T. Abrahamsson, L. Cathala, K. Matsui, R. Shigemoto, and D. A. Digregorio, Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity, Neuron, vol.73, pp.1159-1172, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01545804

P. Alcami, Electrical synapses enhance and accelerate interneuron recruitment in response to coincident and sequential excitation, Frontiers in Cellular Neuroscience, vol.12, p.156, 2018.

P. Alcami and M. A. , Estimating functional connectivity in an electrically coupled interneuron network, PNAS, vol.110, pp.4798-4807, 2013.

O. Amsalem, W. Van-geit, E. Muller, H. Markram, and I. Segev, From neuron biophysics to orientation selectivity in electrically coupled networks of neocortical L2/3 large basket cells, Cerebral Cortex, vol.26, pp.3655-3668, 2016.

C. Arlt and M. Hä, Microcircuit rules governing impact of single interneurons on purkinje cell output in Vivo, Cell Reports, vol.30, pp.3020-3035, 2020.

M. Beierlein, J. R. Gibson, and B. W. Connors, A network of electrically coupled interneurons drives synchronized inhibition in neocortex, Nature Neuroscience, vol.3, pp.904-910, 2000.

M. V. Bennett and R. S. Zukin, Electrical coupling and neuronal synchronization in the mammalian brain, Neuron, vol.41, pp.495-511, 2004.

A. Blot, C. De-solages, S. Ostojic, G. Szapiro, V. Hakim et al., Time-invariant feed-forward inhibition of purkinje cells in the cerebellar cortex in vivo, The Journal of Physiology, vol.594, pp.2729-2749, 2016.

A. Blot and B. Barbour, Ultra-rapid axon-axon ephaptic inhibition of cerebellar purkinje cells by the pinceau, Nature Neuroscience, vol.17, pp.289-295, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02413640

L. Bosman, S. Koekkoek, J. Shapiro, B. Rijken, F. Zandstra et al., Encoding of whisker input by cerebellar purkinje cells: whisker encoding by purkinje cells, The Journal of Physiology, vol.588, pp.3757-3783, 2010.

G. Bouvier, J. Aljadeff, C. Clopath, C. Bimbard, J. Ranft et al., Cerebellar learning using perturbations, vol.7, p.31599, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01935283

S. T. Brown and I. M. Raman, Sensorimotor integration and amplification of reflexive whisking by Well-Timed spiking in the cerebellar corticonuclear circuit, Neuron, vol.99, pp.564-575, 2018.

J. Chavas and M. A. , Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network, The Journal of Neuroscience, vol.23, pp.2019-2031, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00790787

S. Chen, G. J. Augustine, and P. Chadderton, The cerebellum linearly encodes whisker position during voluntary movement. eLife 5:e10509, 2016.

C. P. Chu, Y. H. Bing, H. Liu, and D. L. Qiu, Roles of molecular layer interneurons in sensory information processing in mouse cerebellar cortex crus II in vivo, PLOS ONE, vol.7, p.37031, 2012.

S. J. Cruikshank, M. Hopperstad, M. Younger, B. W. Connors, D. C. Spray et al., Potent block of Cx36 and Cx50 gap junction channels by mefloquine, PNAS, vol.101, pp.12364-12369, 2004.

S. Curti and A. E. Pereda, Voltage-dependent enhancement of electrical coupling by a subthreshold sodium current, Journal of Neuroscience, vol.24, pp.3999-4010, 2004.

M. J. Dizon and K. Khodakhah, The role of interneurons in shaping purkinje cell responses in the cerebellar cortex, Journal of Neuroscience, vol.31, pp.10463-10473, 2011.

A. Draguhn, R. D. Traub, D. Schmitz, and J. G. Jefferys, Electrical coupling underlies high-frequency oscillations in the Hippocampus in vitro, Nature, vol.394, pp.189-192, 1998.

G. P. Dugué, N. Brunel, V. Hakim, E. Schwartz, M. Chat et al., Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar golgi cell network, Neuron, vol.61, pp.126-139, 2009.

D. Feldmeyer, G. Qi, V. Emmenegger, and J. F. Staiger, Inhibitory interneurons and their circuit motifs in the many layers of the barrel cortex, Neuroscience, vol.368, pp.132-151, 2018.

M. A. Gaffield and J. M. Christie, Movement Rate Is Encoded and Influenced by Widespread, Coherent Activity of Cerebellar Molecular Layer Interneurons, The Journal of Neuroscience, vol.37, pp.4751-4765, 2017.

M. Galarreta and S. Hestrin, Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex, PNAS, vol.99, pp.12438-12443, 2002.

G. J. Gutierrez, T. O'leary, and E. Marder, Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators, Neuron, vol.77, pp.845-858, 2013.

K. S. Han, C. Guo, C. H. Chen, L. Witter, T. Osorno et al., Ephaptic coupling promotes synchronous firing of cerebellar purkinje cells, Neuron, vol.100, pp.564-578, 2018.

S. A. Heiney, J. Kim, G. J. Augustine, and J. F. Medina, Precise control of movement kinematics by optogenetic inhibition of purkinje cell activity, Journal of Neuroscience, vol.34, pp.2321-2330, 2014.

J. Hjorth, K. T. Blackwell, and J. H. Kotaleski, Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity, Journal of Neuroscience, vol.29, pp.5276-5286, 2009.

S. G. Hormuzdi, I. Pais, F. E. Lebeau, S. K. Towers, A. Rozov et al., Impaired electrical signaling disrupts gamma frequency oscillations in connexin 36-deficient mice, Neuron, vol.31, pp.487-495, 2001.

H. Hu and A. Agmon, Properties of precise firing synchrony between synaptically coupled cortical interneurons depend on their mode of coupling, Journal of Neurophysiology, vol.114, pp.624-637, 2015.

J. S. Isaacson and M. Scanziani, How inhibition shapes cortical activity, Neuron, vol.72, pp.231-243, 2011.

J. Kim, S. Lee, S. Tsuda, X. Zhang, B. Asrican et al., Optogenetic mapping of cerebellar inhibitory circuitry reveals spatially biased coordination of interneurons via electrical synapses, Cell Reports, vol.7, pp.1601-1613, 2014.

S. Kondo and M. A. , Synaptic currents at individual connections among stellate cells in rat cerebellar slices, The Journal of Physiology, vol.509, pp.221-232, 1998.

R. Maex, D. Schutter, and E. , Mechanism of spontaneous and self-sustained oscillations in networks connected through axo-axonal gap junctions: dynamics of axo-axonally coupled networks, The European Journal of Neuroscience, vol.25, pp.3347-3358, 2007.

P. Mann-metzer and Y. Yarom, Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons, The Journal of Neuroscience, vol.19, pp.3298-3306, 1999.

W. Mittmann, U. Koch, and M. Hä, Feed-forward inhibition shapes the spike output of cerebellar purkinje cells: feed-forward inhibition in the cerebellar cortex, The Journal of Physiology, vol.563, pp.369-378, 2005.

S. Ostojic, N. Brunel, and V. Hakim, Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities, Journal of Computational Neuroscience, vol.26, pp.369-392, 2009.

T. Otsuka and Y. Kawaguchi, Common excitatory synaptic inputs to electrically connected cortical fast-spiking cell networks, Journal of Neurophysiology, vol.110, pp.795-806, 2013.

O. O. Ö-zcan, X. Wang, F. Binda, K. Dorgans, D. Zeeuw et al., Differential coding strategies in Glutamatergic and GABAergic neurons in the medial cerebellar nucleus, The Journal of Neuroscience, vol.40, pp.159-170, 2020.

A. Peinado, R. Yuste, and L. C. Katz, Extensive dye coupling between rat neocortical neurons during the period of circuit formation, Neuron, vol.10, pp.103-114, 1993.

A. E. Pereda, S. Curti, G. Hoge, R. Cachope, C. E. Flores et al., Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity, Biochimica Et Biophysica Acta (BBA) -Biomembranes, vol.1828, pp.134-146, 2013.

A. L. Person and I. M. Raman, Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei, Nature, vol.481, pp.502-505, 2012.

T. Pham and J. S. Haas, Electrical synapses regulate both subthreshold integration and population activity of principal cells in response to transient inputs within canonical feedforward circuits, PLOS Computational Biology, vol.15, p.1006440, 2019.

F. Pouille, A. Marin-burgin, H. Adesnik, B. V. Atallah, and M. Scanziani, Input normalization by global feedforward inhibition expands cortical dynamic range, Nature Neuroscience, vol.12, pp.1577-1585, 2009.

F. Pouille and M. Scanziani, Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition, Science, vol.293, pp.1159-1163, 2001.

S. Preibisch, S. Saalfeld, and P. Tomancak, Globally optimal stitching of tiled 3D microscopic image acquisitions, Bioinformatics, vol.25, pp.1463-1465, 2009.

S. Rieubland, A. Roth, and M. Hä, Structured connectivity in cerebellar inhibitory networks, Neuron, vol.81, pp.913-929, 2014.

J. S. Rothman and R. A. Silver, NeuroMatic: an integrated Open-Source software toolkit for acquisition, analysis and simulation of electrophysiological data, Frontiers in Neuroinformatics, vol.12, p.14, 2018.

G. Russo, T. R. Nieus, S. Maggi, and S. Taverna, Dynamics of action potential firing in electrically connected striatal fast-spiking interneurons, Frontiers in Cellular Neuroscience, vol.7, p.209, 2013.

I. A. Silver and M. Ereci?, Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo, The Journal of General Physiology, vol.95, pp.837-866, 1990.

F. Sultan and J. M. Bower, Quantitative golgi study of the rat cerebellar molecular layer interneurons using principal component analysis, The Journal of Comparative Neurology, vol.3, 1998.

M. Szoboszlay, A. L?-rincz, F. Lanore, K. Vervaeke, R. A. Silver et al., Functional properties of dendritic gap junctions in cerebellar golgi cells, Neuron, vol.90, pp.1043-1056, 2016.

A. Tran-van-minh, T. Abrahamsson, L. Cathala, and D. A. Digregorio, Differential dendritic integration of synaptic potentials and calcium in cerebellar interneurons, Neuron, vol.91, pp.837-850, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01545780

S. Ueno, J. Bracamontes, C. Zorumski, D. S. Weiss, and J. H. Steinbach, Bicuculline and gabazine are allosteric inhibitors of channel opening of the GABAA receptor, The Journal of Neuroscience, vol.17, pp.625-634, 1997.

A. M. Valera, F. Binda, S. A. Pawlowski, J. L. Dupont, J. F. Casella et al., Stereotyped spatial patterns of functional synaptic connectivity in the cerebellar cortex, vol.5, p.9862, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02330430

R. S. Van-der-giessen, S. Maxeiner, P. J. French, K. Willecke, D. Zeeuw et al., Spatiotemporal distribution of Connexin45 in the olivocerebellar system, The Journal of Comparative Neurology, vol.495, pp.173-184, 2006.

I. Van-welie, A. Roth, S. S. Ho, S. Komai, and M. Hä, Conditional spike transmission mediated by electrical coupling ensures millisecond Precision-Correlated activity among interneurons in vivo, Neuron, vol.90, pp.810-823, 2016.

K. Vervaeke, A. Lorincz, P. Gleeson, M. Farinella, Z. Nusser et al., Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input, Neuron, vol.67, pp.435-451, 2010.

K. Vervaeke, A. Lorincz, Z. Nusser, and R. A. Silver, Gap junctions compensate for sublinear dendritic integration in an inhibitory network, Science, vol.335, pp.1624-1628, 2012.

C. D. Wilms and M. Hä, Reading out a spatiotemporal population code by imaging neighbouring parallel fibre axons in vivo, Nature Communications, vol.6, p.6464, 2015.