Autoantibodies against type I IFNs in patients with life-threatening COVID-19

Paul Bastard, Lindsey Rosen, Qian Zhang, Eleftherios Michailidis, Hans-Heinrich Hoffmann, Yu Zhang, Karim Dorgham, Quentin Philippot, Jérémie Rosain, Vivien Béziat, et al.

To cite this version:

HAL Id: pasteur-02958871

https://hal-pasteur.archives-ouvertes.fr/pasteur-02958871

Submitted on 6 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Auto-antibodies against type I IFNs in patients with life-threatening COVID-19

1Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France. 2University of Paris, Imagine Institute, Paris, France. 3ST. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA. 4Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA. 5Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA. 6Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, (CIMI-Paris), Paris, France. 7Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia. 8Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France. 9International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France. 10International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France. 11National Referee Center for Rheumatic and Autoimmune and Systemic Diseases in Children (RAISE), Lyon, France. 12Lyon Immunopathology Federation (LIFE), Hospices Civils de Lyon, Lyon, France. 13Internal Medicine Clinic, Tartu University Hospital, Tartu, Estonia. 14Rheumatology Department, Foch Hospital, Suresnes, France. 15Avicenne Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Bobigny, INSERM U1272 Hypoxia and Lung, Bobigny, France. 16Helix, San Mateo, CA, USA. 17Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands. 18IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy. 19Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. 20Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, CT, USA. 21Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA. 22Service de Biologie Clinique and UMR-S 1176, Hôpital Foch, Suresnes, France. 23INSERM U1140, Biosocial Research Lab, Paris University and European Georges Pompidou Hospital, Paris, France. 24Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, University of Paris, Imagine Institute, Paris, France. 25Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Assistance Publique Hôpitaux de Paris-Centre (APHC-CUP), University of Paris, Paris, France. 26Translational Immunology Lab, Institut Pasteur, Paris, France. 27Human Evolutionary Genetics Unit, Institut Pasteur, CNRS UMR 2000, 75015, Paris, France. 28Human Gemomics and Evolution, Collège de France, Paris, France. 29Department of Neurology, Amsterdam Neuroscience, Amsterdam, Netherlands. 30Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada. 31Infectious Disease Susceptibility Program, Research Institute, McGill University Health Centre, Montréal, Québec, Canada. 32Garvan Institute of Medical Research, Darlinghurst 20110, NSW, Sydney, Australia. 33St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales Sydney, Darlinghurst 20110, NSW, Australia. 34Department of Paediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent (CPIG), PID Research Lab. Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium. 35Infectious Diseases and HIV Service, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Fundació Doccina i Recerca Mutua Terrassa, Terrassa, Barcelona, Catalonia, Spain. 36IRScAixa AIDS Research Institute and Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain. 37University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain. 38Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain. 39Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska, Sweden. 40Department of Pediatric Rheumatology, Karolinska University Hospital, Karolinska, Sweden. 41Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA. 42Howard Hughes Medical Institute, New York, NY, USA. 43Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain. 44University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain. 45Neglected Human Genetics Laboratory, INSERM, University of Paris, Paris, France. 46Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark.
They are also seen in women with systemic lupus erythematosoimmune polyendocrinopathy syndrome type I (APS-1) (17) and life-threatening COVID-19 pneumonia (17A/F, respectively, or by their genetically driven autoimmune phenocopies, with the production of neutralizing auto-
Abs against these cytokines (18). Type I IFNs, first described (19, 20), are ubiquitously expressed cytokines that contribute to both innate immunity (via their secretion by plasmacytoid dendritic cells and other leukocytes) and cell-intrinsic immunity (in most if not all cell types) against viral infections (9–13). Their receptors are ubiquitously expressed and trigger the induction of IFN stimulated genes (ISGs) via phosphorylated STAT1-STAT2-IRF9 trimers (14). Neutralizing IgG auto-Abs against type I IFNs can occur in patients treated with IFN-α2 or IFN-ω (15) and exist in almost all patients with autoimmune polyendocrinopathy syndrome type I (APS-1) (16). They are also seen in women with systemic lupus erythematosus (17).

These patients do not seem to suffer from unusually severe viral infections, although human inborn errors of type I IFNs can underlie severe viral diseases, respiratory and otherwise (18). In 1984, Ion Gresser described a patient with unexplained auto-Abs against type I IFNs suffering from severe chickenpox and shingles (19, 20). More recently, auto-Abs against type I IFNs have been found in a few patients with bi-allelic, hypomorphic RAG1 or RAG2 mutations and viral diseases, including severe chickenpox and viral pneumonias (21). Our attention was drawn to three patients with APS-1, with known pre-existing anti-type I IFN auto-Abs, and life-threatening COVID-19 pneumonia (22) (detailed case reports in Methods). While searching for inborn errors of type I IFNs (18, 23), we hypothesized that neutralizing auto-Abs against type I IFNs might also underlie life-threatening COVID-19 pneumonia.

Auto-Abs against IFN-α2 and/or IFN-ω in patients with critical COVID-19
We searched for auto-Abs against type I IFNs in 987 patients hospitalized for life-threatening COVID-19 pneumonia. We also examined 663 individuals infected with SARS-CoV-2 presenting asymptomatic or mild disease, and 1,227 healthy controls whose samples were collected before the COVID-19 pandemic. Plasma or serum samples were collected from patients with critical COVID-19 during the acute phase of disease. Multiplex particle-based flow cytometry revealed a high fluorescence intensity (FI; >1,500) for IgG auto-Abs against IFN-ω in 135 patients (37%) with life-threatening COVID-19 and 12.5% of men. A B cell auto-immune phenocopy of inborn errors of type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.
CoV-2 infection and were not triggered by this infection. As a control, we confirmed that all 25 APS-1 patients tested had high levels of auto-Abs against IFN-α2 and IFN-ω (fig. SIC). Overall, we found that 135 of 987 patients (13.7%) with life-threatening COVID-19 pneumonia had IgG auto-Abs against at least one type I IFN.

