C. Canchaya, C. Proux, G. Fournous, A. Bruttin, and H. Bru?ssow, Prophage Genomics, Microbiology and Molecular Biology Reviews, vol.67, issue.2, pp.238-276, 2003.

M. J. Lu and U. Henning, Superinfection exclusion by T-even-type coliphages, Trends in Microbiology, vol.2, issue.4, pp.137-139, 1994.

M. M. Susskind, A. Wright, and D. Botstein, Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium, Virology, vol.62, issue.2, pp.367-384, 1974.

M. Asadulghani, Y. Ogura, T. Ooka, T. Itoh, A. Sawaguchi et al., The Defective Prophage Pool of Escherichia coli O157: Prophage?Prophage Interactions Potentiate Horizontal Transfer of Virulence Determinants, PLoS Pathogens, vol.5, issue.5, p.e1000408, 2009.

R. C. Matos, N. Lapaque, L. Rigottier-gois, L. Debarbieux, T. Meylheuc et al., Enterococcus faecalis Prophage Dynamics and Contributions to Pathogenic Traits, PLoS Genetics, vol.9, issue.6, p.e1003539, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190746

M. Touchon, L. M. Bobay, and E. P. Rocha, The chromosomal accommodation and domestication of mobile genetic elements, Current Opinion in Microbiology, vol.22, pp.22-29, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01122287

K. Nakayama, K. Takashima, H. Ishihara, T. Shinomiya, M. Kageyama et al., The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage, Molecular Microbiology, vol.38, issue.2, pp.213-231, 2000.

C. Winstanley, M. G. Langille, J. L. Fothergill, I. Kukavica-ibrulj, C. Paradis-bleau et al., Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa, Genome Research, vol.19, issue.1, pp.12-23, 2008.

L. Bossi, J. A. Fuentes, G. Mora, and N. Figueroa-bossi, Prophage Contribution to Bacterial Population Dynamics, Journal of Bacteriology, vol.185, issue.21, pp.6467-6471, 2003.

L. C. Fortier and O. Sekulovic, Importance of prophages to evolution and virulence of bacterial pathogens, Virulence, vol.4, issue.5, pp.354-365, 2013.

A. M. Nanda, K. Thormann, and J. Frunzke, Impact of Spontaneous Prophage Induction on the Fitness of Bacterial Populations and Host-Microbe Interactions, Journal of Bacteriology, vol.197, issue.3, pp.410-419, 2014.

S. P. Brown, L. Le-chat, M. De paepe, and F. Taddei, Ecology of Microbial Invasions: Amplification Allows Virus Carriers to Invade More Rapidly When Rare, Current Biology, vol.16, issue.20, pp.2048-2052, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02666343

J. A. Sousa and E. P. Rocha, Environmental structure drives resistance to phages and antibiotics during phage therapy and to invading lysogens during colonisation, Scientific Reports, vol.9, issue.1, p.3149, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02098383

S. Roux, S. J. Hallam, T. Woyke, and M. B. Sullivan, Viral dark matter and virus?host interactions resolved from publicly available microbial genomes, eLife, vol.4, p.8490, 2015.

M. Touchon, A. Bernheim, and E. P. Rocha, Genetic and life-history traits associated with the distribution of prophages in bacteria, The ISME Journal, vol.10, issue.11, pp.2744-2754, 2016.

L. M. Bobay, E. P. Rocha, and M. Touchon, The Adaptation of Temperate Bacteriophages to Their Host Genomes, Molecular Biology and Evolution, vol.30, issue.4, pp.737-751, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01374945

P. L. Wagner and M. K. Waldor, Bacteriophage Control of Bacterial Virulence, Infection and Immunity, vol.70, issue.8, pp.3985-3993, 2002.

J. Chen, N. Quiles-puchalt, Y. N. Chiang, R. Bacigalupe, A. Fillol-salom et al., Genome hypermobility by lateral transduction, Science, vol.362, issue.6411, pp.207-212, 2018.

