex antibody response that
varies by orders of magnitude between individuals and over time. Waning antibedls llead to reduced sensitivity of
serological diagnostic tests/er time This undermines the utility of serological surveillance as the - SARS pandemic
progressesnto its second yearHere we develop a multiplex serological test for measuringadies of three isotypes
(IgG, IgM, IgA) to five SARB\2 antigens(Sike (S) receptor binding domaifRBD,)NucleocapsidN), Soike subunit 2,
MembraneEnvelope fusion) and th&pike proteins of four seasonal coronavirusége measure antibody responseén
several cohorts of French and Irish hospitalized patients and healthcare workers followed for up to eleven months afte
symptom onset. Té data are analysed with a mathematical model of antibody kineticsqt@mntify the duration of
antibody responseaccounting foiinter-individual variation. One year after symptoms, we estimate that 3@%(range:
11%, 94%pf anti-SlgG remains, B% (9%, 8%) antiRBD IgG remains, and 7% (1%opnti-N IgGremains. Antibodies

of the IgM isotype waned more rapidiyjth 9% (2%, &%) antiRBD IgM remaining after one year. Antibodies of the IgA
isotype also waned rapidly, with 10% (3%%3 antiRBDIgA remaining after one year. Quantitative measurements of
antibody responsew/ere used to train machine learniraggorithms for classification of previous infection and estimation
of time since infection. The resulting diagnostic test classified previous infections with 99% specificity argb®8% (
confidence interval94%, 99%) sensitivityith no evidence for degling sensitivity over the time scale considered. The
diagnostic test also provided accurate classification of time since infection into intervals ®htonths, 3t 6 months,

and 6 t 12 months.Finally, we present a computatiahmethod for serologicaleconstruction of past SARDV2

transmission using the data from this tegshenapplied to samples from a single cresectional sereprevalence survey.



Introduction

Severe acute respiratory syndrome coronavirus 2 (SBB&), causingoronavirus disease 2019 (COMI®), has led to
widespread morbidity and mortalitsince its emergenc& heresponsdo the SARE0V/2 pandemigs critically dependent

on surveillance datamost notably numbers of COVID associated hospital admissions atehthsrecorded through
health systems surveillancas well a;mumbers of cases confirmed SAB®¥2 positive by PGRased testing Other tools

are providingcrucial complementary information, for example genomsigrveillance has been key to trackingeth
emergence of novel SAR®\2 variants. Seroloy, based on the detection of antibaesinducedby previous infection
with SARE0V2, representsanother category of surveillance informatith Appropriately designed sefarevalence
studies can providestimates of the proportion of a population who have been previously infe&kdoughno substitute

for health systems surveillanceero-prevalence wdies have the advantage of accounting for asymptomatic cases, and
symptomatic individuals who do ngresent tohealth systems. Sefprevalence studies also provide information on the

status of SARS0V2 epidemisin situations wheraecord keeping byealth systems isot possiblé.

Infection with SARS0V2 induces diverse humoral and cellular imreuresponse% Humoral immunity includes
antibodies of severammunoglobulinisotypestargeting SARS0V2 proteing most notably SpikéS)and Nucleaapsid

(N). The concentration of antibodies in blood varies substantially between individuals, and with dince
infection 7821011 Stydies of the duration of immunity to a range of coronaviruses demonstrated that antibieaiesn
detectablesix years after infectigrbut continue to wané?. Longitudinal followup of individuals infected with SAR®V

2 indicates a pattern of waningf antibody responses consistent with other coronavirdd¥s Within the first three
months, antibody levels boost sharply and wane rapidly. Over a longer interval of eight months, antibody levels wan
more slowly. These observations can be explainedh®sybiphasic nature of antibody kinetit’sin the first three months
antibodies are predominantly generatedby shortlived plasma cells in secondary lymphoid orgafige longterm
responsds dominated by antibodisfrom long-lived plasma cells in the bone marrow. This pattern gftmsic waning is

observed for infectionand vaccinénduced antibody responses to a wide range of pathodfeids1?

Initial concerns that waning antibody responses would lead tucedsensitivity of SARSoV2 serological diagnostics
over time have unfortunately been confirm&dUsing sekadministered lateral flow diagnostic tests, a sgmevalence
study of 365,000 adults after the first epidemic wanethe UKobserved signiGantly declining serg@revalence during
July to September 2020Using a laboratorpased assay for measuring ahtilgG antibodies, a serevalence survegf
blood donors from the Brazilian city of Manaus estimated th&# of the populatiorhad previowsly beeninfected™.
Application of a statistical adjustment to account fotibody waning led to an increased estimate of 76% previously
infected.As the pandemic progresses, this problem of declining sensitivity of serological diagnostics is lielyoice

potentiallyundermining the utility of sergorevalence studies.

Serological diagnosti¢gpicallyclassify a sample as positivaieasured antibodievelis greater than aefined cutoft

Analysis of quantitative rather than binary antiboldyels provide additional information for example antibody levels
3



are associated with time since infectissymptom severity, and s€However, large variation in antibody levels between
individualsprevents this from having predictive value: detectactibodies could bdérom arecent infection, ordue to
immunological memory of an infection that cleared a year ago. This limitaasmecentlypeenovercomefor a range of
pathogenghrough the combination of multiplex assays and classification algosttJsing machine learning algorithms

to analyse quantitative antibody responses to multiple antigens, the time since previous infection can be estimated fo

Plasmodium falciparummalarig®?, P. vivaxmalari&®, and choler&.

In this study we use multplex assays toneasure antibodies to SARR®V2 in health care workerand hospitalized
patients followed for up toelevenmonths after infection, andapply mathematical models to characterizntibody
kinetics in the first year following infection. Cldigstion algorithmswvere developedhat minimize the reduction in the
sensitivity of serological tests over time, in addition to estimatimg since previous infection from a single blood sample.
Finally, we present a method fgerological reconstruatin of past SARSoV2 transmissiorusing samples from a single

crosssectional survey.