The auto-Abs neutralize IFN-α2 and IFN-ω in vitro

We then tested whether auto-Abs against IFN-α2 and IFN-ω were neutralizing in vitro. We incubated PBMCs from healthy controls with 10 ng/mL IFN-α2 or IFN-ω in the presence of plasma from healthy individuals or from patients with auto-Abs. A complete abolition of STAT1 phosphorylation was observed in 101 patients with auto-Abs against IFN-α2 and/or IFN-ω (table S1). The antibodies detected were neutralizing against both IFN-α2 and IFN-ω in 52 of these 101 patients (51%), against IFN-α2 only in 36 patients (36%), and against IFN-ω only in 13 patients (13%), at the IFN-α2 and IFN-ω concentrations tested (Fig. 1, C and D). IgG depletion from patients with auto-Abs restored normal pSTAT1 induction after IFN-α2 and IFN-ω stimulation, whereas the purified IgG fully neutralized this induction (Fig. 1C and fig. S1D). Furthermore, these auto-Abs neutralized high amounts of IFN-α2 (fig. S1E) and were neutralizing at high dilutions (Fig. 1E and fig. S1F). Interestingly, 15 patients with life-threatening COVID-19 and auto-Abs against IFN-α2 and/or IFN-ω also had auto-Abs against other cytokines (IFN-γ, GM-CSF, IL-6, IL-10, IL-12p70, IL-22, IL-17A, IL-17F, and/or TNF-β), only three of which (IL-12p70, IL-22, IL-6) were neutralizing (in four patients) (fig. S2, A to C). Similar proportions were observed in the other cohorts (fig. S2, D to L).

We also analyzed ISG induction after 2 hours of stimulation with IFN-α2, IFN-β or IFN-γ, in the presence of plasma from healthy individuals or from patients with auto-Abs. With plasma from 8 patients with auto-Abs against IFN-α2, the induction of ISG CXCL10 was abolished after IFN-α2 stimulation but maintained after stimulation with IFN-γ (Fig. 1F). We then found that plasma from the five patients with neutralizing auto-Abs tested neutralized the protective activity of IFN-α2 in MDBK cells infected with vesicular stomatitis virus (table S2). Overall, we found that 101 of 987 patients (10.2%), including 95 males (94%), with life-threatening COVID-19 pneumonia, had neutralizing IgG auto-Abs against at least one type I IFN. By contrast, auto-Abs were detected in only four of 1,227 healthy controls (0.33%) (Fisher exact test, p-value<10^-15) and in none of the 663 patients with asymptomatic or mild SARS-CoV-2 infection tested (Fisher exact test, p-value<10^-16).

Auto-Abs against all 13 IFN-α subtypes in patients with auto-Abs to IFN-α2

We investigated whether patients with neutralizing auto-Abs against IFN-α2 only or IFN-ω and IFN-ω also had auto-Abs against the other 15 type I IFNs. ELISA showed that all patients tested (N=22) with auto-Abs against IFN-α2 also had auto-Abs against all 13 IFN-ω subtypes (IFN-ω1, -ω2, -ω4, -ω5, -ω6, -ω7, -ω8, -ω10, -ω13, -ω14, -ω16, -ω17, and -ω21), whereas only two of the 22 patients tested had auto-Abs against IFN-β, one had auto-Abs against IFN-κ, and two had auto-Abs against IFN-ε (Fig. 2A). The auto-Abs against IFN-β had neutralizing activity against IFN-β (Fig. 1D). We confirmed that all the patients had auto-Abs against all 13 subtypes of IFN-α, by testing the same samples by LIPS (Fig. 2B). For IFN-β, we also screened the whole cohort in a multiplex assay. We found that 19/987 (1.9%) patients had auto-Abs against IFN-ω, and that all of them were in our cohort of severe COVID-19 individuals with neutralizing auto-Abs against IFN-α and/or IFN-ω. Of these patients with auto-Abs against IFN-ω, only two were neutralizing against IFN-β (Fig. 1, D and F).

Ten of the 17 genes encoding type I IFNs (IFN-α2, -α5, -α6, -α8, -α13, -α14, -α21, -β, -ω, and -κ), have undergone strong negative selection, suggesting that they play an essential role in the general population, whereas the other seven IFN loci in the human genome often carry loss-of-function alleles (24). Moreover, the 13 IFN-ω subtypes and IFN-ω are more closely related to each other than to the other three IFNs (IFN-β, IFN-ε and IFN-κ), which are structurally and phylogenetically more distant (Fig. 2C). Thus, all patients with neutralizing auto-Abs against IFN-α2 tested (N=22) had auto-Abs against all 13 IFN-α subtypes, and three of the 22 patients tested (14%) had auto-Abs against 14 or more type I IFNs.

The auto-Abs neutralize IFN-α2 against SARS-CoV-2 in vitro and IFN-α in vivo

Plasma from eight patients with neutralizing auto-Abs against type I IFN also neutralized the ability of IFN-α2 to block the infection of Huh7.5 cells with SARS-CoV-2 (Fig. 3A). Plasma from two healthy controls or from seven SARS-CoV-2-infected patients without auto-Abs did not block the protective action of IFN-α2 (Fig. 3A and fig. S3A). These data provide compelling evidence that the patients’ blood carried sufficiently large amounts of auto-Abs to neutralize the corresponding type I IFNs and block their antiviral activity in vitro, including that against SARS-CoV-2.