M. Touchon, J. A. Moura-de-sousa, and E. P. Rocha, Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer, Current Opinion in Microbiology, vol.38, pp.66-73, 2017.

J. Haaber, J. J. Leisner, M. T. Cohn, A. Catalan-moreno, J. B. Nielsen et al., Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells, Nature Communications, vol.7, issue.1, p.13333, 2016.

S. Brisse, F. Grimont, and P. A. Grimont, The Genus Klebsiella, The Prokaryotes, pp.159-196

C. R. Lee, J. H. Lee, K. S. Park, J. H. Jeon, Y. B. Kim et al., Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms, Frontiers in Cellular and Infection Microbiology, vol.7, p.483, 2017.

S. Navon-venezia, K. Kondratyeva, and A. Carattoli, Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance, FEMS Microbiology Reviews, vol.41, issue.3, pp.252-275, 2017.

C. Blin, V. Passet, M. Touchon, E. P. Rocha, and S. Brisse, Metabolic diversity of the emerging pathogenic lineages ofKlebsiella pneumoniae, Environmental Microbiology, vol.19, issue.5, pp.1881-1898, 2017.

K. L. Wyres, R. R. Wick, L. M. Judd, R. Froumine, A. Tokolyi et al., Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae, PLOS Genetics, vol.15, issue.4, p.e1008114, 2019.

K. E. Holt, H. Wertheim, R. N. Zadoks, S. Baker, C. A. Whitehouse et al., Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance inKlebsiella pneumoniae, an urgent threat to public health, Proceedings of the National Academy of Sciences, vol.112, issue.27, pp.E3574-E3581, 2015.

M. Mori, M. Ohta, N. Agata, N. N. Kido, Y. Arakawa et al., Identification of Species and Capsular Types ofKlebsiellaClinical Isolates, with Special Reference toKlebsiella planticola, Microbiology and Immunology, vol.33, issue.11, pp.887-895, 1989.

K. L. Wyres, R. R. Wick, C. Gorrie, A. Jenney, R. Follador et al., Identification of Klebsiella capsule synthesis loci from whole genome data, Microbial Genomics, vol.2, issue.12, p.102, 2016.

Y. J. Pan, T. L. Lin, C. T. Chen, Y. T. Chen, P. F. Hsieh et al., Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp, Scientific Reports, vol.5, issue.1, p.15573, 2015.

S. Favre-bonte?, T. R. Licht, C. Forestier, and K. A. Krogfelt, Klebsiella pneumoniae Capsule Expression Is Necessary for Colonization of Large Intestines of Streptomycin-Treated Mice, Infection and Immunity, vol.67, issue.11, pp.6152-6156, 1999.

D. A?lvarez, S. Merino, J. M. Toma?s, V. J. Benedi?, and S. Alberti?, Capsular Polysaccharide Is a Major Complement Resistance Factor in Lipopolysaccharide O Side Chain-DeficientKlebsiella pneumoniae Clinical Isolates, Infection and Immunity, vol.68, issue.2, pp.953-955, 2000.

M. A. Campos, M. A. Vargas, V. Regueiro, C. M. Llompart, S. Alberti? et al., Capsule Polysaccharide Mediates Bacterial Resistance to Antimicrobial Peptides, Infection and Immunity, vol.72, issue.12, pp.7107-7114, 2004.

D. J. Doorduijn, S. H. Rooijakkers, W. Van-schaik, and B. W. Bardoel, Complement resistance mechanisms of Klebsiella pneumoniae, Immunobiology, vol.221, issue.10, pp.1102-1109, 2016.

O. Rendueles, M. Garcia-garcerà, B. Néron, M. B. Touchon, and E. P. Rocha, Abundance and co-occurrence of extracellular capsules increase environmental breadth: Implications for the emergence of pathogens, PLOS Pathogens, vol.13, issue.7, p.e1006525, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01578349

O. Rendueles, J. A. De-sousa, A. Bernheim, M. Touchon, and E. P. Rocha, Genetic exchanges are more frequent in bacteria encoding capsules, PLOS Genetics, vol.14, issue.12, p.e1007862, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02012595

C. Chewapreecha, S. R. Harris, N. J. Croucher, C. Turner, P. Marttinen et al., Dense genomic sampling identifies highways of pneumococcal recombination, Nature Genetics, vol.46, issue.3, pp.305-309, 2014.