Methods

Samples

A panel of 407 negative control serum or plasma samples was assembledregurandemic cohorts (before December,
2019) with ethicalapproval for broad antibody testin@lable 1) This included 258 serum samples frévalthy adult
French blood donorg81 serum samples from Peruvian healthy adult donors, and 69 plaamples from healthy adult
donors from the Thai Red Crogspanel o107 positive control serum samples was assembled from individuals with recent
SARE0V2 infection. This included 72 samples from patients in Paris hogpftald61 samples from Strasbourg
healthcare workers, all confirmed positive by F@Red testing. Also included werel74 samples from community

members of Gipy-en-Valois, France, confirmed seropositive by flow cytometry based té8tihg

The duration of antibody responses following SARS?2 infection was studied in longitudinal cohorts of hitalized
patients and healthcare workers. 213 serum samples from 194 patients in Dublin hospitals were collected, with date po
symptom onset extending to four months. 724 serum samples from 347 healthcare workers in Strasbourg hospitals we

collected, vith date post symptom onset extending to nine months

In April 2020, our team implemented a study of the sprevalence of SARS0V2 in healthcare workers from Institut
Mutualiste Montsouris, a hospital in Parerum samplesvere collectedrom 769 healthcare workersand tested with
our multiplex assay¥ppendix Figur&). Healthcare workers who tested sepmsitive in April 2020 were invited to present

a second sample in January 2021. In total we obtained felipwamples from 29 healthcare workers

Tablel: Panels of sample#Age and days post symptom onset are presented as median and ranges.

cohort status participants samples PCR age gender days post
positive (years) (% male) symptoms
Etablissement Francais pre-pandemic 45 45 >18
du Sang 1 negative contras
Etablissement Francais pre-pandemic 213 213 42 (18,81) 40%
du San@® negative contrad
Thai Red Cross pre-pandemic 68 68 >18
negative contrad
Peruvian donors pre-pandemic 81 81 >18
negative contrad
Hépital Bichat hospitalized patients 2 8 2 31 (30, 32) 100% 14 (8, 24)
(Paris, France)
Hépital Cochin hospitalized patients 64 64 64 55 (25,79) 76% 17 (10, 28)
(Paris, France)
Strasbourg hospitall  infected healthcare workers 161 161 161 32(20,62) 31% 24 (13, 39)
Ceépy-en-Valois infected community members 154 174 0 17 (15,56) 34%
community (flow cytometrypositive)
Dublin hospitals hospitalized patients 194 213 194 55 (21, 92) 47% 13 (1, 126)
Strasbourg hospitals 2 follow-up ofinfected 347 724 347 41 (21,74) 23% 132 (11, 284)
healthcare workers
Institut Mutualiste sero-prevalence survey in 769 769 20 41 (18, 72) 27%
Montsouris healthcare workers
(Paris, France) (unknown status)
Institut Mutualiste follow-up of seraepositive 29 29 12 37 (24, 63) 41% 304 (285, 336)
Montsouris healthcare workers
(Paris France)




Serological assays

We set up a Plex beadbased assay allowing simultaneous detection of antibody respondesetSAREC0V2 antigens
andfour seasonal coronaviruses (Spike proteins of NL63, 229E, HKU1, OC43drufpubrplasma samples that were
heatinactivated at 56°C for 30 minutes. SARS8/2 antigens were from Spike (whole trimeric Sp{&3 its Receptor
Binding DomaifRBD and Spikeubunit 2 (S3) nucleocapsid protein (N) and a MembraBevelope fusion protein (ME).
ME and S2 antigens were purchased from Native Antigen, Oxford, UK and all other antigens were @edemaabinant
proteinsat Institut PasteurThemass of proteingoupled on beads asoptimized to generate a lolinear standard curve
with a pool of 27 positive sera prepared from-§HCRconfirmed SARS0V2 patients. We measured the levels of 1gG,
IgA and IgM of each sample in three separate assays. Briefly, saasimmeubated with mixed antigezoupled beads for
30minutesat a1/200 final dilution for IgG or 1/400 for IgA and IgM. Secondary antibodies conjugateghiypcBerythrin
(Jackson Immunoresearch) were used at 1/120, 1/200 or 1/400 for detection of sdg@filgA and IgM respectively. All
dilutions and cycles of washing steps were done in phosphate buffer saline supplemented with 1% bovine serum alburr
and 0.05% (v/v) Twee20. On each assay plateyo blanks (only beads, no serum) exe included to contol for
background signal as well as a standard curve prepared frorfdldoserial dilutions (1/50 to 1/102,400) of a pool of
positive controls. Plates were read using a Luminex® MAGPIX® apstehe median fluorescence intensity (MFI) was
used for analsis. A Harameter logistic curve was used to convert MFidlative antibody unit (RAU)elative to the

standard curve performed on the same plate to account for hatesay variations.

The data from our multiplex assay was compared against datatfvondifferent neutralization assays with live virus using

a subset of serum samples. Firstly, we implemented-Bnsg assay as described elsewRéideutralization activity was
measured as the reciprocal dilution required to obtain a 50% reduction itradeaation (IC50)Secondly, we implemented

a foci reduction neutralization test (FRNT) based on the detection of neutralizing antibodies directed agairGb8ARS
This assay was performed under BStonditions as it facilitates infection of Africaregn monkey kidney cells (VeroES6;
ATCC CRI586) with livevirus of a Cambodian SARBV2 isolate (GISAID: EPI_ISL_411902). Infection is visualized 14
16h after inoculation by staining of infected cells with a SBBR®2 specific antibody (# ABIN103064thrgeting the S2
subunit of the viral spike protein. Neutralizing antibody titers are expressed as the reciprocal serum/plasma dilution tha

induces 50% reduction of infection (FRNT50) and is calculated by log probit regression analysis.