We also found that all 41 patients with neutralizing auto-Abs against the 13 types of IFN-α tested had low (one patient) or undetectable (40 patients) levels of the 13 types of IFN-α in their plasma during the course of the disease (Fig. 3B) (25, 26). Type I IFNs may be degraded and/or bound to the corresponding circulating auto-Abs. The presence of circulating neutralizing auto-Abs against IFN-α is, therefore,
Strong excess of men in patients with auto-Abs against type I IFNs
There was a strong excess of male patients (95 of 101, 94%) with critical COVID-19 pneumonia and neutralizing auto-Abs against type I IFNs. This proportion of males was higher than that observed in patients with critical COVID-19 without auto-Abs (75%; Fisher exact test \(p\)-value=2.5 \(\times \) 10^{-6}), and much higher than that in male patients within the asymptomatic or pauci-symptomatic cohort (28%, Fisher exact test \(p\)-value=10^{-6}) (Table 1, Fig. 4A, and fig. S4A). Further evidence for X-linkage was provided by the observation that one of the seven women with auto-Abs and life-threatening COVID-19 had X-linked incontinentia pigmenti (IP), in which cells activate only one single X chromosome (cells having activated the X chromosome bearing the null mutation in NEMO dying in the course of development) (27). The prevalence of auto-Abs against type I IFNs in the general population was estimated at 0.33% (0.015-0.67%) in a sample of 1,227 healthy individuals, a value much lower than that in patients with life-threatening COVID-19 pneumonia, by a factor of at least 15.

The patients with auto-Abs were also slightly older than the rest of our cohort (49.5% of patients positive for auto-Abs were over 65 years of age versus 38% for the rest of the cohort, \(p=0.024 \)), suggesting that the frequency of circulating anti-type I IFNs auto-Abs increases with age (Table I and Fig. 4B). However, auto-Abs were found in patients aged from 25 to 87 years (fig. S4B). PCA was performed on 49: 34 European, 5 North Africans, 1 sub-Saharan African, 2 patients from the Middle East, 2 South Asians, 1 East Asian, and 1 South American (Fig. 4C). Large-scale studies will be required to determine the frequency of such auto-Abs in humans of different sexes, ages, and ancestries. Finally, the presence of auto-Abs was associated with a poor outcome, with death occurring in 37 of the 101 patients (36.6%) (table S1).

Neutralizing auto-Abs to type I IFNs are causative of critical COVID-19
There are multiple lines of evidence to suggest that the neutralizing auto-Abs against type I IFNs observed in these 101 patients preceded infection with SARS-CoV-2 and accounted for the severity of disease. First, the two patients for whom testing was performed before COVID-19 were found to have auto-Abs before infection. Second, three patients with APS-1 known to have neutralizing auto-Abs against type I IFN immunity before infection also had life-threatening COVID-19 (22) (supplementary methods). Third, we screened a series of 32 women with IP and found that a fourth of them had auto-Abs against type I IFNs, including one who developed critical COVID-19 (fig. S1C). Fourth, there is a marked bias in favor of men, suggesting that the production of auto-Abs against type I IFNs, whether driven by germ line or somatic genome, may be X-linked and therefore pre-existing to infection.

Moreover, IFN-\(\alpha \) subtypes were undetectable during acute disease in the blood of patients with auto-Abs against IFN-\(\alpha \), suggesting a pre-existing or concomitant biological impact in vivo. It is also unlikely that patients could break self-tolerance and mount high titers of neutralizing IgG auto-Abs against type I IFN within only one, or even two weeks of infection. Finally, inborn errors of type I IFNs underlying life-threatening COVID-19 in other previously healthy adults, including autosomal recessive IFNAR1 deficiency, are reported in an accompanying paper (18). Collectively, these findings suggest that auto-Abs against type I IFNs are a cause, and not a consequence of severe SARS-CoV-2 infection, although their titers and affinity may be enhanced by the SARS-CoV-2-driven induction of type I IFNs. They also provide an explanation for the major sex bias seen in patients with life-threatening COVID-19, and perhaps also the increase in risk with age.

Conclusion
We report here that at least 10% of patients with life-threatening COVID-19 pneumonia have neutralizing auto-Abs against type I IFNs. With our accompanying description of patients with inborn errors of type I IFNs and life-threatening COVID-19 (18), this study highlights the crucial role of type I IFNs in protective immunity against SARS-CoV-2. These auto-Abs against type I IFNs were clinically silent until the patients were infected with SARS-CoV-2, which is a poor inducer of type I IFNs (28), suggesting that the small amounts of IFNs induced by the virus are important for protection against severe disease. The neutralizing auto-Abs against type I IFNs, like inborn errors of type I IFN production, tip the balance in favor of the virus, resulting in devastating disease, with insufficient, and even perhaps deleterious, innate and adaptive immune responses. Our findings have direct clinical implications. First, SARS-CoV-2-infected patients can be screened to identify individuals with auto-Abs at risk of developing life-threatening pneumonia. Such patients recovering from life-threatening COVID-19 should also be excluded from donating convalescent plasma for ongoing clinical trial, or at least tested before their plasma donations are accepted (29).
Second, this unexpected finding paves the way for therapeutic intervention, including plasmapheresis, monoclonal Abs depleting plasmablasts, and the specific inhibition of type I IFN-reactive B cells (30). Finally, in this patient group, early treatment with IFN-α is unlikely to be beneficial. However, treatment with injected or nebulized IFN-β may have beneficial effects, as auto-Abs against IFN-β appear to be rare in patients with auto-Abs against type I IFNs.

Methods

Subjects and samples
We enrolled 987 patients with proven life-threatening (critical) COVID-19, 663 asymptomatic or pauci-symptomatic individuals with proven COVID-19, and 1127 healthy controls in this study. All subjects were recruited following protocols approved by local Institutional Review Boards (IRBs). All protocols followed local ethics recommendations and informed consent was obtained when required.

