S. Absalon, T. Blisnick, L. Kohl, G. Toutirais, G. Dore et al., Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes, Mol. Biol. Cell, vol.19, pp.929-944, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00217549

C. Adhiambo, T. Blisnick, G. Toutirais, E. Delannoy, and P. Bastin, A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum, J. Cell Sci, vol.122, pp.834-841, 2009.

N. T. Ahmed, C. Gao, B. F. Lucker, D. G. Cole, and D. R. Mitchell, ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery, J. Cell Biol, vol.183, pp.313-322, 2008.

T. Avidor-reiss and M. R. Leroux, Shared and distinct mechanisms of compartmentalized and cytosolic ciliogenesis, Curr. Biol, vol.25, 2015.

P. Bastin, T. H. Macrae, S. B. Francis, K. R. Matthews, and K. Gull, Flagellar morphogenesis: protein targeting and assembly in the paraflagellar rod of trypanosomes, Mol. Cell. Biol, vol.19, pp.8191-8200, 1999.

E. Bertiaux and P. Bastin, Dealing with several flagella in the same cell, Cell. Microbiol, vol.22, p.13162, 2020.

E. Bertiaux, A. Mallet, C. Fort, T. Blisnick, S. Bonnefoy et al., Bidirectional intraflagellar transport is restricted to two sets of microtubule doublets in the trypanosome flagellum, J. Cell Biol, vol.217, pp.4284-4297, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01931458

E. Bertiaux, B. Morga, T. Blisnick, B. Rotureau, and P. Bastin, A growand-lock model for the control of flagellum length in trypanosomes, Curr. Biol, vol.28, pp.3802-3814, 2018.

S. Bhogaraju, L. Cajanek, C. Fort, T. Blisnick, K. Weber et al., Molecular basis of tubulin transport within the cilium by IFT74 and IFT81, Science, vol.341, pp.1009-1012, 2013.

T. Blisnick, J. Buisson, S. Absalon, A. Marie, N. Cayet et al., The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions, Mol. Biol. Cell, vol.25, pp.2620-2633, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01301215

J. R. Broekhuis, W. Y. Leong, and G. Jansen, Regulation of cilium length and intraflagellar transport, Int. Rev. Cell Mol. Biol, vol.303, pp.101-138, 2013.

R. Brun and . Schonenberger, Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium, Acta Trop, vol.36, pp.289-292, 1979.

J. Buisson, N. Chenouard, T. Lagache, T. Blisnick, J. Olivo-marin et al., Intraflagellar transport proteins cycle between the flagellum and its base, J. Cell Sci, vol.126, pp.327-338, 2013.

K. Y. Chan and K. Ersfeld, The role of the Kinesin-13 family protein TbKif13-2 in flagellar length control of Trypanosoma brucei, Mol. Biochem. Parasitol, vol.174, pp.137-140, 2010.

K. Y. Chan, K. R. Matthews, and K. Ersfeld, Functional characterisation and drug target validation of a mitotic kinesin-13 in Trypanosoma brucei, PLoS Pathog, vol.6, p.1001050, 2010.

N. Chenouard, J. Buisson, I. Bloch, P. Bastin, and J. C. Olivo-marin, Curvelet analysis of kymograph for tracking bi-directional particles in fluorescence microscopy images, IEEE International Conference on Image Processing, pp.3657-3660, 2010.

J. M. Craft, J. A. Harris, S. Hyman, P. Kner, and K. F. Lechtreck, Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism, J. Cell Biol, vol.208, pp.223-237, 2015.

D. Dacheux, N. Landrein, M. Thonnus, G. Gilbert, A. Sahin et al., A MAP6-related protein is present in protozoa and is involved in flagellum motility, PLoS ONE, vol.7, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02323247

J. A. Davidge, E. Chambers, H. A. Dickinson, K. Towers, M. L. Ginger et al., Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation, J. Cell Sci, vol.119, pp.3935-3943, 2006.

S. K. Dutcher, The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii, Cytoskeleton (Hoboken), vol.71, pp.79-94, 2014.

B. D. Engel, W. B. Ludington, and W. F. Marshall, Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model, J. Cell Biol, vol.187, pp.81-89, 2009.

J. B. Franklin and E. Ullu, Biochemical analysis of PIFTC3, the Trypanosoma brucei orthologue of nematode DYF-13, reveals interactions with established and putative intraflagellar transport components, Mol. Microbiol, vol.78, pp.173-186, 2010.