Mathematical model of antibody kinetics

SARE0V2 antibody kinetics are described using a previously published mathematical model of the immunologica

processes underlying the generation and waning of antibody responses following inféction
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t denotes theboost inantibody secreting plasmeells.It is assumed that proportion @f plasma cells are shelived
(Ps) waning at ratecs, and a proportion 1t dare longlived @) waning at rates. Plasma cells generate antibodies (IgG,

IgM or IgA) at ratg, andr is the rate of decay of antibody molecules.

Statistical inference was implemented withinnasixed-effects framework allowng for characterisatiornof the kinetics
within all individuak while also describing the populatidavel patterns(Statistical Appendix)Onthe population level,
both the mean and variation iantibody kinetics are accounted fdvlodels werefitted in a Bayesian framework ugjn
Markov chainMonte Carlo methods with priorgnformed by estimates from lonagerm studies of antibody kinetics

following infection with other coronavirusés

Classification algorithms

Measurements of antibodies of three isotypes (IgG, IgM, IgA) taipteulSARE0V2 antigens were used to create a
training dataset. Samples where the time post symptom onset Gl days or unknown were excluded. In total we had
407 samples from prgpandemic negative controls art¥02 positive samplesin a first stepa Random Forests binary
classification algorithm was developed. A threshold corresponding to 99% specificity was selected. In a second stef
Random Forests multiway classification algorithm was developed for categorizing samples into four clasggdiv@) ne

(i) infected G T u}vsZe P}V ~]]I*6 mofths agoi and (iv) infected 612 months ago. The algorithm was
calibrated to have 99% specificity for correctly classifying negative samples. Positive sewenglethen classified
according tahe maximum number of votes. Uncertainty in classification performance was assesd@d®fald cross
validation with a training set comprising two thirds of the data and a disjoint testing set comprising a third of the data

Classification algorithms we implemented in R (versiah4.3).

Statistical methods for serological surveillance

Imperfect diagnostic sensitivity causes a downwardss bn sereprevalence estimates, whereasperfect specificity

causes an upwards bias in seroprevalence estimates.biascan becorrected for using a RogaBaden estimator, with

incorporation of croswalidated uncertainty®. Multiway classification algorithm@rovide estimates of the proportion of
7



a population infected during different time intervals. These eat®s are subject to biases which can be adjusted for using

a multivariate extension of the Rog&laden estimator described in ti&atisticalAppendix

Ethics

Serum samples were biobanked at the Clinical Investigation and Access to BioResources alatfstitut Pasteur (Paris,
France). Samples were obtained from consenting individuals through the CORSER study (NCT04325646), directe
Institut Pasteur and approved by the Comité de Protection des Personnes lle de France lll, and the French G®VID co
(NCT04262921), sponsored by Inserm and approved by the Comité de Protection des Personnes lle de Faamgiey/|.
from French blood donors were approved for use by Etablissement Francais du Sang (Lille, France) andthpprghed

the CORSER stully the Comité de Protection des Personnes lle de Francga¥fiple collection in Hépital Cochin was
approved by the Research Ethics Commission of N&@kehin HospitalSamples from healthcare workers in Strasbourg
University Hospitals followed longitudiivawere collected as part of an ongoing clinical tf@inicalTrials.goMentifier:
NCT04441684)hich receivedethical approvafrom the Comité de Protection des Personnes lle de Francgalhples
collected from patients in Dublin received ethicppaoval for study from thdallaghtUniversityHospital TUH)/St: u [
Hospital (SJH)Joint ResearchEthicsCommittee (reference REC2020t03). Use of the Peruvian negative controls was
approved by the Institutional Ethics Committee from the Universidad Peruana Cayetano Heredia (SIDISI 100873). -
Human Research Ethics Committee at the Walter and Eliza Hall Institute of Medical Research #mcst®Emittee of

the Faculty of Tropical Medicine, Mahidol University, Thailand, approved the use of the Thai negative control sample
Informed written consent was obtained from all participants or their next ofilkkinccordance with the Declaration of
Helsinki



Results

SARSC0V2 antibodies over time

Antibody responses of three isotypes (IgG, IgM, IgA) to nine coronavirus antigens were meagiégraapandemic
serum samples, anti402serum samples from individuals with previous SARS2 infection.961/ 1402 of the positive
samples were from individuals with SAR®\2 infection confirmed by PCBased testing with available data on time post
symptoms. Figure 1 presents the I1gG, IgM &A antibody responses ®ARSC0oV2 S, RBPand Nmeasured over time.
Appendix Figure2 and 3 presentsthe antibody responses t62 ME, and theSpike proteins othe four humanseasonal
coronavirusesNotably there is substantiahter-individualvariation in antibody responses, with antibody levels varying
by orders of magnitude between individua#ss a measure of functional immunity, we applied live virus neutralizing assays
to a subset of samples. Substantial variation in neutralizing acbeityyeen individuals and over time (Appendix Figure

4).
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Modelled SARE0V2 antibody kinetics

COur data on measured SAR®V2 antibody responses was supplementsih data from six other longitudinal studies
of the SARE0V2 antibody response, and one longitudinal study of the SBR&L antibody responseAppendix Figure
5 provides a comparison of the measured antibody responses between the eight studies. athadateen rescaled so
that the average antibody response for each study equals one at day 14 after symptom loregdition to the large
inter-individual variation, theres notable variation in antibodjevelsbetween studies. For example, the larggndmic
range in the study by lyet aPf, reveals the boosting and subsequent decay of-8tiG antibodies in the first two months

post infection, a phenomenon that is missed by assays withaamparably high upper limit of detection.