COVID-19 disease severity was assessed in accordance with the Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia. “Life-threatening COVID-19 pneumonia” is pneumonia in patients with critical disease, whether pulmonary, with mechanical ventilation (CPAP, BIPAP, intubation, high-flow oxygen), septic shock, or damage to any other organ requiring admission in the ICU. The individuals with asymptomatic or mild SARS-CoV-2 infection were individuals infected with SARS-CoV-2 who remained asymptomatic or developed mild, self-healing, ambulatory disease with no evidence of pneumonia. The healthy controls were individuals who had not been exposed to SARS-CoV-2.

Plasma and serum samples from the patients and controls were frozen at -20°C immediately after collection. The fluid-phase luciferase immunoprecipitation systems (LIPS) assay was used to determine the levels of antibodies against the SARS-CoV-2 nucleoprotein and spike protein, as previously described (31).

Detection of anti-cytokine autoantibodies

Multiplex particle-based assay
Serum/plasma samples were screened for autoantibodies against 18 targets in a multiplex particle-based assay, in which magnetic beads with differential fluorescence were covalently coupled to recombinant human proteins. Patients with a fluorescence intensity (FI) of > 1500 for IFN-α2, IFN-β, or > 1000 IFN-ω were tested for blocking activity; as were patients positive for another cytokine.

ELISA

Enzyme-linked immunosorbent assays (ELISA) was performed as previously described (5). In brief, ELISA plates were coated with rhIFN-α, or rhIFN-ω and incubated with 1:50 dilutions of plasma samples from the patients or controls. A similar protocol was used when testing for 12 subtypes of IFN-α.

LIPS

Levels of autoantibodies against IFN-α subtypes were measured with luciferase-based immunoprecipitation assay (LIPS), as previously described (32). IFN-α1, I IFN-α2, I IFN-α4, IFN-α5, IFN-α6, I IFN-α7, IFN-α8, IFN-α10, IFN-α14, IFN-α16, IFN-α17 and IFN-α21 sequences were transfected in HEK293 cells and the IFN-α-luciferase fusion proteins were collected in the tissue culture supernatant. For autoantibody screening, serum samples were incubated with Protein G agarose beads and we then added 2x10⁶ luminescence units (LU) of antigen and incubated. Luminescence intensity was measured. The results are expressed in arbitrary units (AU), as a fold-difference relative to the mean of the negative control samples.

Functional evaluation of anti-cytokine autoantibodies

The blocking activity of anti-IFNα and anti-IFNω autoantibodies was determined by assessing STAT1 phosphorylation in healthy control cells following stimulation with the appropriate cytokines in the presence of 10% healthy control or patient serum/plasma.

We demonstrated that the IFNα/ω blocking activity observed was due to autoantibodies and not another plasma factor, by depleting IgG from the plasma with a protein G column. Without eluting the IgG, the flow-through fraction (IgG-depleted) was then collected and compared to total plasma in the phospho-STAT1 assay.

The blocking activity of anti-IFNΥ, -GM-CSF, -IFNλ1, -IFN-2, -IFN-3, -IL-6, -IL-10, -IL-12p70, -IL-22, -IL-17A, -IL-17F, -TNFα, and -TNFβ antibodies was assessed with the assays outlined in the table in online supplementary materials, as previously reported (21).

For the neutralization of ISG induction, peripheral blood mononuclear cells (PBMCs) were left unstimulated or were stimulated for two hours with 10 ng/mL IFNα or 10 ng/mL IFN-ω in a final volume of 100 μL. Quantitative real-time PCR (RT-qPCR) was performed with Applied Biosystems Taqman assays for CXCL10, and Taqman HIV-1 gag assay for normalization. Results are expressed according to the ΔΔCt method, as described by the manufacturer’s kit.

Phylogenetic reconstruction

Protein sequences were aligned with the online version of MAFFT v7.471 software (33), using the L-INS-i strategy (34) and the BLOSUM62 scoring matrix for amino-acid substitutions. Phylogenetic tree reconstruction was
For the NanoString assay, total RNA was extracted from whole blood samples collected in PaxGene tubes. The expression of selected genes was determined by NanoString methods and a 28-gene type I IFN score was calculated (44).

Statistical analysis

Comparison of proportions were performed using a Fisher exact test, as implemented in R (https://cran.r-project.org/).

PCA was performed with Plink v1.9 software on whole-exome and whole-genome sequencing data with the 1000 Genomes (1kG) Project phase 3 public database as a reference.

Simoa

Serum-IFNα concentrations were determined with Simoa technology, as previously described (40, 41), with reagents and procedures obtained from Quanterix Corporation.

VSV assay

The seroneutralization assay was performed as previously described (42). In brief, the incubation of IFN-α2 with Madin–Darby bovine kidney (MDBK) cells protects the cultured cells against the cytopathic effect of vesicular stomatitis virus (VSV). The titer of anti IFN alpha antibodies was defined as the last dilution causing 50% cell death.

SARS-CoV-2 experiment

SARS-CoV-2 strain USA-WAI/2020 was obtained from BEI Resources and amplified in Huh-7.5 hepatoma cells at 33°C. Viral titers were measured on Huh-7.5 cells in a standard plaque assay. Huh-7.5 cells (H. sapiens) were cultured. Plasma samples or a commercial anti-IFN-α2 antibody were serially diluted and incubated with 20 pM recombinant IFN-α2 for 1 hour at 37°C (starting concentration: plasma samples = 1/100 and anti-IFN-α2 antibody = 1/1000). The cell culture medium was then removed and replaced with the plasma/antibody-IFN-α2 mixture. The plates were incubated overnight and the plasma/antibody-IFN-α2 mixture was removed by aspiration. The cells were washed once with PBS to remove potential anti-SARS-CoV-2-neutralizing antibodies and fresh medium was then added. Cells were then infected with SARS-CoV-2 by directly adding the virus to the wells. Cells infected at a high MOI were incubated at 37°C for 24 hours, whereas cells infected at a low MOI were incubated at 33°C for 48 hours. The cells were fixed with 7% formaldehyde, stained for SARS-CoV-2 with an anti-N antibody, imaged and analyzed as previously described (43).