A. G. Moller, J. A. Lindsay, and T. D. Read, Determinants of Phage Host Range in Staphylococcus Species, Applied and Environmental Microbiology, vol.85, issue.11, pp.209-228, 2019.

D. Negus, J. Burton, A. Sweed, R. Gryko, and P. W. Taylor, Poly-?-d-Glutamic Acid Capsule Interferes with Lytic Infection of Bacillus anthracis by B. anthracis-Specific Bacteriophages, Applied and Environmental Microbiology, vol.79, issue.2, pp.714-717, 2012.

D. Scholl, S. Adhya, and C. Merril, Escherichia coli K1's Capsule Is a Barrier to Bacteriophage T7, Applied and Environmental Microbiology, vol.71, issue.8, pp.4872-4874, 2005.

H. Niemann, N. Frank, and S. Stirm, Klebsiella serotype-13 capsular polysaccharide: Primary structure and depolymerization by a bacteriophage-borne glycanase, Carbohydrate Research, vol.59, issue.1, pp.165-177, 1977.

H. Niemann, B. Kwiatkowski, U. Westphal, and S. Stirm, Klebsiella serotype 25 capsular polysaccharide: primary structure and depolymerization by a bacteriophage-borne glycanase., Journal of Bacteriology, vol.130, issue.1, pp.366-374, 1977.

Y. J. Pan, T. L. Lin, C. C. Chen, Y. T. Tsai, Y. H. Cheng et al., Klebsiella Phage ?K64-1 Encodes Multiple Depolymerases for Multiple Host Capsular Types, Journal of Virology, vol.91, issue.6, pp.2457-02416, 2017.

W. Bessler, E. Freund-mölbert, H. Knüfermann, C. Rudolph, H. Thurow et al., A bacteriophage-induced depolymerase active on Klebsiella K11 capsular polysaccharide, Virology, vol.56, issue.1, pp.134-151, 1973.

H. Thurow, H. Niemann, C. Rudolph, and S. Stirm, Host capsule depolymerase activity of bacteriophage particles active on Klebsiella K20 and K24 strains, Virology, vol.58, issue.1, pp.306-309, 1974.

A. Latka, B. Maciejewska, G. Majkowska-skrobek, Y. Briers, and Z. Drulis-kawa, Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process, Applied Microbiology and Biotechnology, vol.101, issue.8, pp.3103-3119, 2017.

D. Scholl, S. Rogers, S. Adhya, and C. R. Merril, Bacteriophage K1-5 Encodes Two Different Tail Fiber Proteins, Allowing It To Infect and Replicate on both K1 and K5 Strains of Escherichia coli, Journal of Virology, vol.75, issue.6, pp.2509-2515, 2001.

T. L. Lin, P. F. Hsieh, Y. T. Huang, W. C. Lee, Y. T. Tsai et al., Isolation of a Bacteriophage and Its Depolymerase Specific for K1 Capsule of Klebsiella pneumoniae: Implication in Typing and Treatment, The Journal of Infectious Diseases, vol.210, issue.11, pp.1734-1744, 2014.

Y. J. Pan, T. L. Lin, Y. Y. Chen, P. H. Lai, Y. T. Tsai et al., Identification of three podoviruses infecting Klebsiella encoding capsule depolymerases that digest specific capsular types, Microbial Biotechnology, vol.12, issue.3, pp.472-486, 2019.

B. Silva, J. Storms, Z. Sauvageau, and D. , Host receptors for bacteriophage adsorption, FEMS Microbiol Lett, vol.363, p.2, 2016.

D. Arndt, J. R. Grant, A. Marcu, T. Sajed, A. Pon et al., PHASTER: a better, faster version of the PHAST phage search tool, Nucleic Acids Research, vol.44, issue.W1, pp.W16-W21, 2016.