N. W. Goehring and A. A. Hyman, Organelle growth control through limiting pools of cytoplasmic components, Curr. Biol, vol.22, pp.330-339, 2012.

L. Hao, M. Thein, I. Brust-mascher, G. Civelekoglu-scholey, Y. Lu et al., Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments, Nat. Cell Biol, vol.13, pp.790-798, 2011.

C. Y. He, A. Singh, and V. Yurchenko, Cell cycle-dependent flagellar disassembly in a firebug trypanosomatid Leptomonas pyrrhocoris, vol.10, pp.2424-2443, 2019.

H. Hirumi and K. Hirumi, Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers, J. Parasitol, vol.75, pp.985-989, 1989.

D. Huet, T. Blisnick, S. Perrot, and P. Bastin, The GTPase IFT27 is involved in both anterograde andretrograde intraflagellar transport, vol.3, p.2419, 2014.

D. Huet, T. Blisnick, S. Perrot, and P. Bastin, IFT25 is required for the construction of the trypanosome flagellum, J. Cell Sci, vol.132, p.228296, 2019.

H. Ishikawa and W. F. Marshall, Intraflagellar transport and ciliary dynamics, Cold Spring Harb. Perspect Biol, vol.9, p.21998, 2017.

V. L. Jensen, N. J. Lambacher, C. Li, S. Mohan, C. L. Williams et al., Role for intraflagellar transport in building a functional transition zone, EMBO Rep, vol.19, p.45862, 2018.

K. A. Johnson and J. L. Rosenbaum, Polarity of flagellar assembly in Chlamydomonas, J. Cell Biol, vol.119, pp.1605-1611, 1992.

J. Keeling, L. Tsiokas, and D. Maskey, Cellular mechanisms of ciliary length control, Cells, vol.5, p.6, 2016.

S. Kelly, J. Reed, S. Kramer, L. Ellis, H. Webb et al., Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci, Mol. Biochem. Parasitol, vol.154, pp.103-109, 2007.

L. Kohl, D. Robinson, and P. Bastin, Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes, EMBO J, vol.22, pp.5336-5346, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00108210

N. G. Kolev, K. Ramey-butler, G. A. Cross, E. Ullu, and C. Tschudi, Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA-binding protein, Science, vol.338, pp.1352-1353, 2012.

K. G. Kozminski, K. A. Johnson, P. Forscher, and J. L. Rosenbaum, , 1993.

, A motility in the eukaryotic flagellum unrelated to flagellar beating, Proc. Natl. Acad. Sci. USA, vol.90, pp.5519-5523

K. G. Kozminski, P. L. Beech, and J. L. Rosenbaum, The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane, J. Cell Biol, vol.131, pp.1517-1527, 1995.

L. Ray, D. Barry, J. D. Easton, C. Vickerman, and K. , First tsetse fly transmission of the "AnTat" serodeme of Trypanosoma brucei, Ann. Soc. Belg. Med. Trop, vol.57, pp.369-381, 1977.

K. F. Lechtreck, J. C. Van-de-weghe, J. A. Harris, and P. Liu, Protein transport in growing and steady-state cilia, Traffic, vol.18, pp.277-286, 2017.

M. Lemos, A. Mallet, E. Bertiaux, A. Imbert, B. Rotureau et al., Timing and original features of flagellum assembly in trypanosomes during development in the tsetse fly, Parasit. Vectors, vol.13, p.169, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02553740

Y. Liang, X. Zhu, Q. Wu, and J. Pan, Ciliary length sensing regulates IFT entry via changes in FLA8/KIF3B phosphorylation to control ciliary assembly, Curr. Biol, vol.28, pp.2429-2435, 2018.

W. B. Ludington, K. A. Wemmer, K. F. Lechtreck, G. B. Witman, and W. F. Marshall, Avalanche-like behavior in ciliary import, Proc. Natl. Acad. Sci. USA, vol.110, pp.3925-3930, 2013.

J. H. Luft, Improvements in epoxy resin embedding methods, J. Biophys. Biochem. Cytol, vol.9, pp.409-414, 1961.

E. T. Macleod, I. Maudlin, A. C. Darby, and S. C. Welburn, Antioxidants promote establishment of trypanosome infections in tsetse, Parasitology, vol.134, pp.827-831, 2007.