Nanostring

For the NanoString assay, total RNA was extracted from whole blood samples collected in PaxGene tubes. The expression of selected genes was determined by NanoString methods and a 28-gene type I IFN score was calculated (44).

REFERENCES AND NOTES

First release: 24 September 2020

ACKNOWLEDGMENTS

We thank the patients, their families, and healthy donors for placing their trust in us. We warmly thank the “French Incontinentia pigmenti” association for their help and support. We warmly thank Y. Nemirovskaya, D. Papandrea, M. Woollet, D. Liu, C. Rivalain and C. Patissier for administrative assistance. D. Kapogiannis (National Institute on Aging) for providing healthy donor samples and S. Xirasager, J. Barnett, X. Cheng, S. Weber, J. Danielson, B. Garabedian, and H. Matthews for their assistance in this study. We also thank R. Appps, B. Ryan, and Y. Belkaïd of the CHI for their assistance. We thank the CRB-Institut Jérôme Lejeune, CRB-CIBioJel, Paris, France, for their assistance. We thank M.C. Garcia Guerrero, I. Erkizia, E. Grau, M. Massanella from irsiCaixa AIDS Research Institute, Badalona, Spain and J. Guitart from the department of Clinical Genetics, University Hospital “Germans Trias i Pujol”, Badalona, Spain for providing samples; as well as J. Dalmau from irsiCaixa for assistance. Funding: The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (R01AI08364), the National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational Science Award (CTSA) program (UL1TR001866), a Fast Grant from Emergent Ventures, Mercatus Center at George Mason University, the Yale Center for Mendelian Genomics and the SSP Coordinating Center funded by the National Human Genome Research Institute (NHGRI) (UM1HG006504 and U24HG008556), the French National Research Agency (ANR) under the “Investments for the Future” program (ANR-10-IHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007789), the FRM and ANR GENCOVid project. ANRS-COV05, the Square Foundation, GrandR - Fonds de solidarité pour l’enfance, the SCOR Corporate Foundation for Science, Institut Institut National de la Santé et de la Recherche Médicale (INSERM) and the University of Paris. Samples from San Raffaele Hospital were obtained within the Covid-BioB project and healthcare personnel of San Raffaele Hospital, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET) clinical lab and clinical research Unit; funded by the Program Project COVID-19 OSR-UniSR and Fondazione Telethon. The French COVID Cohort study group was sponsored by Inserm and supported by the REACTing consortium and by a grant from the French Ministry of Health (PHRC 20-0424). The Cov-Contact Cohort was supported by the REACTing consortium, the French Ministry of Health, and the European Commission (RECOVER WP 6). The “Milieu Intérieur” cohort was supported by was supported by the French Government’s Investissement d’Avenir Program, Laboratoire d’Excellence “Milieu Intérieur” Grant (ANR-10-LABX-09-01) (PI: Quintana-Muri & D Dufy). The Simoa experiment was supported by the PHRC-20-0375 COVID-19 grant “DIGITAL COVID” (PI: G Gorochov). SGT is supported by a Leadership 3 Investigator Grant awarded by the National Health and Medical Research Council of Australia, and a COVID19 Rapid Response Grant awarded by UNSW Sydney. CRG and colleagues were supported by Instituto de Salud Carlos III (CV20_0333 and CV202_0334, Spanish Ministry of Science and Innovation –RTC-2017-6471-1; AED-FEDER, UE), and Cabildo Insular de Tenerife (CCIGE000219140 and “Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19”). SA and AB were supported by ANR-20-CV01-0064 (PI: A Belot). This work is supported by the French Ministry of Health “Programme Hospitalier de Recherche Clinique Intérim régional 2013”, by the Contrat de Plan État-Lorraine and FEDER Lorraine, and a public grant overseen by the French National Research Agency (ANR) as part of the second “Investissements d’Avenir” program FIGHT-HF (reference: ANR-15-RHU-0004) and by the French PIA project “Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LU-45 and biobanking is performed by the Biological Resource Center Lorraine BB-0033-00035. This study was supported by the Fonds IMMUNOV, for Innovation in Immunopathology and by a grant from the Agence Nationale de la Recherche (ANR-flush Covid19 “AIiroCoVid” to FRL), and by the FAST Foundation (French Friends of Sheba Tel Hashomer Hospital). Work in the Laboratory of Virology and Infectious Disease was supported by NIH grants P01AI13389-51, 52019111825, and 5201910710-1051, a George Mason University Fast Grant, and the G. Harold and Leila Y. Mathers Charitable Foundation. The Amsterdam UMC Covid-19 Biobank was supported by grants of the Amsterdam Corona Research Fund, Dr. C.J. Vaillant Fund, and Networks Organization for Health Research and Development (ZonMw; NWO-Vici Grant [grant number 919-19-627 to DvdB]). This work was also supported by the Division of Intramural Research of the National Institute of Dental Craniofacial Research and National Institute of Allergy and Infectious Diseases, National Institutes of Health, and by Regione Lombardia, Italy (project “Risposta immune in pazienti con COVID-19 e comorbidità”). The opinions and assertions expressed herein are those of the author(s) and do not necessarily reflect the official policy or position of the Uniformed Services University or the Department of Defense. JH holds an Institut Imagine MD-PhD fellowship from the Fondation Bettencourt Schueller. JR is supported by the Inserm PhD program ("poste d'accueil Inserm"). PB was supported by the Foundation for Medical Research (FRM, EA2017063820) and the MD-PhD program of the Imagine Institute (with the support of the Fondation Bettencourt-Schueller). We thank the Association “Turner et vous” for their help and support. Sample processing at IrisCaixa was possible thanks to the crowdfunding initiative YoMeCorono. DCV is supported by the Fonds de la recherche en santé du Québec clinician-scientist scholar program. K. Kisand was supported by the Estonian Research Council grant PUT1367. We thank the GEN-COVID Multicenter Study (https://sites.google.com/∼dbm.unisit/∼gen-covid). We thank the NIAID Office of Cyber Infrastructure and Computational Biology, Bioinformatics and Computational Biosciences Branch (Contract HHSN320201300006W/HHSN27220002 to MSC, Inc) and Operations Engineering Branch for developing the HGRepo system to enable streamlined access to the data and the NCI Advanced Biomedical Computational Science (ABCS) for data transformation support. Author contributions: PB, LBR, QZ, EM, HHH, YZ, KD, OP, JR, VB, JM, ES, LH, PP, LL, LB, SA, KD, AADJ, AB, LP, DD, ESH, JST, RGM, KK, AP, SHZ, SMH, GG, EJ, CMR, LDN, HCS, JLC provided supervised provision of experiments, generated and analyzed data, and contributed to the manuscript by providing figures and tables. JLP, KB, BS, BY, RA, KB, RL, MM, AC, LA, performed computational analysis of data. PB, AK, EC, YTL, ANSI, OMD, MSA, AA, GC, VL, FC, MV, DMS, JH, BT, DD, LQM, DVB, LR, DCV, SGT, FH, DD, TM, PB, JMF, MCN, SBD, CRG, GV, AJO, JG, PDB, JC, AB, LRB, MDA, PB, PR, FRL, FF, MVU LI, AS, SP, EQR, OR, RC, MA, AL, GLM, XD, JG, MSL, GG, evaluated and recruited patients to COVID and/or control cohorts of patients. PB, QZ, AC, EJ LA and JLC wrote the manuscript. JLC supervised the project. All authors edited the manuscript. Competing interests: Helen Su is adjunct faculty at the University of Pennsylvania. Jean-Laurent Casanova is
listed as an inventor on patent application US 63/055,155 filed by The Rockefeller University that encompasses aspects of this publication. Richard Lifton is a non-executive director of Roche and its subsidiary Genentech. The authors declare no other competing interests.