A mathematical mdel of antibody kinetics was simultaneously fitted to data from all eight studippendix Figur®
provides an overview of the fit of the model to the data. Figure 2a provides example fits to data from one individual fron
each of the eight studies. Figub provides model predictions of the percentage antibledyelremaining over the first

two years post infection, where 100% is assumed to be the antibody response at day 14 following symptom onset. The
are considerable differences in the pattern ofnidg between isotypes and between antigens. Table 2 summarises the
duration of the antibody response. One year following symptom onset, we estimate that 36% (95% 180g84%) arti

S 1gG remains, 31% (9%, 89%)-BBD IgG remains, and 7% (1%, 31%MN\atgiG remains. The uncertainty represents the
considerable degree of inténdividual variation in the duration of the antibody responses. Antibodies of the IgM isotype
waned more rapidly, with 6% (0%, 27%) €ligM remaining after one year, 9% (2%gBant-RBD IgM remaining after

one year, and 15% (4%, 50%) avitigM remaining after one year. Antibodies of the IgA isotype also waned rapidly, with
18% (4%, 67%) arfhi IgA remaining after one year, 10% (3%, 38%)RBI IgA remaining after one yeanda3% (0%,

13%) antN IgA remaining after one yedie also observed comparable reductions in titres for viral neutralization over

time (Appendix Figure 4), although the small number of samples prevented application of our model.
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Figure2: Modelled SARE0\2 antibody kinetics A mathematical model of SAR®\2 antibody kinetics wasimultaneouslhyfitted
to data fromsevenstudiesof SARE0V2 and one study of SARDV1. (a ttop row) Examples of themodelfit to the data forone
individual from each study. Datae represented as points, posterior mediamodel prediction as linegnd 95% credible intervais
shaded area (b t middle and bottom rowg Model predicted duration of antibads within the first 2years following infection.
Antibody levels are shown relative to the expected antibody level at day 14 following symptom Basét.point represents the
prediction from an individual a6, 12 18and 24 months post symptoms. The median predictions fohe#Hche eight studies are
presented as lines.

Table2: Estimated diration of antibody responses following SARR\2 infection. The gercentage antibdy levelremaining over
time iscompared to he measured antibodievel 14 days after symptom onseEstimates are presented as tpepulation median,
with the 95% range due tmter-individual variation.

6 months 12 months 24 months

Sike 1gG 55% (5%, 100%) 36% (1%, 94%) 16% (5%, B)
RBD IgG 43% (13%, 100%) 31% (9%, 8%) 16% (5%, &%)
NucleocapsidgG  30% (8%, 2%0) 7% (1%, B%0) 0.8% (0%, 7%)
Soike IgM 12% (%, 2%) 6% (0%, 2%) 2% (0%, 9%)
RBD IgM 16% (4%, 51%) 9% (2%, 2%) 4% (1%, 8%)
NucleocapsidgM  23% (6%, 75%) 15% @%,50%) 7% 2%, %)
Sike IgA 21% 4%,82%) 18% (4%, B%) 12% (3%, 47%)
RBD IgA 12% (4%, ¥%) 10% (3%, &) 6% (2%, 2%)
NucleocapsidgA 6% (1%, 30%) 3% (0%, 13%) 0.6% (0%, 4%)
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Estimating time since previouSARSC0\/2 infection

Using a dataset on measured IgG, IgM and IgA antibody levels frepapdemic negative controls and samples from
individuals with SARGoV2 infection confirmed by PCGliased testing and followed for up to eleven months after
symptom onsetRandom Forestkinary classificatiomalgorithmswere trained to identify individuals with previous SARS
Co\2infection (Appendix Figurésand8). Next a Random Forests multiay classification was trained to simultaneously
identify previous infection and estimate thiame since infection (Figure 3)yhe diagnostic test ident#d samples from
individuals with previous SAR®V2 infection with 99% specificity and 98%b5% confidence interva®4%, 99%)
sensitivity (Figure 3a). Tliagnostidest classied samples fron individuals infected within the previous 3 months (Figure
3Db). Notably, it was easier to distinguish recent infections (<3 months) from older infection$Z6nonths), compared
to infections that occurred 3 6 months ago. Therevas limited statisticakignal to distinguish betweeinfectionsthat
occurred 3t 6 months ago, and older infections occurringore than 6 months ago (Figure 3c). A breakdown of
classification performance by time since infection is provided in FRDr& he diagnostic test an@ately classifies samples
of all categories, with the exception of samples from individuals infecté@ &onths ago. Many of these samples were

incorrectly classified in the neighbouringection categories of Ot 3 months or 6t 12 months.

(A) Negative or positive? (B) Infected <3 months ago? (C) Infected <6 months ago?
100% = 100%

100%

80% 80% 80%

Yy
Yy

60% 60% 60%

sensitivity

sensitivit
sensitivit

40% 40% 40

xR

ot 20% s .

20% 20%

<3 mths vs 3-6 mths
B <3 mths vs 6-12 mths

B 3-6 mths vs 6-12 mths

00/0 I’ T T T T 1 00/0 T - T T T T 1 Oyo I’ T T T T 1
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
1 - specificity 1 - specificity 1 - specificity
. ” (D) Estimation of time since infection
350 180 1
160 .
300 sampling
140
o 2507 120 4 l
5 5
8 200 8100 b
150 80 7
60 -
100 H
40
50 50 4
0+ 0
. 12 9 . . 6 . 3
negatives positives: time before sampling (months)
B negative controls M 0-3 months B 3-6 months B 6-12 months

Figure 3: Classification of time since previous SARB\2 infection. A crossvalidated multiway classification algorithm wasained
to estimate time since infectiar(A) The algorithm can differentiate between positive and negative samBsThe algorithmcan
classify individuals infected within the previous 3 montl@-There is limited diagnostic power to distinguish between infections that
occurred 36 months ago versus-B2 months ago(D) Breakdown of classification performance according to time since previous
infection. Colours represent model predicted classificatiof9% of negative samples are correctly classified as nedative) For
the positive samples, the distribution shows tirme since previous infectiorsampleswith time sinceinfection <3 months are mostly
classifiedn the 0 t3 month category (red)Samples with time since infectior6 months ago are mostly classifiedhe 6 t 12 month
category (purple)There is a sigtantial degree of misclassification of sampléth time since infection 3 6 months ago. This is due
to the temporal imbalance in the training data.
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Serological reconstruction of COUI® epidemics