W. F. Marshall and J. L. Rosenbaum, Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control, J. Cell Biol, vol.155, pp.405-414, 2001.

S. G. Mcinally, J. Kondev, and S. C. Dawson, Length-dependent disassembly maintains four different flagellar lengths in Giardia, vol.8, p.48694, 2019.

B. Morga and P. Bastin, Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences, vol.2, p.16, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00911797

S. K. Natesan, L. Peacock, K. Matthews, W. Gibson, and M. C. Field, Activation of endocytosis as an adaptation to the mammalian host by trypanosomes, Eukaryot. Cell, vol.6, pp.2029-2037, 2007.

C. P. Ooi, S. Schuster, C. Cren-travaille, E. Bertiaux, A. Cosson et al., The cyclical development of trypanosoma vivax in the tsetse fly involves an asymmetric division, Front. Cell Infect. Microbiol, vol.6, p.115, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01383000

L. Peacock, C. Kay, M. Bailey, and W. Gibson, Shape-shifting trypanosomes: Flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus, PLoS Pathog, vol.14, p.1007043, 2018.

L. C. Pradel, M. Bonhivers, N. Landrein, and D. R. Robinson, NIMArelated kinase TbNRKC is involved in basal body separation in Trypanosoma brucei, J. Cell Sci, vol.119, pp.1852-1863, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00215921

B. Prevo, J. M. Scholey, and E. J. Peterman, Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery, FEBS J, vol.284, pp.2905-2931, 2017.

D. L. Ringo, Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas, J. Cell Biol, vol.33, pp.543-571, 1967.

D. R. Robinson and K. Gull, Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle, Nature, vol.352, pp.731-733, 1991.
URL : https://hal.archives-ouvertes.fr/hal-02105728

B. Rotureau, I. Subota, and P. Bastin, Molecular bases of cytoskeleton plasticity during the Trypanosoma brucei parasite cycle, Cell. Microbiol, vol.13, pp.705-716, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01371324

B. Rotureau, I. Subota, J. Buisson, and P. Bastin, A new asymmetric division contributes to the continuous production of infective trypanosomes in the tsetse fly, Development, vol.139, pp.1842-1850, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01371317

R. Sharma, L. Peacock, E. Gluenz, K. Gull, W. Gibson et al., Asymmetric cell division as a route to reduction in cell length and change in cell morphology in trypanosomes, Protist, vol.159, pp.137-151, 2008.

T. Sherwin and K. Gull, The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations, Phil. Trans. R. Soc. Lond. B, vol.323, pp.573-588, 1989.

L. Tetley and K. Vickerman, Differentiation in Trypanosoma brucei: hostparasite cell junctions and their persistence during acquisition of the variable antigen coat, J. Cell Sci, vol.74, pp.1-19, 1985.

J. Van-den-abbeele, Y. Claes, D. Van-bockstaele, D. Le-ray, and M. Coosemans, Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis, Parasitology, vol.118, pp.469-478, 1999.

E. Vannuccini, E. Paccagnini, F. Cantele, M. Gentile, D. Dini et al., Two classes of short intraflagellar transport train with different 3D structures are present in Chlamydomonas flagella, J. Cell Sci, vol.129, pp.2064-2074, 2016.

K. Vickerman, The mechanism of cyclical development in trypanosomes of the Trypanosoma brucei sub-group: an hypothesis based on ultrastructural observations, Trans. R. Soc. Trop. Med. Hyg, vol.56, issue.62, p.90072, 1962.

L. Vincensini, T. Blisnick, E. Bertiaux, S. Hutchinson, C. Georgikou et al., Flagellar incorporation of proteins follows at least two different routes in trypanosomes, Biol. Cell, vol.110, pp.33-47, 2018.

Y. Wang, Y. Ren, and J. Pan, Regulation of flagellar assembly and length in Chlamydomonas by LF4, a MAPK-related kinase, FASEB J, vol.33, pp.6431-6441, 2019.

Z. Wang, Z. Fan, S. M. Williamson, and H. Qin, Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in Chlamydomonas, PLoS ONE, vol.4, 2009.

K. N. Wren, J. M. Craft, D. Tritschler, A. Schauer, D. K. Patel et al., A differential cargo-loading model of ciliary length regulation by IFT, Curr. Biol, vol.23, pp.2463-2471, 2013.