Data and materials availability: All data are available in the manuscript or in the supplementary materials. Plasma, cells, and genomic DNA are available from Dr. Jean-Laurent Casanova/Dr. Donald Vinh under a material agreement with Rockefeller University. Materials and reagents used are almost exclusively commercially available and non-proprietary. Requests for materials derived from human samples may be made available, subject to any underlying restrictions on such samples. Jean-Laurent Casanova can make material transfer agreements available through The Rockefeller University. This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. This license does not allow to figure/photos/artwork or other content included in the article that is credited to a third party; obtain authorization from the rights holder before using such material.

NIAD-USUHS Immune Response to COVID Group

Anuj Kashyap, Li Ding, Marita Bosticardo, Qinlu Wang, Sebastian Ochoa, Hui Liu, Samuel D. Chauvin, Michael Stack, Clifton L. Dalgard, Andrew L. Snowball

1Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAD, NIH, Bethesda, MD, USA. 2Bioinformatics and Computational Biosciences Branch, NIAD Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, MD, USA. 3Laboratory of Immune System Biology, Division of Intramural Research, NIAD, NIH, Bethesda, MD, USA. 4NIH Center for Human Immunology, NIH, Bethesda, MD, USA. 5Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAD, NIH, Bethesda, MD, USA. 6PRIMER, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. 7Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. 8Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. 9School of Microbiology and Group of Primary Immunodeficiencies, University of Antioquia UdeA, Medellin, Colombia.

COVID Clinicians

Jorge Abad, Sergio Aguilera-Albesa, Ozge Metin Akcan, Ild Alavi Darazamia, Juan C. Alkave, Miquel Alfonso Ramos, Seyed Alireza Nadji, Gulsum Alan, Jerome Allard-Servent, Luis M. Allende, Soraya Boucherit, Jacinta Bustamante, Marwa Chbihi, Jie Chen, Maya Chrabieh, Tatiana Kochetkov, Tom Le Voyer, Dana Li, Yelena Nemirovskaya, Masato Nishiki, Dominick Papandrea, Cécile Patissier, Franck Rapport, Manon Roynard, Natasha Vladikine, Mark Woollett, Peng Zhang

1St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University. 2Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children. 3School of Microbiology and Group of Primary Immunodeficiencies, University of Antioquia UdeA, Medellin, Colombia.
Manuel Rosa-Calatrava1, Bénédicte Rossignol2, Patrick Rossignol2, Carine Roy4, Marion Schneider1, Caroline Semaille1, Nissima Si Mohamed2, Lysa Tagheres2, Coralia Tardivo1, Marie-Capucine Tellier3, François Touéol1, Olivier Terrier3, Jean-François Timsit6, Théo Treoux2, Christelle Tual3, Sarah Tubiana1, Sylvie van der Werf5, Noémie Vanel3, Aurélie Veilslinger1, Benoit Vissoux2, Aurélie Wiedemann1, Yazdan Yazdanpanah3,6

1Inserm UMR 1163, Paris, France. 2CHU Amiens, France. 3Hôpital Necker, Paris, France. 4Hôpital Bichat, Paris, France. 5Hôpital Louis Mourier, Colombes, France. 6Institut Pasteur, Paris, France. F-CRIN Partners Platterm, AP-HP, Université de Paris, Paris, France. 7Inserm UMR 1136, Paris, France. 8DRUGS For Neglected Diseases Initiative, Geneva, Switzerland. 9Santé Publique France, Saint Maurice, France. 10Pôle Recherche Clinique, Inserm, Université Paris, IAME, INSERM UMR 1138, APHP, Paris, France. 11Centre for Clinical Investigation, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital.