When applied to samples from a cressctional sereprevalence survey, a diagnostic test capable of estimating time since
infection can provide a serological reconstruction of past SBRE& epidemics. Figure 4 presents four simulated
epidemics where 1,000 individuals were sampled, and 40% were previowslieihfA range of scenarios were simulated,
including a recent epidemic wave, an older epidemic wave, a double wave epidemic, and constant transiiigsion.
algorithm was able to accurately reconstruct all epidemic profiles. For example, in the recenseesagio 60% of the
population were negative and the model estimated 59.8% (95% CI: 59.3%, 61.4%); 35.8% were inf8atamhths ago

and the model estimated 35.5% (95% CI: 25.7%, 40.3%); 4.2% were infadbeah@ths ago and the model estimated
4.2%(95% ClI: 0.0%, 14.4%); and 0% were infectedZBmonths ago and the model estimated 0% (95% CI: 0.0%,.3.3%)

Figure4: Serological reconstruction of previouSOVIB19 epidemics.The greyhistograms represent simulated data from a range of
SARE0V2 epidemic scenariodData were simulated from 1000 sampfesm a crosssectional sereprevalence studylt was

assumed that 600 samples were negatiwith 400 positive samplewith varying time since infectionFor previously infected
individuals, the histograms represetfite time sinceinfection.Based on antibody levetsmpledat a single time point, our
computational method was used to provide a serological reconstruction of previous €O\éidemics. Theolidlines represent

the model predictions for the categories of negative; infected ®months ago; infected 36 months ago; and infected 612

months ago. Shaded regions represent 95% confidencevialer
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Discussion

Infection with SARE0V2 induces a complex, diverse immune response, that varies by orders of magnitude between
individuals, and changes over time. This diversity is a challenge to immunologists and vaccinologists, but presents
opportunity to diagnostic devepers armed with multiplex assays and machine learning algorithms. By quantifying the
kinetics of different components of the humoral immune respanises possible to provide classification of previous
infection that minimizes theeduction of diagnosticsensitivity over timeand also allows estimation of the time since

infection.

Based on data from a range of studies with ugkevenmonths follow up after symptom onset, we estimate tf&it%

(95% Crl9%,89%) of antRBD IgG antibodgvelsremainone year after infectionAntibodies of other isotypes waned
more rapidly, witi9% (95% Cr2%,32%) of aniRBD IgM antibodlevelsremaining after one year, arth% (95% Cr8%,

38%) of antiRBD IgA antibodgvelk remaining after one yeafhete was considerable variation in kinetic profiles between
different SAR€0V2 antigens, wittY% (95% Crl%,31%) of antiN IgG antibodyevek remaining after one yeaflthough

the determinants of the duration of antigespecific antibody responses remapoorly understood, the diversity in
patterns of antibody kinetics can be quantified using epidemiological studies, yielding valuable information for serologic:

diagnostics.

The majority of commercially available serological tests classify individuals as having previcGon82[Rfection if a
measured antibody response is greater thamlefinedcutoff®. Instead of reducing a complex antibody response to a
binary data pointa mode detailed serological signatubased onquantitative measurements of multiple antibody
responsesprovides twonotable advantage®. Firstly, the reduction in diagnostic sensitivity associated with waning
antibodies is minimizedt no reduction indiagnostic sensitivity over the eleven months of follow was observed
Secondly, the time since previous infecticen be estimated providing valuable additional epidemiological information
Forthe current assay, previous infectiongre categoriseéhto intervals of 0t 3 months, 3t 6 months, and & 12 months.
More precise classificatida possible in theorybut this must be balanced against the statistical signal. For exathete,

was little statistical signal to discriminate between infectiorfsat occurred 6t 9 months ago, versus infections that
occurred9 t 12 months ago. It is anticipated that further improvementstiie assay such as the incorporation of new
antigens more training samples with a range of time since infectéorg better algrithmswill lead to improvements in

accuracy.

Existing sergprevalence studies estimate the proportion of a population previously infected with -SARS. The
addition of a diagnostic toalapable ofestimating time since infection allows for tlserolodcal reconstrudbn of past
transmission trendsThus, using samples from a sgm@valence study collected at a single time point, we can discriminate
betweena scenario ofconstant SARS0V,2 transmission and a scenario where transmission occurs imatigpidemic
waves. This diagnostic technology has a range of possible applications. For countries that experienced double wave S/

Co\2 epidemics, it has been challenging to quantify the relative magnitude of these waves due to the time required t
14



scak up PChased diagnostic testifyy Furthermore, there are many epidemiological settings where it is unknown if

SARS0V2 transmission was constant over time, or occurred as distinct epidemic waves

The widespread introduction of SAR8V2 vaccines wlillead to vaccinenduced immunity in many individuals. The
majority of vaccines against SABSVT S EP S SZ "% ]l % E}S Jv[e Z X < }uE ] Pv}eS] e
Spike and RBD antigens, serum samples from vaccinated individuals likely be classifieés positive However, by
measuring antibody responses to Nemtapsid, Membrane, Envelopand other viral proteing’ it will be possible to
modify the diagnostic test to provide thregay classification: negative; previously infectedyaccinated. Identification

of individuals who have been both infected and vaccinated will be challenging. Having classified an individual as previou
infected or vaccinated, the diagnostic algorithm can then be used to estimate time since infectiomeossitice
vaccination. Such an approach could contribute to efforts to measure populiati@himmunity to SARSoV2, whether

induced by infection or vaccination.

