, Biologie cellulaire, Annales de l'Institut Pasteur / Virologie, vol.132, issue.1, pp.119-120, 1981.

R. C. Brunham and J. Rey-ladino, Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine, Nature Reviews Immunology, vol.5, issue.2, pp.149-161, 2005.

S. Triboulet and A. Subtil, Make It a Sweet Home: Responses of Chlamydia trachomatis to the Challenges of an Intravacuolar Lifestyle, Bacteria and Intracellularity, vol.7, pp.167-177, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02379168

M. T. Damiani, J. Gambarte-tudela, and A. Capmany, Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication, Cellular Microbiology, vol.16, issue.9, pp.1329-1338, 2014.

C. Elwell, K. Mirrashidi, and J. Engel, Chlamydia cell biology and pathogenesis, Nature Reviews Microbiology, vol.14, issue.6, pp.385-400, 2016.

M. M. Cossé, M. L. Barta, D. J. Fisher, L. K. Oesterlin, B. Niragire et al., The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces Chlamydia trachomatis Infectivity and Growth, Frontiers in Cellular and Infection Microbiology, vol.8, p.546, 2018.

M. M. Cossé, M. L. Barta, D. J. Fisher, L. K. Oesterlin, B. Niragire et al., The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces Chlamydia trachomatis Infectivity and Growth, Frontiers in Cellular and Infection Microbiology, vol.8, issue.145, p.145, 2018.

Y. Ohsumi, Historical landmarks of autophagy research, Cell Research, vol.24, issue.1, pp.9-23, 2013.

K. Fletcher, The WD40 domain of ATG16L1 is required for its non-550 canonical role in lipidation of LC3 at single membranes, The EMBO Journal, vol.551, issue.4, pp.97840-97817, 2018.

K. Cadwell and J. Debnath, Beyond self-eating: The control of nonautophagic functions and signaling pathways by autophagy-related proteins, Journal of Cell Biology, vol.217, issue.3, pp.813-822, 2017.

A. H. Lystad, S. R. Carlsson, L. R. De-la-ballina, K. J. Kauffman, S. Nag et al., Distinct functions of ATG16L1 isoforms in membrane binding and LC3B lipidation in autophagy-related processes, Nature Cell Biology, vol.21, issue.3, pp.372-383, 2019.

M. T. Sorbara, The Protein ATG16L1 Suppresses Inflammatory Cytokines 558 Induced by the Intracellular Sensors Nod1 and Nod2 in an, Autophagy-Independent, vol.559, 2013.

M. T. Sorbara, L. K. Ellison, M. Ramjeet, L. H. Travassos, N. L. Jones et al., The Protein ATG16L1 Suppresses Inflammatory Cytokines Induced by the Intracellular Sensors Nod1 and Nod2 in an Autophagy-Independent Manner, Immunity, vol.39, issue.5, pp.858-873, 2013.

M. Bajagic, A. Archna, P. Büsing, and A. Scrima, Structure of the WD40-domain of human ATG16L1, Protein Science, vol.26, issue.9, pp.1828-1837, 2017.

E. Boada-romero, M. Letek, A. Fleischer, K. Pallauf, C. Ramón-barros et al., TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3, The EMBO Journal, vol.32, issue.4, pp.566-582, 2013.

K. Slowicka, I. Serramito-gómez, E. Boada-romero, A. Martens, M. Sze et al., Physical and functional interaction between A20 and ATG16L1-WD40 domain in the control of intestinal homeostasis, Nature Communications, vol.10, issue.1, p.1834, 2019.

A. , Autophagy-independent function of MAP-LC3 during 568 intracellular propagation of Chlamydia trachomatis, Autophagy, vol.7, issue.8, p.15, 2011.

F. Vromman, M. Laverrière, S. Perrinet, A. Dufour, and A. Subtil, Quantitative Monitoring of the Chlamydia trachomatis Developmental Cycle Using GFP-Expressing Bacteria, Microscopy and Flow Cytometry, PLoS ONE, vol.9, issue.6, p.e99197, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01448137

M. Bacteria and F. Cytometry, PLoS One, vol.9, issue.6, pp.99197-572

S. Ullrich, A. Münch, S. Neumann, E. Kremmer, J. Tatzelt et al., The Novel Membrane Protein TMEM59 Modulates Complex Glycosylation, Cell Surface Expression, and Secretion of the Amyloid Precursor Protein, Journal of Biological Chemistry, vol.285, issue.27, pp.20664-20674, 2010.

S. Ullrich, A. Münch, S. Neumann, E. Kremmer, J. Tatzelt et al., The Novel Membrane Protein TMEM59 Modulates Complex Glycosylation, Cell Surface Expression, and Secretion of the Amyloid Precursor Protein, Journal of Biological Chemistry, vol.285, issue.27, pp.20664-20674, 2010.

K. A. Rzomp, L. D. Scholtes, B. J. Briggs, G. R. Whittaker, and M. A. Scidmore, Rab GTPases Are Recruited to Chlamydial Inclusions in Both a Species-Dependent and Species-Independent Manner, Infection and Immunity, vol.71, issue.10, pp.5855-5870, 2003.

G. Tudela and J. , The late endocytic Rab39a GTPase regulates the 579 interaction between multivesicular bodies and chlamydial inclusions, J. Cell Sci, vol.580, issue.16, pp.3068-3081, 2015.

R. Lipinski and A. , Chlamydia trachomatis Intercepts Golgi-Derived 585 Sphingolipids through a Rab14-Mediated Transport Required for Bacterial 586 Development and Replication, Capmany A & Damiani MaT, vol.583, issue.10, pp.14084-587, 2009.

A. A. Rogalski and S. J. Singer, Associations of elements of the Golgi apparatus with microtubules., Journal of Cell Biology, vol.99, issue.3, pp.1092-1100, 1984.

B. P. Jain and S. Pandey, WD40 Repeat Proteins: Signalling Scaffold with Diverse Functions, The Protein Journal, vol.37, issue.5, pp.391-406, 2018.

G. Boncompain and A. V. Weigel, Transport and sorting in the Golgi complex: multiple mechanisms sort diverse cargo, Current Opinion in Cell Biology, vol.50, pp.94-101, 2018.

J. Hampe, A genome-wide association scan of nonsynonymous SNPs 594 identifies a susceptibility variant for Crohn disease in ATG16L1, Nat. Genet, vol.39, p.25, 2006.

A. Murthy, Y. Li, I. Peng, M. Reichelt, A. K. Katakam et al., A Crohn?s disease variant in Atg16l1 enhances its degradation by caspase 3, Nature, vol.506, issue.7489, pp.456-462, 2014.

Y. Matsuzawa-ishimoto, S. Hwang, and K. Cadwell, Autophagy and Inflammation, Annual Review of Immunology, vol.36, issue.1, pp.73-101, 2018.

K. Cadwell, J. Y. Liu, S. L. Brown, H. Miyoshi, J. Loh et al., A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells, Nature, vol.456, issue.7219, pp.259-263, 2008.

P. Gao, The Inflammatory Bowel Disease-Associated Autophagy Gene 602, 2017.

P. Gao, H. Liu, H. Huang, Q. Zhang, W. Strober et al., The Inflammatory Bowel Disease?Associated Autophagy Gene Atg16L1T300A Acts as a Dominant Negative Variant in Mice, The Journal of Immunology, vol.198, issue.6, pp.2457-2467, 2017.

F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott et al., Genome engineering using the CRISPR-Cas9 system, Nature Protocols, vol.8, issue.11, pp.2281-2308, 2013.

L. Gehre, O. Gorgette, S. Perrinet, M. Prevost, M. Ducatez et al., Sequestration of host metabolism by an intracellular pathogen, eLife, vol.5, p.31, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01397781

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative CT method, Nature Protocols, vol.3, issue.6, pp.1101-1108, 2008.

D. Bowman and J. M. Lees, Trans Atlantic Infrasound Payload (TAIP) Operation Plan., TaiP D480A compared to Flag-TaiP, p.4, 2018.

, Figure 4. The predicted EMC1 transmembrane domain residue D961 plays a critical role during SV40 infection., E) Quantification of the average inclusion size in cells expressing Flag-CymR, Flag-TaiP 704 and Flag-TaiP D480A . Cells were transfected for 24 hrs before they were infected for 20 hrs with 705

, Figure 3?figure supplement 2. Characterization of C. trachomatis Cdu1-FLAG.

, Figure 7?video 1. Loss of GEF-H1, PLC?, or PKD impairs the localized delivery of Rab6-positive vesicles to FAs.

, Figure 3. VP3 mediates MAVS interaction and degradation using an N-terminal domain.

, Figure 14?figure supplement 1. Protein immunoblot showing the expression of different constructs in HeLa cells.

, Figure 3?figure supplement 3. Cdu1 expression in C.

. Hela, Figure 5: Relative expression of Rab6 and PAP genes.

, Figure 3?figure supplement 3. Cdu1 expression in C.

, Figure 10. Localization of PPM1H in RPE cells., MOI=0.2. 20 h after infection the cells were treated with 10 nM nocodazole, and incubated 729 further for 60 min before fixation

, Figure 7?figure supplement 2. miR-223 association with Ago2 in WT and ?YBX1 cells.

, Figure 7?video 1. Loss of GEF-H1, PLC?, or PKD impairs the localized delivery of Rab6-positive vesicles to FAs., TaiP disrupts the ATG16L1-controlled traffic of Rab6-positive vesicles towards 737 TMEM59-positive compartments, vol.5

S. F. Murphy, J. S. Messer, and D. L. Boone, Tu1854 ATG16L1 Facilitates Bacterial Invasion in Human Cells, Gastroenterology, vol.142, issue.5, pp.S-861, 2012.

, Figure 7?video 1. Loss of GEF-H1, PLC?, or PKD impairs the localized delivery of Rab6-positive vesicles to FAs., Rab6 positive veiscles to TMEM59 positive compartments. b. In cells infected with Ctr WT

, Figure 5?source data 1. Expression of wild typeDeoB and ThyA in evolved D27F strain reverts phenotype to high folAmix requirement.

, Figure 5. All discernable domains of SAV1 are required for MST2 activation.

, Figure 8. TLR7 and TLR9 association with UNC93B1 is mutually exclusive., One day later, the cells were lysed, and immunoprecipitation (IP) was performed with anti-HA 746 coupled beads