Amsterdam UMC Covid-19 Biobank

Michiel van Agtmael1, Anne Geke Algora1, Frank van Baarle2, Diane Bax1, Martijn Beu1, Harm Jan Bogaard1, Marije Bomers1, Lieve Bos2, Michela Botta2, Justin de Braander3, Godelieve Bree4, Matthijs C. Brouwer3, Sanne de Bruin2, Marielle Bugiani7, Esther Buller1, O. Chouchane1, Alex Cloherty1, Paul Elbers1, Lucas Fleurent2, Suzanne Geerlings2, Bart Geerts2, Johan Geijtenbeek2, Armand Gibeau1, Bram Goorhuis1, Martin P. Grobusch1, Florianne Hafkamp9, Laura Hagens1, Jörg Hamann2, Vanessa Harris1, Robert Hemke2, Sabine M. Hermans1, Leo Heunks1, Markus Hollmann2, Janneke Horn1, Joppe W. Hovius1, Menno de Jong1, Kloten R. Koning1, Mourik van Mourik1, Jeaninne Nellen1, Frederique Paulus1, Edgar Peters1, Tom van der Pol1, Bennedikt Preckel1, Jan M. Prins1, Jorinde Raasveld1, Tom Reijnders1, Michiel Schinkel1, Marcus Schultz1, Alex Schuurman2, Kim Sigleef1, Mary Smith1, Cornelis S. Slrij1, Willemien Stilma1, Charlotte Teunissen1, Patrick Thora1, Anissa Tsonos2, Marc van der Valk1, Denise Veeuwen2, Alexander P. J. Vlaar2, Heder de Vries1, Michèle van Vugt1, W. Joost Wiersinga1, Dorien Wouters2, A. H. (Koos) Zwijnderman1, Diediek van de Beek1,2

1Department of Infectious Diseases, Amsterdam UMC, Netherlands. 2Department of Intensive Care, Amsterdam UMC, Netherlands. 3Experimental Immunology, Amsterdam UMC, Netherlands. 4Department of Neurology, Amsterdam UMC, Netherlands. 5Department of Pulmonology, Amsterdam UMC, Netherlands. 6Department of Infectious Diseases, Amsterdam UMC, Netherlands. 7Department of Pathology, Amsterdam UMC, Netherlands. 8Department of Anesthesiology, Amsterdam UMC, Netherlands. 9Department of Experimental Immunology, Amsterdam UMC, Netherlands. 10Amsterdam UMC, THE NETHERLANDS Biobank Core Facility, Amsterdam UMC, Netherlands. 11Department of Internal Medicine, Amsterdam UMC, Netherlands. 12Neurochemistry Laboratory, Amsterdam UMC, Netherlands. 13Department of Intensive Care, Amsterdam UMC, Netherlands. 14Department of Clinical Chemistry, Amsterdam UMC, Netherlands. 15Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Netherlands. 16Leader of the AMC consortium.

COVID Human Genetic Effort

Laurent Abel1, Alessandro Alfidi2, Saleh AlMuhres1, Fahd Al-Mulla2, Mark S. Anderson3, Andrés Augusto Arias2, Hagit Baris Feldman3, Dusan Bogunovic3, Alexandre Bolze3, Anastasia Bondarenko4,5, Ahmed A. Bouslimi1, Petter Brodin2,8, Yenan Bryceson2, Carlos D. Bustamante4, Manish Butte5, Giorgio Casar1, Samya Chakravorty2, John Christodoulou2, Elizabeth Cirulli1, Antonio Condino Neto2, Megan A. Cooper2, Clifton L. Dalgaard1, Joseph L. DeRisi2, Murkesh Desai3, Beth A. Drolet1, Sara Espinosa3, Jacqueline Ferray6, Carlos Flores4, Jose Luis Franco2, Peter K. Gregersen4, Filomeno Haeynck4,2, David Hago1,2, Rabih Hawwani3,3, Jim Heath4,2, Sarah E. Henrickson3,2, Elena Hsieh4,2, Kohsuke Imai5, Yuval Itan1, Timokrats Karamitos5,6, Kai Kisand1, Lung-Chung Ku3, Yu-Lung Lau12, Yun Ling4,2, Carrie L. Lucas2, Tom Maniatis4,2, David Mansouri43, Maros Marodi1,4, Laszlo Marodi5, Isabelle Meyts1, Joshua Milner2, Kristina Mironska47, Lluis Mogensen48, Tomohiro Morio49, Lisa P. Ng50, Luigi D. Notarangelo51, Giuseppe Novelli52, Antonio Novelli53, Cliona O’Farrelly54, Satoshi Okada55, Tayfun Ozcelik56, Rebecka Perez de Diego57, Anna M. Planas58, Carolina Prando59, Aurora Pujol60, Lluis Quintana-Murci2

1*Leader of the AMC consortium.

First release: 24 September 2020 www.sciencemag.org (Page numbers not final at time of first release) 12
SUPPLEMENTARY MATERIALS

