E. V. Koonin, M. Krupovic, S. Ishino, and Y. Ishino, The replication machinery of LUCA: common origin of DNA replication and transcription, BMC Biol, vol.18, p.61, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02862286

P. Raia, M. Delarue, and L. Sauguet, An updated structural classification of replicative DNA polymerases, Biochem. Soc. Trans, vol.47, pp.239-249, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02170323

D. Kazlauskas, M. Krupovic, and ?. Venclovas, The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes, Nucleic Acids Res, vol.44, pp.4551-4564, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01977379

D. Kazlauskas and ?. Venclovas, Computational analysis of DNA replicases in double-stranded DNA viruses: relationship with the genome size, Nucleic Acids Res, vol.39, pp.8291-8305, 2011.

M. Krupovic, P. Beguin, and E. V. Koonin, Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery, Curr. Opin. Microbiol, vol.38, pp.36-43, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01977358

M. Salas, Protein-priming of DNA replication, Annu. Rev. Biochem, vol.60, pp.39-71, 1991.

M. Redrejo-rodríguez, C. D. Ordóñez, M. Berjón-otero, J. Moreno-gonzález, C. Aparicio-maldonado et al., Primer-independent DNA synthesis by a family B DNA polymerase from self-replicating mobile genetic elements, Cell Rep, vol.21, pp.1574-1587, 2017.

J. Wardle, P. M. Burgers, I. K. Cann, K. Darley, P. Heslop et al., Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya, Nucleic Acids Res, vol.36, pp.705-711, 2008.

A. Kornberg and T. A. Baker, DNA Replication. University Science Books, 2005.

K. P. Hopfner, A. Eichinger, R. A. Engh, F. Laue, W. Ankenbauer et al., Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius, Proc. Natl. Acad. Sci. U.S.A, vol.96, pp.3600-3605, 1999.

A. G. Baranovskiy, H. M. Siebler, Y. I. Pavlov, and T. H. Tahirov, Iron-sulfur clusters in DNA polymerases and primases of eukaryotes, Methods Enzymol, vol.599, pp.1-20, 2018.

P. M. Burgers and T. A. Kunkel, Eukaryotic DNA replication fork, Annu. Rev. Biochem, vol.86, pp.417-438, 2017.

A. Vaisman and R. Woodgate, Translesion DNA polymerases in eukaryotes: what makes them tick?, Crit. Rev. Biochem. Mol. Biol, vol.52, pp.274-303, 2017.

T. H. Tahirov, K. S. Makarova, I. B. Rogozin, Y. I. Pavlov, and E. V. Koonin, Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors, Biol. Direct, vol.4, p.11, 2009.

T. Kesti, K. Flick, S. Keränen, J. E. Syväoja, and C. Wittenberg, DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability, Mol. Cell, vol.3, pp.679-685, 1999.

J. C. Zhou, A. Janska, P. Goswami, L. Renault, F. Abid-ali et al., CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.4141-4146, 2017.

M. Hogg, P. Osterman, G. O. Bylund, R. A. Ganai, E. B. Lundstrom et al., Structural basis for processive DNA synthesis by yeast DNA polymerase varepsilon, Nat. Struct. Mol. Biol, vol.21, pp.49-55, 2014.

J. Ter-beek, V. Parkash, G. O. Bylund, P. Osterman, A. E. Sauer-eriksson et al., Structural evidence for an essential Fe-S cluster in the catalytic core domain of DNA polymerase ?, Nucleic Acids Res, vol.47, pp.5712-5722, 2019.

R. Jain, W. J. Rice, R. Malik, R. E. Johnson, L. Prakash et al., Cryo-EM structure and dynamics of eukaryotic DNA polymerase ? holoenzyme, Nat. Struct. Mol. Biol, vol.26, pp.955-962, 2019.

C. Lancey, M. Tehseen, V. S. Raducanu, F. Rashid, N. Merino et al., Structure of the processive human Pol delta holoenzyme, Nat. Commun, vol.11, p.1109, 2020.

R. Malik, M. Kopylov, Y. Gomez-llorente, R. Jain, R. E. Johnson et al.,

, Structure and mechanism of B-family DNA polymerase zeta specialized for translesion DNA synthesis, Nat. Struct. Mol. Biol

A. G. Baranovskiy, J. Gu, N. D. Babayeva, I. Kurinov, Y. I. Pavlov et al., Crystal structure of the human Pol? B-subunit in complex with the C-terminal domain of the catalytic subunit, J. Biol. Chem, vol.292, pp.15717-15730, 2017.

S. Klinge, R. Nunez-ramirez, O. Llorca, and L. Pellegrini, 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases, EMBO J, vol.28, pp.1978-1987, 2009.

K. S. Makarova, M. Krupovic, and E. V. Koonin, Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery, Front. Microbiol, vol.5, p.354, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01977396

J. Choi, R. L. Eoff, M. G. Pence, J. Wang, M. V. Martin et al., Roles of the four DNA polymerases of the crenarchaeon Sulfolobus solfataricus and accessory proteins in DNA replication, J. Biol. Chem, vol.286, pp.31180-31193, 2011.

K. Raymann, P. Forterre, C. Brochier-armanet, and S. Gribaldo, Global phylogenomic analysis disentangles the complex evolutionary history of DNA replication in archaea, Genome Biol. Evol, vol.6, pp.192-212, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00957432

F. Wang and W. Yang, Structural insight into translesion synthesis by DNA Pol II, Cell, vol.139, pp.1279-1289, 2009.

A. Mushegian, E. L. Karin, and T. Pupko, Sequence analysis of malacoherpesvirus proteins: Pan-herpesvirus capsid module and replication enzymes with an ancient connection to, 2018.

, Virology, vol.513, pp.114-128

D. H. Parks, C. Rinke, M. Chuvochina, P. Chaumeil, B. J. Woodcroft et al., Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life, Nat. Microbiol, vol.2, pp.1533-1542, 2017.

I. M. Chen, K. Chu, K. Palaniappan, M. Pillay, A. Ratner et al., IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes, Nucleic Acids Res, vol.47, pp.666-677, 2019.

A. L. Mitchell, A. Almeida, M. Beracochea, M. Boland, J. Burgin et al., MGnify: the microbiome analysis resource in 2020, Nucleic Acids Res, vol.48, pp.570-578, 2020.

A. Philosof, N. Yutin, J. Flores-uribe, I. Sharon, E. V. Koonin et al., Novel abundant oceanic viruses of uncultured marine group II euryarchaeota, Curr. Biol, vol.27, pp.1362-1368, 2017.

, Protein Data Bank: the single global archive for 3D macromolecular structure data, Nucleic Acids Res, vol.47, pp.520-528, 2019.

S. El-gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani et al., The Pfam protein families database in 2019, Nucleic Acids Res, vol.47, pp.427-432, 2019.

L. Holm, Benchmarking fold detection by DaliLite v.5, Bioinformatics, vol.35, pp.5326-5327, 2019.

S. R. Eddy, Accelerated profile HMM Searches, PLoS Comput. Biol, vol.7, p.1002195, 2011.

T. Frickey and A. Lupas, CLANS: a Java application for visualizing protein families based on pairwise similarity, Bioinformatics, vol.20, pp.3702-3704, 2004.

T. Nakamura, K. D. Yamada, K. Tomii, and K. Katoh, Parallelization of MAFFT for large-scale multiple sequence alignments, Bioinformatics, vol.34, pp.2490-2492, 2018.

J. Rozewicki, S. Li, K. M. Amada, D. M. Standley, and K. Katoh, MAFFT-DASH: integrated protein sequence and structural alignment, Nucleic Acids Res, vol.47, pp.5-10, 2019.

L. T. Nguyen, H. A. Schmidt, A. Von-haeseler, and B. Q. Minh, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol, vol.32, pp.268-274, 2015.

K. Mendler, H. Chen, D. H. Parks, B. Lobb, L. A. Hug et al., AnnoTree: visualization and exploration of a functionally annotated microbial tree of life, Nucleic Acids Res, vol.47, pp.4442-4448, 2019.

I. Letunic and P. Bork, Interactive Tree Of Life (iTOL) v4: recent updates and new developments, Nucleic Acids Res, vol.47, pp.256-259, 2019.

M. Steinegger, M. Meier, M. Mirdita, H. Vöhringer, S. J. Haunsberger et al., HH-suite3 for fast remote homology detection and deep protein annotation, BMC Bioinformatics, vol.20, p.473, 2019.

L. Zimmermann, A. Stephens, S. Nam, D. Rau, J. Kübler et al., A completely reimplemented MPI bioinformatics toolkit with a new hhpred server at its core, J. Mol. Biol, vol.430, pp.2237-2243, 2018.

M. Krupovic, K. S. Makarova, P. Forterre, D. Prangishvili, and E. V. Koonin, Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity, BMC Biol, vol.12, p.36, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01001796

D. H. Parks, M. Chuvochina, D. W. Waite, C. Rinke, A. Skarshewski et al., A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life, Nat. Biotechnol, vol.36, pp.996-1004, 2018.

I. B. Rogozin, K. S. Makarova, Y. I. Pavlov, and E. V. Koonin, A highly conserved family of inactivated archaeal B family DNA polymerases, Biol. Direct, vol.3, p.32, 2008.

X. Feng, X. Liu, R. Xu, R. Zhao, W. Feng et al., A unique B-Family DNA polymerase facilitating error-prone DNA damage tolerance in crenarchaeota, Front. Microbiol, vol.11, p.1585, 2020.

T. Kushida, I. Narumi, S. Ishino, Y. Ishino, S. Fujiwara et al., Pol B, a family B DNA polymerase, in Thermococcus kodakarensis is important for DNA repair, but not DNA replication, Microbes Environ, vol.34, pp.316-326, 2019.

R. J. Bauer, M. T. Begley, and M. A. Trakselis, Kinetics and fidelity of polymerization by DNA polymerase III from Sulfolobus solfataricus, Biochemistry, vol.51, 1996.

G. Henneke, D. Flament, U. Hübscher, J. Querellou, and J. Raffin, The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication, J. Mol. Biol, vol.350, pp.53-64, 2005.

Y. Shamoo and T. A. Steitz, Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex, Cell, vol.99, pp.155-166, 1999.

B. A. Kelch, D. L. Makino, M. O'donnell, and J. Kuriyan, Clamp loader ATPases and the evolution of DNA replication machinery, BMC Biol, vol.10, p.34, 2012.

J. Villamor, M. D. Ramos-barbero, P. González-torres, T. Gabaldón, R. Rosselló-móra et al., Characterization of ecologically diverse viruses infecting co-occurring strains of cosmopolitan hyperhalophilic Bacteroidetes, ISME J, vol.12, pp.424-437, 2018.

B. E. Dutilh, N. Cassman, K. Mcnair, S. E. Sanchez, G. G. Silva et al., A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes, Nat. Commun, vol.5, p.4498, 2014.

N. Yutin, K. S. Makarova, A. B. Gussow, M. Krupovic, A. Segall et al., Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut, Nat. Microbiol, vol.3, pp.38-46, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01977350

A. Garcia-maruniak, J. E. Maruniak, W. Farmerie, and D. G. Boucias, Sequence analysis of a non-classified, non-occluded DNA virus that causes salivary gland hypertrophy of Musca domestica, MdSGHV. Virology, vol.377, pp.184-196, 2008.

Y. I. Wolf, D. Kazlauskas, J. Iranzo, A. Lucía-sanz, J. H. Kuhn et al., Origins and evolution of the global RNA virome, mBio, vol.9, pp.2329-2347, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01977324

N. Tarbouriech, C. Ducournau, S. Hutin, P. J. Mas, P. Man et al., The vaccinia virus DNA polymerase structure provides insights into the mode of processivity factor binding, Nat. Commun, vol.8, p.1455, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01646999

I. K. Cann, K. Komori, H. Toh, S. Kanai, and Y. Ishino, A heterodimeric DNA polymerase: evidence that members of Euryarchaeota possess a distinct DNA polymerase, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.14250-14255, 1998.

L. Sauguet, The extended "Two-Barrel" polymerases superfamily: structure, function and evolution, J. Mol. Biol, vol.431, pp.4167-4183, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02888332

P. Raia, M. Carroni, E. Henry, G. Pehau-arnaudet, S. Brûlé et al., Structure of the DP1-DP2 PolD complex bound with DNA and its implications for the evolutionary history of DNA and RNA polymerases, PLoS Biol, vol.17, p.3000122, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02057758

L. Sauguet, P. Raia, G. Henneke, and M. Delarue, Shared active site architecture between archaeal PolD and multi-subunit RNA polymerases revealed by X-ray crystallography, Nat. Commun, vol.7, p.12227, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01389383

S. S. Abby, M. Melcher, M. Kerou, M. Krupovic, M. Stieglmeier et al., Candidatus Nitrosocaldus cavascurensis, an ammonia oxidizing, extremely thermophilic archaeon with a highly mobile genome, Front. Microbiol, vol.9, p.28, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01702026

A. Daebeler, C. W. Herbold, J. Vierheilig, C. J. Sedlacek, P. Pjevac et al., Cultivation and genomic analysis of "candidatus nitrosocaldus islandicus," an obligately thermophilic, ammonia-oxidizing thaumarchaeon from a hot spring biofilm in graendalur valley, Iceland. Front. Microbiol, vol.9, p.193, 2018.

J. Filée, P. Forterre, T. Sen-lin, and J. Laurent, Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins, J. Mol. Evol, vol.54, pp.763-773, 2002.

J. Ito and D. K. Braithwaite, Compilation and alignment of DNA polymerase sequences, Nucleic Acids Res, vol.19, pp.4045-4057, 1991.

P. Forterre and D. Prangishvili, The major role of viruses in cellular evolution: facts and hypotheses, Curr. Opin. Virol, vol.3, pp.558-565, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881056

D. D. Leipe, L. Aravind, and E. V. Koonin, Did DNA replication evolve twice independently?, Nucleic Acids Res, vol.27, pp.3389-3401, 1999.

K. Timinskas, M. Balvo?i?t?, A. Timinskas, and ?. Venclovas, Comprehensive analysis of DNA polymerase III alpha subunits and their homologs in bacterial genomes, Nucleic Acids Res, vol.42, pp.1393-1413, 2014.

D. Kazlauskas, G. Sezonov, N. Charpin, ?. Venclovas, P. Forterre et al., Novel families of archaeo-eukaryotic primases associated with mobile genetic elements of bacteria and archaea, J. Mol. Biol, vol.430, pp.737-750, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01774510

M. Krupovic, S. Gribaldo, D. H. Bamford, and P. Forterre, The evolutionary history of archaeal MCM helicases: a case study of vertical evolution combined with hitchhiking of mobile genetic elements, Mol. Biol. Evol, vol.27, pp.2716-2732, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00555513

E. V. Koonin, Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?, Philos. Trans. R. Soc. London B, Biol. Sci, vol.370, 2015.

J. Guglielmini, A. C. Woo, M. Krupovic, P. Forterre, and M. Gaia, Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes, Proc. Natl. Acad. Sci. U.S.A, vol.116, pp.19585-19592, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02294232

P. Lopez-garcia and D. Moreira, The Syntrophy hypothesis for the origin of eukaryotes revisited, Nat. Microbiol, vol.5, pp.655-667, 2020.

K. W. Seitz, N. Dombrowski, L. Eme, A. Spang, J. Lombard et al., Asgard archaea capable of anaerobic hydrocarbon cycling, Nat. Commun, vol.10, p.1822, 2019.

P. Forterre, The origin of DNA genomes and DNA replication proteins, Curr. Opin. Microbiol, vol.5, pp.525-532, 2002.

E. V. Koonin, T. G. Senkevich, and V. V. Dolja, The ancient Virus World and evolution of cells, Institut Pasteur user on, vol.1, p.29, 2006.