There areseveral limitations to this stud¥stimates othe duration of antibody responsese based on data from multiple
studies, eachusinga unigue immunoasséy®°1%1112 Freryimmunoassay may differ in terms of background reactivity,
crossreactivity with other pathogengrotein formulation,dynamic range and reproducibiliti/e beleve that the benefit

of drawing on multiple data sources outweighs the benefit of having a smaller more homogeneous database, especia
since themathematical modebf antibody kineticsg sufficiently flexible to incorporate data from multiple assayst
selection of a mechanistic mathematical model of antibody kinética potentiallimitation. The model is based on a
mechanistic understanding of thlmmunologicabrocesses underlying the generation and persistence of antésoand
imposes a flexilgl functional form on how antibody levels change over time. Although this approach has been validatec
in arange of applicationt§"1819 there will be instances where the model fails to capture the true pattern of antibody
kinetics, for example ilmmune-deficient individuals. An advantage of a mechanistic model versus gam@metric
statistical model is the ability to make projections forward in tiv& have providd predictions up to two years following
infection, for example by estimating that 16%96,48%) of antiRBDIgG antibodies remain after two yeaihere is a risk

to providing predictions beyond the timescale of the data, but these predictions can be easily falsif@mhtinued

longitudinal studies.

The diagnostic assay is not exemptnfirdhe challenges of antibody waninglthough no reductions indiagnostic
sensitivity overtime were observedreduced sensitivity will likely be observed as we analyse additional samples over
longer durations of follow uplhere are substantial challengesproviding estimates of time since infection. Although the
approach can reliably reconstruct the distribution of infection times across a populdtiene will be substantial

uncertainty inestimates of the time sincepreviousinfection for individuasamples.

Seroprevalence studieare playinga critical role in monitoring the progress of the SARS2 pandemic. In the early
stages of the pandemic, immunoassays had the advantage of measuring high antibody levels in the initial months aft

infection. As the pandemic progresses, s@m@valence will become more challengitm accurately measurelue to
15



waning antibody responses anttreasedsaccineinduced immunity. Mulplex assays and algorithms accounting for how

antibody levels change over time may be an important tool for ensuring the ongoing utility e$semillance.
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Appendix Figures

Appendix Figurel: Application of multiplex assayo a seroprevalence study innstitut Mutualiste Montsouris hospital in Paris.

(A) Crossvalidated receiver operating characteristic (ROC) curve showing the diagnostic performance of a multiplex assay fc
measuring 1gG, IgM and IgA antibodies to SBBR®2 antigens. This assay can achieve 98% sensitivity and 99% specificity.
(B)Measued seraprevalence in 769 healthcare workers across a range of diagnostic specifiti®sroprevalence adjusted with

a RogarGladen estimator. It can be shown that accuracy is maximized by selecting high sp@cificB@% specificity his givesan

estimated sereprevalence 0B.7% (95 CI6.7%, 11.0%])n allpanels, the green line represents the median prediction and the shaded
regions represent the 95% confidence intervals.
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AppendixFigure2: Antibody kinetics in the first year following infection with SARSV2. A beadbased multiplex Luminex assay
wasused to measure antibodies of multiple isotypes (IgG, IgM, IgA) to multiple antigens in serum samples from individu@R with P
positive SARE0V2 infection and prgpandemic negative controls. Shown here are the antibody responses to the@ARSSpike
subunit 2 (S2) and Membrartenvelope fusion (ME) antigens, and the Spike protein of the OC43 human seasonal coronavirus.

21



AppendixFigure3: Antibody kinetics in the first year following infection with SARS\2. A beadbased multiplex Luminex assay
wasused to measure antibodies of multiple isotypes (IgG, IgM, IgA) to multiple antigens in serum samples fromalsdividPCR
positive SARE0V2 infection and prgpandemic negative controls. Shown here are the antibody responses to the Spike proteins of
the HKU1, NL63 and 229E human seasonal coronaviruses.
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Appendix Figuret: Association between measured antibody levels and viral neutralizati¢h) Viral neutralization (denoted as
reciprocal dilution for 50% neutralization) in serum samples from Institut Mutualiste Monts@BjiBocireduction viral
neutralization (denoted sreciprocal dilution for 50% neutralization) in serum samples from Institut Mutualiste Monts@Qyis.

Comparison between two viral neutralization assgi®.Comparison between viral neutralization and aRBD Ig@E)Comparison
between viral neutraliation and antiRBD IgA.
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Appendix Figures: Data on SAREov2 antibody kinetics Overview of data used for fitting mathemeaal model of antibody kinetics

from seven studies with longitudinal folleup of individuals after infection with SAR®\2, and one study with longitudinal follew

up after infection with SARSoV 1. Note that the study by Tareg al. measured antibodieto SARE 01 over six years of followp,

hence the cut in saxis. There were considerable differences in the immunoassays used for each study, notably variation in antigenr
and different platforms. For each study, the data has been normalized so thialyat4 post symptom onset, the expected antibody
level equals 1. Measured antibody levels from negative controls are shown in the left portion of the plot.
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Appendix Figures: Modelled SARE0\F2 antibody kinetics Overview of the fit of a mathematical model of antibody kinetics to data
from seven studies with longitudinal folleup of individuals after infection with SAR®\2, and one study with longitudinal follew

up after infection with SARGo\1. For each stug, the data has been normalized so that at day 14 post symptom onset, the expected
antibody level equals 1. Measured antibody levels from negative controls are shown in the left portion of thirediddted antibody
kinetics are shown for a period of 2ars.The solid line represents the median predicted antibody level for each study.
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Appendix Figurer: Overview of classification performance of assay and algorithm on IgG d#@pReceiver Operating Characteristic
(ROCtxurves for IgG antibodies obtained by varying the cutoff for seropositivity. Colours correspond to antibodies againet differe
antigens, as shown in panil (B) Area under the ROC curve (AU&)individuallgG antibodies(C) *% @& u v[e }& G&veens]}v
measured antibody responseéD) ROC curves for multiple biomarker classifiers generated using a random forests algorithm.
Biomarkers are added sequentialtjth colours corresponding to panel (E)For a high specificity target (>99%), sensitivitréases

with additional biomarkers, added sequentially. Sensitivity was estimated using a random forests classifier. Points amsideimiste

the median and 95% Cls from repeat crgaidation.
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Appendix Figures: Overview of classification perfornrace of assay and algorithm on Ig@M and IgAdata. (A) Receiver Operating
Characteristic (RO@urves for IgG antibodies obtained by varying the cutoff for seropositivity. Colours correspond to antibodies
against different antigens, as shown in pabBe(B) ROC:urves for 1y antibodies obtained by varying the cutoff for seropositiv{ty).
ROCurves for g antibodies obtained by varying the cutoff for seropositiv{fy) Area under the ROC curve (AU®@)individuallgG,