www.sciencemag.org/cgi/content/full/science.abd4585/DC1

Supplementary Materials and Methods
Figs. S1 to S4
Tables S1 to S3
Data S1

22 June 2020; accepted 16 September 2020
Published online 24 September 2020
10.1126/science.abd4585

First release: 24 September 2020
www.sciencemag.org

(Page numbers not final at time of first release)
Fig. 1. Neutralizing auto-Abs against IFN-α2 and/or IFN-ω in patients with life-threatening COVID-19. (A) Multiplex particle-based assay for auto-Abs against IFN-α2 and IFN-ω in patients with life-threatening COVID-19 (N=782), or asymptomatic or mild SARS-CoV-2 infection (N=443), and in healthy controls not infected with SARS-CoV2 (N=1160). (B) Anti-IFN-ω Ig isotypes in 23 patients with life-threatening COVID-19 and auto-Abs to type 1 IFNs. (C) Representative FACS plots depicting IFN-α2- or IFN-ω-induced pSTAT1 in healthy control cells (gated on CD14+ monocytes) in the presence of 10% healthy control or anti-IFN-α2/ω-auto-Abs-containing patient plasma (top panel) or an IgG-depleted plasma fraction (bottom panel). (D) Plot of anti-IFN-α2 auto-Ab levels against their neutralization capacity. The stimulation index (stimulated/unstimulated conditions) for the plasma from each was normalized against that of healthy control plasma from the same experiment. Spearman's rank correlation coefficient = −0.6805, p-value <0.0001. (E) IC_{50} curves representing IFN-α2- and IFN-ω-induced pSTAT1 levels in healthy donor cells in the presence of serial dilutions of patient plasma. The stimulation index (stimulated/unstimulated conditions) for each plasma sample was normalized against that of healthy control plasma from the same experiment. IFN-α2: IC_{50}= 0.016%, R²= 0.985; IFN-ω: IC_{50}=0.0353%, R² = 0.926. (F) Neutralizing effect on CXCL10 induction after stimulation with IFN-α2, IFN-β or IFN-γ, of plasma from healthy controls (N=4), patients with life-threatening COVID-19 and auto-Abs against IFN-α2 (N=8) and APS-1 patients (N=2).
Fig. 2. Auto-Abs against the different type I IFN subtypes. (A) Enzyme-linked immunosorbent assay (ELISA) for auto-Abs against the 13 different IFN-α subtypes, IFN-ω, -β, -κ, and -ε in patients with life-threatening COVID-19 and auto-Abs against IFN-α2 (N=22), APS-1 patients (N=2) and healthy controls (N=2). (B) Luciferase-based immunoprecipitation assay (LIPS) for the 12 different IFN-α subtypes tested in patients with auto-Abs against IFN-α2 (N=22), and healthy controls (N=2). (C) Neighbor-joining phylogenetic tree of the 17 human type I IFN proteins. Horizontal branches are drawn to scale (bottom left, number of substitutions per site). Thinner, intermediate and thicker internal branches have bootstrap support <50%, ≥50 and >80%, respectively. The bootstrap value for the branch separating IFN-ω from all IFN-α is 100%.
Fig. 3. Enhanced SARS-CoV-2 replication, despite the presence of IFN-α2, in the presence of plasma from patients with auto-Abs against IFN-α2 and low in vivo levels of IFN-α. (A) SARS-CoV-2 replication, measured 24h (left panel) and 48h (right panel) after infection, in Huh7.5 cells treated with IFN-α2 in the presence of plasma from patients with life-threatening COVID-19 and neutralizing auto-Abs against IFN-α2 (N=8); a commercial anti-IFN-α2 antibody; or control plasma (N=2). (B) IFN-α levels in the plasma or serum of patients with neutralizing Auto-Abs (N=41), healthy controls (N=5), COVID-19 patients without auto-Abs (N=21) and patients with life-threatening COVID-19 and loss-of-function (LOF) variants (N=10) as assessed by Simoa ELISA. (C) z-scores for type I IFN gene responses in whole blood of COVID-19 patients with (N=8) or without neutralizing Auto-Abs (N=51), or healthy uninfected controls (N=22). The median ± interquartile range is shown. Z-scores were significantly lower for patients with neutralizing auto-Abs compared with patients without auto-Abs (Mann-Whitney test, p=0.01).
Fig. 4. Demographic and ethnic information about the patients and controls. (A) Gender distribution in patients with life-threatening COVID-19 and auto-Ab to type I IFNs, patients with life-threatening COVID-19 and without auto-Ab to type I IFNs and individuals with asymptomatic or mild SARS-CoV-2. (B) Age distribution in patients with life-threatening COVID-19 and auto-Ab to type I IFNs, patients with life-threatening COVID-19 and without auto-Ab to type I IFNs and individuals with asymptomatic or mild SARS-CoV-2. (C) Principal component analysis (PCA) on 49 patients with life-threatening COVID-19 and auto-Ab against type I IFNs.
Table 1. Sex and age distribution of patients with critical COVID-19 with and without autoAbs. Age and sex of the patients and controls, and information about auto-Abs against IFN-α2 and IFN-ω by age and sex. OR: odds ratio.

<table>
<thead>
<tr>
<th>Life-threatening COVID-19</th>
<th>N total</th>
<th>N auto-Abs positive (%)</th>
<th>OR [95% CI]</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>226</td>
<td>6 (2.7%)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>761</td>
<td>95 (12.5%)</td>
<td>5.22 [2.27-14.80]</td>
<td>2.5 × 10^{-6}</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65 years</td>
<td>602</td>
<td>51 (8.5%)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>≥65 years</td>
<td>385</td>
<td>50 (13.0%)</td>
<td>1.61 [1.04 - 2.49]</td>
<td>0.024</td>
</tr>
</tbody>
</table>

*p-value were derived from Fisher’s exact test, as implemented in R (https://cran.r-project.org/).
Auto-antibodies against type I IFNs in patients with life-threatening COVID-19

published online September 24, 2020

ARTICLE TOOLS

http://science.sciencemag.org/content/early/2020/09/23/science.abd4585

SUPPLEMENTARY MATERIALS

http://science.sciencemag.org/content/suppl/2020/09/24/science.abd4585.DC1

RELATED CONTENT

http://stm.sciencemag.org/content/scitransmed/12/559/eabc3103.full
http://stm.sciencemag.org/content/scitransmed/12/550/eabc3539.full
http://stm.sciencemag.org/content/scitransmed/12/564/eabd5487.full
http://stm.sciencemag.org/content/scitransmed/12/555/eabc9396.full

REFERENCES

This article cites 45 articles, 9 of which you can access for free
http://science.sciencemag.org/content/early/2020/09/23/science.abd4585#BIBL

PERMISSIONS

http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science is a registered trademark of AAAS.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).