V. Daubin, E. Lerat, and G. Perrière, The source of laterally transferred genes in bacterial genomes, Genome Biology, vol.4, issue.9, p.R57, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00427389

E. P. Rocha and A. Danchin, Base composition bias might result from competition for metabolic resources, Trends in Genetics, vol.18, issue.6, pp.291-294, 2002.

L. M. Bobay, M. Touchon, and E. P. Rocha, Pervasive domestication of defective prophages by bacteria, Proceedings of the National Academy of Sciences, vol.111, issue.33, pp.12127-12132, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01374961

S. R. Casjens, E. B. Gilcrease, W. M. Huang, K. L. Bunny, M. L. Pedulla et al., The pKO2 Linear Plasmid Prophage of Klebsiella oxytoca, Journal of Bacteriology, vol.186, issue.6, pp.1818-1832, 2004.

S. Leclercq and R. Cordaux, DO PHAGES EFFICIENTLY SHUTTLE TRANSPOSABLE ELEMENTS AMONG PROKARYOTES?, Evolution, vol.65, issue.11, pp.3327-3331, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637838

L. Ghazaryan, L. Tonoyan, A. A. Ashhab, M. I. Soares, and O. Gillor, The role of stress in colicin regulation, Archives of Microbiology, vol.196, issue.11, pp.753-764, 2014.

S. J. Labrie, J. E. Samson, and S. Moineau, Bacteriophage resistance mechanisms, Nature Reviews Microbiology, vol.8, issue.5, pp.317-327, 2010.

J. E. Samson, A. H. Magadán, M. Sabri, and S. Moineau, Revenge of the phages: defeating bacterial defences, Nature Reviews Microbiology, vol.11, issue.10, pp.675-687, 2013.

K. L. Wyres, C. Gorrie, D. J. Edwards, H. F. Wertheim, L. Y. Hsu et al., Extensive Capsule Locus Variation and Large-Scale Genomic Recombination within the Klebsiella pneumoniae Clonal Group 258, Genome Biology and Evolution, vol.7, issue.5, pp.1267-1279, 2015.

D. Tan, Y. Zhang, J. Qin, S. Le, J. Gu et al., A Frameshift Mutation in wcaJ Associated with Phage Resistance in Klebsiella pneumoniae, Microorganisms, vol.8, issue.3, p.378, 2020.

A. Buffet, E. P. Rocha, and O. Rendueles, Selection for the bacterial capsule in the absence of biotic and abiotic aggressions depends on growth conditions, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02991089

L. A. Julianelle, BACTERIAL VARIATION IN CULTURES OF FRIEDLA?NDER'S BACILLUS, Journal of Experimental Medicine, vol.47, issue.6, pp.889-902, 1928.

W. A. Randall, Colony and Antigenic Variation in Klebsiella pneumoniae Types A, B and C, Journal of Bacteriology, vol.38, issue.4, pp.461-477, 1939.

C. O. Flores, J. R. Meyer, S. Valverde, L. Farr, and J. S. Weitz, Statistical structure of host-phage interactions, Proceedings of the National Academy of Sciences, vol.108, issue.28, pp.E288-E297, 2011.

A. Mathieu, M. Dion, L. Deng, D. Tremblay, E. Moncaut et al., Virulent coliphages in 1-year-old children fecal samples are fewer, but more infectious than temperate coliphages, Nature Communications, vol.11, issue.1, p.385, 2020.

J. S. Weitz, T. Poisot, J. R. Meyer, C. O. Flores, S. Valverde et al., Phage?bacteria infection networks, Trends in Microbiology, vol.21, issue.2, pp.82-91, 2013.

A. B. Brueggemann, C. L. Harrold, R. Rezaei-javan, A. J. Van-tonder, A. J. Mcdonnell et al., Pneumococcal prophages are diverse, but not without structure or history, Scientific Reports, vol.7, issue.1, p.42976, 2017.

