A phospho-regulated ensemble signal motif of α-TAT1 drives dynamic microtubule acetylation
Abstract
Spatiotemporal patterns of microtubule modifications such as acetylation underlie diverse cellular functions. While the molecular identity of the acetylating agent, α-tubulin N-acetyltransferase 1 (α-TAT1), as well as the functional consequences of microtubule acetylation have been revealed, the molecular mechanisms that regulate multi-tasking α-TAT1 action for dynamic acetylation remain obscure. Here we identified a signal motif in the intrinsically disordered C-terminus of α-TAT1, which comprises three functional elements - nuclear export, nuclear import and cytosolic retention. Their balance is tuned via phosphorylation by serine-threonine kinases to determine subcellular localization of α-TAT1. While the phosphorylated form binds to 14-3-3 adapters and accumulates in the cytosol for maximal substrate access, the non-phosphorylated form is sequestered inside the nucleus, thus keeping microtubule acetylation minimal. As cancer mutations have been reported to this motif, the unique ensemble regulation of α-TAT1 localization may hint at a role of microtubule acetylation in aberrant physiological conditions.