IgM and IgA antibodie$E) ROC curves for multiple biomarker classifiers generated using a random forests algorithm. Biomarkers art
added sequentiallyvith colours corresponding to panel (F) For a high specificity target (>99%), sensitivity increases with additional
biomarkers,added sequentially. Sensitivity was estimated using a random forests classifier. Points and whiskers denote the medic
and 95% Cls from repeat cregalidation.(G) *% @Eu v[e }EE o §]}v SA v u uE V8] } C E *%o}ve
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StatisticalAppendix

Data onlongitudinal antibody responses t66ARSC0V 2 proteins

Several teams have conducted studies of the duration of the antibody response again€E®ARSith varying durations
of follow up. Our data analyses the duration of the SSR82 antibody response over approximatelevenmonths. To
better characterize the antibody kinetics over different time scales, we supplemented our database with data from si:
published studie®n SARE0V2 antibody kineticsThese data are summarized in Appendix Tablie addition to the
studies on SARS0V,2 antibody kinetics, we also included data from one study of SARA antibody kinetics in

individuals with six years followp*2

AppendixTablel: Overview of studies incorporated in antibody kinetic model

study assay antigens isotype max follow positive positive negative
up (days) individuals samples samples
Pelleauet al. (this  Luminex Spike; RBD; S2; NP; ME; IgG; IgM; IgA
study) multiplex Spike (229E); Spike
(NL63); Spiké0C43):
Spike (HKU1)

lyeret al® ELISA Spike 19G; IgM; IgA 122 340 1088 1548
Wang Tcet al’ ELISA RBD; NP 19G; IgM 28 22 104 93
Tanget al.*2 ELISA Spike (SARG0V1) IgG 2160 23 147

Ishoet al® ELISA Spike; RBD; NP IgG; IgM; IgA 115 447 508 300
Seowet al? ELISA Spike; RBD; NP 1gG; IgM; IgA 94 96 302

Roltgenet al.1° ELISA S1; RBD; NP IgG; IgM; IgA 150 165 841

Danet al.b ELISA Spike; RBD; NP 19G; IgA 240 176 228 51

Mathematical model of antibody kinetics

SARE0V2 antibody kinetics are described using a previously published mathematical model of the immunologica
processes underlying the generation and waning of antibody responses following infection or vactiftiear
antibodies of three classes (IgG, IgM agA4) targeting the studied antigens, the antibody kinetics are described by the

following equations:

%ﬂ, é UF 224
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where t denotes the boost in antibody secreting plasma cells. It ismasdithat a proportion@&f plasma cells are shert

lived () waning at rates, and a proportion 1t @&re longlived @) waning at ratea. Plasma cells generate antibodies

28



(IgG, IgM or IgA) at ratg andr is the rate of decay of antibody moleculessamingPs(0) =R(0) = 0 and’\(0) =Avg, these

equations can be solved analytically to give:

ékA?C},:g? ; FA?é:g? ;OE ‘sF é;kA?Q:g? o = A?é:g? ;OG
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W le 8Z 3Ju (3 & *Cu%3}u }ve 8§ AZ v v3] }BGs thehumber df BcellS, Jardis (e rate Xt
which they secrete antibodies. fsand By are not both identifiable without detailed and invasive experiments (e.g. bone
marrow aspirates to measure antigepecific plasma cells), we estimatéL C$, If r is the decay rate of antibody

jim

molecules, then we defineg L —;&to be the halflife of antibody molecules. Similarly, we defir@ij—’fﬁ

= an L

) and @
jmE6;
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Note that this model of antibody kinetics follows the formulation outlined in Weitel.>* and not that outlined irRosado
et al?°which inclugtd an additional equation for modelling the proliferation of memory B cells. Following experiments
model identifiability with simulated data, it was found that there was limitedbility to recover model parameters

describing memory B cell proliferation.

Methodology for statistical inference

The model was fitted to longitudinal antibody level measurementsifadl participants. Mixed effects methods were used

to capture the natural variation in antibody kinetics between individual participants, whilst estimating the average value
and variance of the immune parameters across the entire population of individliaésmodels were fitted in a Bayesian
framework using Markov Chain Monte Carlo (MCMC) methods. Mixed effects methods allow indeigligbrameters

to be estimated for each participant separately, with these individeagl (or mixed effects) parameate being drawn

from global distributions.

We consider a scenario where we have data fidratudies, each of which has data fravn individuals For example, for
each participanh in studym the half-life of the shortlived ASCs may be estimated @j@é(an individualevel parameter).
The O L AgE@; 0, estimates of the local parameter@éwill be drawn from a probability distribution. A ldgormal

distribution is suitable as it has positive support €1 U . Tlhus we haveH K@é;lozé‘,@g;. The meandsand the

. b
variance - Sof the estimates of@,® are given by@L A"~ and -& L kA? F sof » &,

Model likelihood
For individuah from studym we have data on observed antibody leve#8 ® L [=58 & _at times 62 ® L [R& &R

We denote & & L :#2 452 & -to be the vector of data for individualfrom studym. For individuah from studym, the
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parameters 822 L k#3324 P24p 8 4@ % ad) ® 4 ® &* ® oare estimated. The odel predicted antibody levels will
be [#:R;&:R;& &kRo. We assume loglormally distributed measurement error such that the difference between
H Kk§0and H K@&kRoAis Normally distributed with variancéfs g The parameters for observational variance are

specific for each study due to differences in the assays utilised.model predicted antibody level#kRothe data

likelihood for individuah from studym is given by

I B aKOx0? B & @ keepdp
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Mixed effects likelihood

As described above, for each individual there segenparameters to be estimatedlhese individudlevel parameters

are drawn from populatiodevel distributions. Some parasters are assumed not to depend on the assay in each study
(the antibody kinetic parametersif # 4c ® adl.® ad) @ 4 ® &2 #). Each of these parameters are assumed to be drawn

from the same distribution across all studies. Sopsameters are assay dependent, notabﬁ%ﬁ‘d’f"@ These

parameters are drawn from distributions specific for each stddye mixed effects likelihood can be written as follows:
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As the proportion of the ASCs that are ldivggd must be bounded by 0 and 1, the individiealel parameters@®" are

assumed to be drawn from logNormal distributions.

Total model likelihood

Denote & L 8%& &% =to be the vector of data for allN participants from all studies We denote
AR | Kby By B g B 5 8 B B MR ERE & &858 &Coto be the combined vector of populatien
level parameters and individuddvel parameters to be estimated. The total likelihood is obtained by multiplying the

likelihood for each participant
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Markov Chain Monte Carlo parameter update
The model was fitted to the data using Markov Chain Monte Carlo (MCMC) methods. A three stage parameter upda
regimen was utilised witla Metropoliswithin-Gibbs sampler witlsequential updating of individudével parameters,

populatioro A 0 % E u § E*U v } « EAS]}JVvo A E]lV % E usd EeX ;]Jv] §-

1. Individuatevel parameter MetropolisHastings updateFor each participan in studym:
x Update local parametersa® " k#%‘?,ﬁé[ﬁ argpdrad) B rad) @ agg @ et @0
x Calculate updated mixed effects likelihoog & ;42 & g2 #;

. . BU@od0ypdp
X Accept the parameter update with probabilityE JFSW

2. Populationlevel parameterGibbsupdate.
x For each of theED [#3 AP we obtain new estimates of the population level parametéggand i} L
= as follows:
g
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where &gand 1y parameterise the Normal prior distribution on the mean, dndv  } % & u § E]-

the Gamma prior distribution on the precision (inverse standard deviatib&ms the individualevel

parameer i in individualn.

x For each of theED <U&iH==we obtain new estimates of the population level parametéggand |{} L

_5~ as follows:
g
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where &;gand igparameterise the Normal prior distribution on the mean,dndv '} % & u § &E]-
the Gamma prior distribution on the precision (inverse standard deviatibﬁms the individualevel

parameteri in indivicual n.
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x &} Gve@btain new estimates of the population level parametérsand 17 L —Sﬁ as follows:
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where & gand i g4zparameterise the Normal prior distribution on the mean, dndv } % & u § &E]-

the Gamma prior distribution on the precision (inverse standard deviation).

3. Observational variance parameter Metropolidastings Update.
x For each studyn, update the observational variance parametég gz "
X Calculate updated total likelihood, 5 ; 68" &:and the updated prior probability densit@: a";
URixAY%E f

X Accept the parameter update with probabilityE J@a‘&“—, A

URix Y52E!

TheMCMC algorithm was implemented in Ceemplied in Microsoft Visual Studi@he covariance of the multivariate
Normal proposal distributions for Metropolidastings updates were adaptively tuned using the estimated posterior
distributions during a burin phase of 1 million MCMC iterations. The magnitude of the proposed step size was calibrated
using a RobbinMunro algorithm toachievean acceptance rate of approximately 23%. The total number of MCMC
iterations was 10,000,000. The effective number of itemas was calculated using the effectiveSize routine in the R library
coda and the effective size was checked to be > 1,000 for all paramBterstatistical inference procedure was repeated
twice to allow for assessment of chain convergence using GeRuodain convergence diagnostiRs For all population

level chains, we ensuffe < 1.05. For all individuddvel chains, we ensuf@ < 1.1.

Serological surveillancalgorithms

A ROC curve obtained from a training data set consisting of positive antiveeggmples is described by a sequence of
estimated sensitivities and specificitigs: O g0 ;= where E denotes an estimatorN-fold crossvalidation generates
samples of sensitivityO A& & #for each’ 1O g and samples of specificityO % &0 {.cfor each E O Following

a previously outlined approaéh for each paii of sensitivity and specificity, we obtah estimates of the measured

seroprevalencéMi, in a scenario with true seroprevalendeas follows:
[ gaL 60#E :sSF 6;:sF O4

Following the Rogafsladen estimator approach, this equation can be rearrangedive an adjusted estimate of true

seroprevalence:
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with ' (64 L rif / 3aOsF ' :O@/ Both/ gand ' : 63 are summarized as medians with 95% ranges.

Define rfas ak-way classification algorithm that can classify a sample into ocafegories. LeG be the category for
a sample from an individual not previously infected with SEB82. LetG be the category for individuals previously
infected with SARE0V2 in one ofK t 1 time intervals defined by (@; U t&1). r‘canbe any of a range of algorithms
from Random Forests, Support Vector Machines, or ordinal logistic regresSioan be trained on a data set, with
classification performance assessed u$iFigld crossvalidation. For a serum sample, Rtdenote the classification score

(analogous to a probability) that this sample belongs to category

Given a vector of classificati scored?, we can assign a serum sample to a category. A frequently used approach is to
selectk according to the maximum d®. In order to retain better control over diagnostic specificity, we select an

alternative two step approach:

x if Po Hégthenthe sample is classified as negative

x if Po< ¢ then the sample is classified into categérgccording to the maximum ¢h U U

Here \gis selected based on the trainiigtato ensure a target specificity of 99%. The classification performance of this
approach can be assessed using a confusion m@tiibefined by the proportion of samples of categadrglassified as
categoryj. For the example witliK= 4 explored in more dail here, we define three intervals: 8 months; 3t 6 months;

6 t12 months.

Following the approach of the Rog&taden estimator, defin® to be the vector of measured prevalences in each of the
K categories. An estimator of the true sqrevalene is provided by Ef =C** M whereC!is the inverse of the confusion
matrix. Depending on the values of the confusion matrix, this approach may favé®. In this instance we assigi= 0

and transfer the predictions proportionally to the other categories.
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