D. Castillo, K. Kauffman, F. Hussain, P. Kalatzis, N. Rørbo et al., Widespread distribution of prophage-encoded virulence factors in marine Vibrio communities, Scientific Reports, vol.8, issue.1, p.9973, 2018.

H. K. Allen, T. Looft, D. O. Bayles, S. Humphrey, U. Y. Levine et al., Antibiotics in Feed Induce Prophages in Swine Fecal Microbiomes, mBio, vol.2, issue.6, pp.260-271, 2011.

N. Otsuji, M. Sekiguchi, T. Iijima, and Y. Takagi, Induction of Phage Formation in the Lysogenic Escherichia coli K-12 by Mitomycin C, Nature, vol.184, issue.4692, pp.1079-1080, 1959.

A. M. Comeau, F. Tétart, S. N. Trojet, M. Prère, and H. M. Krisch, Phage-Antibiotic Synergy (PAS): ?-Lactam and Quinolone Antibiotics Stimulate Virulent Phage Growth, PLoS ONE, vol.2, issue.8, p.e799, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00180524

M. Kim, Y. Jo, Y. J. Hwang, H. W. Hong, S. S. Hong et al., Phage-Antibiotic Synergy via Delayed Lysis, Applied and Environmental Microbiology, vol.84, issue.22, pp.2085-2103, 2018.

M. De-paepe, L. Tournier, E. Moncaut, O. Son, P. Langella et al., Carriage of ? Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine, PLOS Genetics, vol.12, issue.2, p.e1005861, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02637844

S. Phanphak, P. Georgiades, R. Li, J. King, I. S. Roberts et al., Super-Resolution Fluorescence Microscopy Study of the Production of K1 Capsules by Escherichia coli: Evidence for the Differential Distribution of the Capsule at the Poles and the Equator of the Cell, Langmuir, vol.35, issue.16, pp.5635-5646, 2019.

C. M. Krinos, M. J. Coyne, K. G. Weinacht, A. O. Tzianabos, D. L. Kasper et al., Extensive surface diversity of a commensal microorganism by multiple DNA inversions, Nature, vol.414, issue.6863, pp.555-558, 2001.

Y. L. Tzeng, J. Thomas, and D. S. Stephens, Regulation of capsule inNeisseria meningitidis, Critical Reviews in Microbiology, vol.42, pp.1-14, 2015.

J. Bondy-denomy, J. Qian, E. R. Westra, A. Buckling, D. S. Guttman et al., Prophages mediate defense against phage infection through diverse mechanisms, The ISME Journal, vol.10, issue.12, pp.2854-2866, 2016.

Y. F. Zhang and J. T. Lejeune, Transduction of blaCMY-2, tet(A), and tet(B) from Salmonella enterica subspecies enterica serovar Heidelberg to S. Typhimurium, Veterinary Microbiology, vol.129, issue.3-4, pp.418-425, 2008.

H. Brüssow and E. Kutter, Phage Ecology, Bacteriophages, pp.129-64, 2004.

E. Calef, C. Marchelli, and F. Guerrini, The formation of superinfection-double lysogens of phage ? in Escherichia coli K12, Virology, vol.27, issue.1, pp.1-10, 1965.

J. R. Scott, B. W. West, and J. L. Laping, Superinfection immunity and prophage repression in phage P1 IV. The c1 repressor bypass function and the role of c4 repressor in immunity, Virology, vol.85, issue.2, pp.587-600, 1978.

A. Bakk and R. Metzler, In vivo non-specific binding of ? CI and Cro repressors is significant, FEBS Letters, vol.563, issue.1-3, pp.66-68, 2004.

S. Casjens, Prophages and bacterial genomics: what have we learned so far?, Molecular Microbiology, vol.49, issue.2, pp.277-300, 2003.

R. W. Hendrix, M. C. Smith, R. N. Burns, M. E. Ford, and G. F. Hatfull, Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage, Proceedings of the National Academy of Sciences, vol.96, issue.5, pp.2192-2197, 1999.

B. C. Ramisetty and P. A. Sudhakari, Bacterial ?Grounded? Prophages: Hotspots for Genetic Renovation and Innovation, Frontiers in Genetics, vol.10, p.65, 2019.

