M. Zoli, S. Pucci, A. Vilella, and C. Gotti, Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors, Curr. Neuropharmacol, vol.16, pp.338-349, 2018.

J. A. Dani, Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine, Int. Rev. Neurobiol, vol.124, pp.3-19, 2015.

D. Gündisch and C. Eibl, Nicotinic acetylcholine receptor ligands, a patent review, Expert Opin. Ther. Pat, vol.21, pp.1867-1896, 2006.

S. A. Grando, Connections of nicotine to cancer, Nat. Rev. Cancer, vol.14, pp.419-429, 2014.

F. Grassi and S. Fucile, Calcium influx through muscle nAChR-channels: One route, multiple roles, Neuroscience, vol.439, pp.117-124, 2019.

B. M. Conti-tronconi, K. E. Mclane, M. A. Raftery, S. A. Grando, and M. P. Protti, The nicotinic acetylcholine receptor: Structure and autoimmune pathology, Crit. Rev. Biochem. Mol. Biol, vol.29, pp.69-123, 1994.

R. Rudolf and T. Straka, Nicotinic acetylcholine receptor at vertebrate motor endplates: Endocytosis, recycling, and degradation, Neurosci. Lett, vol.711, 2019.

N. Kabbani and R. A. Nichols, Beyond the Channel: Metabotropic Signaling by Nicotinic Receptors, Trends Pharmacol. Sci, vol.39, pp.354-366, 2018.

R. L. Papke and J. M. Lindstrom, Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling, Neuropharmacology, vol.168, 2020.

E. X. Albuquerque, E. F. Pereira, M. Alkondon, and S. W. Rogers, Mammalian nicotinic acetylcholine receptors: From structure to function, Physiol. Rev, vol.89, pp.73-120, 2009.

U. Baranowska and R. J. Wi?niewska, The ?7-nACh nicotinic receptor and its role in memory and selected diseases of the central nervous system, Postepy. Hig. Med. Dosw, vol.71, pp.633-648

D. Bertrand and A. V. Terry, The wonderland of neuronal nicotinic acetylcholine receptors, Biochem. Pharmacol, vol.151, pp.214-225, 2018.

A. Crespi, S. F. Colombo, and C. Gotti, Proteins and chemical chaperones involved in neuronal nicotinic receptor expression and function: An update, Br. J. Pharmacol, vol.175, pp.1869-1879, 2018.

K. Medjber, M. L. Freidja, S. Grelet, M. Lorenzato, K. Maouche et al., Role of nicotinic acetylcholine receptors in cell proliferation and tumour invasion in broncho-pulmonary carcinomas, Lung Cancer, vol.87, pp.258-264, 2015.

F. Koukouli, M. Rooy, J. Changeux, and U. Maskos, Nicotinic receptors in mouse prefrontal cortex modulate ultraslow fluctuations related to conscious processing, Proc. Natl. Acad. Sci, vol.113, pp.14823-14828, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01548328

J. Changeux, P. Corringer, and U. Maskos, The nicotinic acetylcholine receptor: From molecular biology to cognition, Neuropharmacology, vol.96, pp.135-136, 2015.

N. Le-novère, P. Corringer, and J. Changeux, The diversity of subunit composition in nAChRs: Evolutionary origins, physiologic and pharmacologic consequences, J. Neurobiol, vol.53, pp.447-456, 2002.

J. Wu, Q. Liu, P. Tang, J. D. Mikkelsen, J. Shen et al., Heteromeric ?7?2 Nicotinic Acetylcholine Receptors in the Brain, Trends Pharmacol. Sci, vol.37, pp.562-574, 2016.

J. Chen, I. W. Cheuk, V. Y. Shin, and A. Kwong, Acetylcholine receptors: Key players in cancer development, Surg. Oncol, vol.31, pp.46-53, 2019.

K. Maouche, M. Polette, T. Jolly, K. Medjber, I. Cloëz-tayarani et al., {alpha}7 nicotinic acetylcholine receptor regulates airway epithelium differentiation by controlling basal cell proliferation, Am. J. Pathol, vol.175, pp.1868-1882, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00426515

S. Munakata, K. Ishimori, N. Kitamura, S. Ishikawa, Y. Takanami et al., Oxidative stress responses in human bronchial epithelial cells exposed to cigarette smoke and vapor from tobacco-and nicotine-containing products, Regul. Toxicol. Pharmacol, vol.99, pp.122-128, 2018.

M. Herman and R. Tarran, E-cigarettes, nicotine, the lung and the brain: Multi-level cascading pathophysiology, J. Physiol, vol.2020, 278388.

N. Kabbani, J. C. Nordman, B. A. Corgiat, D. P. Veltri, A. Shehu et al., Are nicotinic acetylcholine receptors coupled to G proteins?, Bioessays, vol.35, pp.1025-1034, 2013.