C. Venturini, N. B. Zakour, B. Bowring, S. Morales, R. Cole et al., K. pneumoniae ST258 genomic variability and bacteriophage susceptibility, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01801864

P. F. Hsieh, H. H. Lin, T. H. Lin, Y. Y. Chen, and J. T. Wang, Two T7-like Bacteriophages, K5-2 and K5-4, Each Encodes Two Capsule Depolymerases: Isolation and Functional Characterization, Scientific Reports, vol.7, issue.1, p.4624, 2017.

G. Majkowska-skrobek, A. Latka, R. Berisio, F. Squeglia, B. Maciejewska et al., Phage-Borne Depolymerases Decrease Klebsiella pneumoniae Resistance to Innate Defense Mechanisms, Frontiers in Microbiology, vol.9, pp.209-228, 2018.

M. K. Paczosa and J. Mecsas, Klebsiella pneumoniae: Going on the Offense with a Strong Defense, Microbiology and Molecular Biology Reviews, vol.80, issue.3, pp.629-661, 2016.

T. Seemann, Prokka: rapid prokaryotic genome annotation, Bioinformatics, vol.30, issue.14, pp.2068-2069, 2014.

A. L. Grazziotin, E. V. Koonin, and D. M. Kristensen, Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation, Nucleic Acids Research, vol.45, issue.D1, pp.D491-D498, 2016.

S. R. Eddy, Accelerated Profile HMM Searches, PLoS Computational Biology, vol.7, issue.10, p.e1002195, 2011.

C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos et al., BLAST+: architecture and applications, BMC Bioinformatics, vol.10, issue.1, p.421, 2009.

P. Siguier, J. Perochon, L. Lestrade, J. Mahillon, and M. Chandler, ISfinder: the reference centre for bacterial insertion sequences, Nucleic Acids Research, vol.34, issue.90001, pp.D32-D36, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00021179

M. Touchon, J. Cury, E. J. Yoon, L. Krizova, G. C. Cerqueira et al., The Genomic Diversification of the Whole Acinetobacter Genus: Origins, Mechanisms, and Consequences, Genome Biology and Evolution, vol.6, issue.10, pp.2866-2882, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01132634

M. Steinegger, J. Soding, A. Jong, C. Song, J. H. Viel et al., MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets, 97. van Heel AJ, vol.35, pp.278-81, 2017.

D. P. Pires, H. Oliveira, L. D. Melo, S. Sillankorva, and J. Azeredo, Bacteriophage-encoded depolymerases: their diversity and biotechnological applications, Applied Microbiology and Biotechnology, vol.100, issue.5, pp.2141-2151, 2016.

D. Couvin, A. Bernheim, C. Toffano-nioche, M. Touchon, J. Michalik et al., CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins, Nucleic Acids Research, vol.46, issue.W1, pp.W246-W251, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02098389

P. H. Oliveira, M. Touchon, and E. P. Rocha, Regulation of genetic flux between bacteria by restriction?modification systems, Proceedings of the National Academy of Sciences, vol.113, issue.20, pp.5658-5663, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01374969

M. Mucke, D. H. Kruger, and M. Reuter, Diversity of Type II restriction endonucleases that require two DNA recognition sites, Nucleic Acids Research, vol.31, issue.21, pp.6079-6084, 2003.

L. Ferrie?res, G. He?mery, T. Nham, A. Gue?rout, D. Mazel et al., Silent Mischief: Bacteriophage Mu Insertions Contaminate Products of Escherichia coli Random Mutagenesis Performed Using Suicidal Transposon Delivery Plasmids Mobilized by Broad-Host-Range RP4 Conjugative Machinery, Journal of Bacteriology, vol.192, issue.24, pp.6418-6427, 2010.

L. Guy, J. Roat-kultima, and S. G. Andersson, genoPlotR: comparative gene and genome visualization in R, Bioinformatics, vol.26, issue.18, pp.2334-2335, 2010.