J. R. King, A. Ullah, E. Bak, M. S. Jafri, and N. Kabbani, Ionotropic and Metabotropic Mechanisms of Allosteric Modulation of ?7 Nicotinic Receptor Intracellular Calcium, Mol. Pharmacol, vol.93, pp.601-611, 2018.

K. Cui, X. Ge, and H. Ma, Four SNPs in the CHRNA3/5 alpha-neuronal nicotinic acetylcholine receptor subunit locus are associated with COPD risk based on meta-analyses, PLoS ONE, vol.9, 2014.

U. Maskos, The nicotinic receptor alpha5 coding polymorphism rs16969968 as a major target in disease: Functional dissection and remaining challenges, J. Neurochem, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02888325

K. Sriram and P. A. Insel, A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance, Br. J. Pharmacol, vol.2020

J. M. Oakes, R. M. Fuchs, J. D. Gardner, E. Lazartigues, and X. Yue, Nicotine and the renin-angiotensin system, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.315, pp.895-906, 2018.

J. Changeux, Z. Amoura, F. A. Rey, and M. Miyara, A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications, Comptes Rendus Biol, vol.343, pp.33-39, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02968179

D. C. Lam, .. Luo, S. Y. Fu, K. Lui, M. M. et al., Nicotinic acetylcholine receptor expression in human airway correlates with lung function, Am. J. Physiol. Lung Cell. Mol. Physiol, vol.310, pp.232-239, 2016.

P. A. Reyfman, J. M. Walter, N. Joshi, K. R. Anekalla, A. C. Mcquattie-pimentel et al., Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of Pulmonary Fibrosis, Am. J. Respir. Crit. Care Med, vol.199, pp.1517-1536, 2019.

H. B. Schiller, D. T. Montoro, L. M. Simon, E. L. Rawlins, K. B. Meyer et al., The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease, Am. J. Respir. Cell Mol. Biol, vol.61, pp.31-41, 2019.

F. A. Vieira-braga, G. Kar, M. Berg, O. A. Carpaij, K. Polanski et al., A cellular census of human lungs identifies novel cell states in health and in asthma, Nat. Med, vol.25, pp.1153-1163, 2019.

L. E. Zaragosi, M. Deprez, and P. Barbry, Using single-cell RNA sequencing to unravel cell lineage relationships in the respiratory tract, Biochem. Soc. Trans, vol.2020, pp.327-336

S. Ruiz-garcía, M. Deprez, K. Lebrigand, A. Cavard, A. Paquet et al., Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures, 2019.

N. Moser, N. Mechawar, I. Jones, A. Gochberg-sarver, A. Orr-urtreger et al., Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures: Evaluation of nicotinic receptor antibodies, J. Neurochem, vol.102, pp.479-492, 2007.

F. R. Rommel, B. Raghavan, R. Paddenberg, W. Kummer, S. Tumala et al., Suitability of Nicotinic Acetylcholine Receptor ?7 and Muscarinic Acetylcholine Receptor 3 Antibodies for Immune Detection: Evaluation in Murine Skin, J. Histochem. Cytochem, vol.63, pp.329-339, 2015.

D. C. Lam, .. Girard, L. Ramirez, R. Chau, W. Suen et al., Expression of Nicotinic Acetylcholine Receptor Subunit Genes in Non-Small-Cell Lung Cancer Reveals Differences between Smokers and Nonsmokers, Cancer Res, vol.67, pp.4638-4647, 2007.

B. K. Garg and R. H. Loring, Evaluating Commercially Available Antibodies for Rat ?7 Nicotinic Acetylcholine Receptors, J. Histochem. Cytochem, vol.65, pp.499-512, 2017.

F. J. Barrantes, Cell-surface translational dynamics of nicotinic acetylcholine receptors. Front. Synaptic Neurosci, vol.6, 2014.

C. I. Amos, X. Wu, P. Broderick, I. P. Gorlov, J. Gu et al., Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1, Nat. Genet, vol.40, pp.616-622, 2008.

R. J. Hung, J. D. Mckay, V. Gaborieau, P. Boffetta, M. Hashibe et al., A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25, Nature, vol.452, pp.633-637, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00944415

P. Sun, L. Li, C. Zhao, M. Pan, Z. Qian et al., Deficiency of ?7 Nicotinic Acetylcholine Receptor Attenuates Bleomycin-Induced Lung Fibrosis in Mice, Mol. Med, vol.23, pp.34-49, 2017.

H. Sun, Y. Jia, and X. Ma, Alpha5 Nicotinic Acetylcholine Receptor Contributes to Nicotine-Induced Lung Cancer Development and Progression, Front. Pharmacol, vol.8, p.573, 2017.

H. Sun and X. Ma, ?5-nAChR modulates nicotine-induced cell migration and invasion in A549 lung cancer cells, Exp. Toxicol. Pathol, vol.67, pp.477-482, 2015.

A. Bordas, J. L. Cedillo, F. Arnalich, I. Esteban-rodriguez, L. Guerra-pastrián et al., Expression patterns for nicotinic acetylcholine receptor subunit genes in smoking-related lung cancers, Oncotarget, vol.8, pp.67878-67890, 2017.

J. Qian, Y. Liu, Z. Sun, D. Zhangsun, and S. Luo, Identification of nicotinic acetylcholine receptor subunits in different lung cancer cell lines and the inhibitory effect of alpha-conotoxin TxID on lung cancer cell growth, Eur. J. Pharmacol, vol.865, 2019.

W. Witayateeraporn, K. Arunrungvichian, S. Pothongsrisit, J. Doungchawee, and O. Vajragupta, Pongrakhananon, V. ?7-Nicotinic acetylcholine receptor antagonist QND7 suppresses non-small cell lung cancer cell proliferation and migration via inhibition of Akt/mTOR signaling, Biochem. Biophys. Res. Commun, vol.521, pp.977-983, 2020.

J. R. Friedman, S. D. Richbart, J. C. Merritt, K. C. Brown, N. A. Nolan et al., Acetylcholine signaling system in progression of lung cancers, Pharmacol. Ther, vol.194, pp.222-254, 2019.

S. G. Pillai, D. Ge, G. Zhu, X. Kong, K. V. Shianna et al., A genome-wide association study in chronic obstructive pulmonary disease (COPD): Identification of two major susceptibility loci, PLoS Genet, vol.5, 2009.

S. G. Pillai, X. Kong, L. D. Edwards, M. H. Cho, W. H. Anderson et al., Loci Identified by Genome-wide Association Studies Influence Different Disease-related Phenotypes in Chronic Obstructive Pulmonary Disease, Am. J. Respir. Crit. Care Med, vol.182, pp.1498-1505, 2010.

M. H. Cho, M. N. Mcdonald, X. Zhou, M. Mattheisen, P. J. Castaldi et al., Risk loci for chronic obstructive pulmonary disease: A genome-wide association study and meta-analysis, Lancet Respir. Med, vol.2, pp.214-225, 2014.

, The Tobacco and Genetics Consortium Genome-wide meta-analyses identify multiple loci associated with smoking behavior, Nat. Genet, vol.42, pp.441-447, 2010.

S. Douaoui, R. Djidjik, M. Boubakeur, M. Ghernaout, C. Touil-boukoffa et al., GTS-21, an ?7nAChR agonist, suppressed the production of key inflammatory mediators by PBMCs that are elevated in COPD patients and associated with impaired lung function

M. J. Bray, L. Chen, L. Fox, D. B. Hancock, R. C. Culverhouse et al., Dissecting the genetic overlap of smoking behaviors, lung cancer, and chronic obstructive pulmonary disease: A focus on nicotinic receptors and nicotine metabolizing enzyme, Genet. Epidemiol, vol.44, pp.748-758, 2020.

M. Yamada and M. Ichinose, The Cholinergic Pathways in Inflammation: A Potential Pharmacotherapeutic Target for COPD, Front. Pharmacol, vol.9, 1426.

G. Cai, Y. Bossé, F. Xiao, F. Kheradmand, and C. I. Amos, Tobacco Smoking Increases the Lung Gene Expression of ACE2, the Receptor of SARS-CoV-2, Am. J. Respir. Crit. Care Med, 2020.

H. Zhang, M. R. Rostami, P. L. Leopold, J. G. Mezey, S. L. O'beirne et al., Expression of the SARS-CoV-2 ACE2 Receptor in the Human Airway Epithelium, Am. J. Respir. Crit. Care Med, 2020.

Q. Wang, Y. Zhang, L. Wu, S. Niu, C. Song et al., Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2, Cell, vol.181, pp.894-904, 2020.

P. Russo, S. Bonassi, R. Giacconi, M. Malavolta, C. Tomino et al., COVID-19 and smoking: Is nicotine the hidden link?, Eur. Respir. J, vol.55, 2020.

D. Rand, I. A. Blaikley, J. Booton, R. Chaudhuri, N. Gupta et al., British Thoracic Society guideline for diagnostic flexible bronchoscopy in adults: Accredited by NICE, Thorax, vol.68, pp.1-44, 2013.

W. Zuo, J. Yang, Y. Strulovici-barel, J. Salit, M. Rostami et al., Exaggerated BMP4 signalling alters human airway basal progenitor cell differentiation to cigarette smoking-related phenotypes, Eur. Respir. J, vol.53, 2019.

J. Perotin, C. Coraux, E. Lagonotte, P. Birembaut, G. Delepine et al., Alteration of primary cilia in COPD, Eur. Respir. J, vol.52, p.1800122, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02431953

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI