P. D. Adams, P. V. Afonine, G. Bunkó-czi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.66, pp.213-221, 2010.

C. Artola-recolons, C. Carrasco-ló-pez, L. I. Llarrull, M. Kumarasiri, E. Lastochkin et al., High-resolution crystal structure of MltE, an outer membraneanchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli, Biochemistry, vol.50, pp.2384-2386, 2011.

C. Artola-recolons, M. Lee, N. Bernardo-garcía, B. Blá-zquez, D. Hesek et al., Structure and cell wall cleavage by modular lytic transglycosylase MltC of Escherichia coli, ACS Chemical Biology, vol.9, pp.2058-2066, 2014.

C. Aubry, C. Goulard, M. A. Nahori, N. Cayet, J. Decalf et al., OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence, The Journal of Infectious Diseases, vol.204, pp.731-740, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01402076

A. Bera, S. Herbert, J. A. Vollmer, W. , G. et al., Why are pathogenic staphylococci so lysozyme resistant? the peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus, Molecular Microbiology, vol.55, pp.778-787, 2005.

N. T. Blackburn and A. J. Clarke, Identification of four families of peptidoglycan lytic transglycosylases, Journal of Molecular Evolution, vol.52, pp.78-84, 2001.

M. Bonis, A. Williams, S. Guadagnini, C. Werts, and I. G. Boneca, The effect of bulgecin A on peptidoglycan metabolism and physiology of Helicobacter pylori, Microbial Drug Resistance, vol.18, pp.230-239, 2012.

Y. A. Chan, K. T. Hackett, and J. P. Dillard, The lytic transglycosylases of Neisseria gonorrhoeae, Microbial Drug Resistance, vol.18, pp.271-279, 2012.

H. Cho, C. N. Wivagg, M. Kapoor, Z. Barry, P. Rohs et al., Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously, Nature Microbiology, vol.1, p.16172, 2016.

C. A. Clarke, E. M. Scheurwater, and A. J. Clarke, The vertebrate lysozyme inhibitor ivy functions to inhibit the activity of lytic transglycosylase, Journal of Biological Chemistry, vol.285, pp.14843-14847, 2010.

K. A. Cloud and J. P. Dillard, A lytic transglycosylase of Neisseria gonorrhoeae is involved in peptidoglycanderived cytotoxin production, Infection and Immunity, vol.70, pp.2752-2757, 2002.

K. A. Cloud and J. P. Dillard, Mutation of a single lytic transglycosylase causes aberrant septation and inhibits cell separation of Neisseria gonorrhoeae, Journal of Bacteriology, vol.186, pp.7811-7814, 2004.

, The CCP4 suite: programs for protein crystallography, Acta Crystallographica Section D Biological Crystallography, vol.50, issue.4, pp.760-763, 1994.

I. W. Davis, L. W. Murray, J. S. Richardson, and D. C. Richardson, MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes, Nucleic Acids Research, vol.32, pp.615-619, 2004.

L. Diacovich and J. P. Gorvel, Bacterial manipulation of innate immunity to promote infection, Nature Reviews Microbiology, vol.8, pp.117-128, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00553069

B. W. Dijkstra and A. M. Thunnissen, Holy' proteins II The soluble lytic transglycosylase, Current Opinion in Structural Biology, vol.4, pp.810-813, 1994.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallographica. Section D, Biological Crystallography, vol.60, pp.2126-2132, 2004.

G. Fibriansah, F. I. Gliubich, and A. M. Thunnissen, On the mechanism of peptidoglycan binding and cleavage by the endo-specific lytic transglycosylase MltE from Escherichia coli, Biochemistry, vol.51, pp.9164-9177, 2012.

S. E. Girardin, I. G. Boneca, J. Viala, M. Chamaillard, A. Labigne et al., Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection, Journal of Biological Chemistry, vol.278, pp.8869-8872, 2003.

T. Hadi, J. M. Pfeffer, A. J. Clarke, and M. E. Tanner, Water-soluble substrates of the peptidoglycan-modifying enzyme O-acetylpeptidoglycan esterase (Ape1) from Neisseria gonorrheae, The Journal of Organic Chemistry, vol.76, pp.1118-1125, 2011.

D. Hanahan, Studies on transformation of Escherichia coli with plasmids, Journal of Molecular Biology, vol.166, pp.557-580, 1983.

C. Heidrich, A. Ursinus, J. Berger, H. Schwarz, and J. V. Hö-ltje, Effects of multiple deletions of murein hydrolases on viability, septum cleavage, and sensitivity to large toxic molecules in Escherichia coli, Journal of Bacteriology, vol.184, pp.6093-6099, 2002.

J. V. Hö-ltje, Lytic transglycosylases, Exs, vol.75, pp.425-429, 1996.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nature Protocols, vol.10, pp.845-858, 2015.

D. S. Kellogg, W. L. Peacock, W. E. Deacon, L. Brown, and D. I. Pirkle, Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation, Journal of Bacteriology, vol.85, pp.1274-1279, 1963.

S. Kumar, G. Stecher, M. Li, C. Knyaz, and K. Tamura, MEGA X: molecular evolutionary genetics analysis across computing platforms, Molecular Biology and Evolution, vol.35, pp.1547-1549, 2018.

M. Lee, D. Hesek, L. I. Llarrull, E. Lastochkin, H. Pi et al., Reactions of all Escherichia coli lytic transglycosylases with bacterial cell wall, Journal of the American Chemical Society, vol.135, pp.3311-3314, 2013.

B. A. Legaree and A. J. Clarke, Interaction of penicillin-binding protein 2 with soluble lytic transglycosylase B1 in Pseudomonas aeruginosa, Journal of Bacteriology, vol.190, pp.6922-6926, 2008.

A. J. Meeske, E. P. Riley, W. P. Robins, T. Uehara, J. J. Mekalanos et al., SEDS proteins are a widespread family of bacterial cell wall polymerases, Nature, vol.537, pp.634-638, 2016.

X. Nassif, J. Lowy, P. Stenberg, P. O'gaora, A. Ganji et al., Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells, Molecular Microbiology, vol.8, pp.719-725, 1993.

J. M. Pfeffer, J. T. Weadge, and A. J. Clarke, Mechanism of action of Neisseria gonorrhoeae O-acetylpeptidoglycan esterase, an SGNH serine esterase, Journal of Biological Chemistry, vol.288, pp.2605-2613, 2013.

J. M. Pfeffer and A. J. Clarke, Identification of the first known inhibitors of O-acetylpeptidoglycan esterase: a potential new antibacterial target, ChemBioChem, vol.13, pp.722-731, 2012.

C. W. Reid, N. T. Blackburn, B. A. Legaree, F. I. Auzanneau, and A. J. Clarke, Inhibition of membrane-bound lytic transglycosylase B by NAG-thiazoline, FEBS Letters, vol.574, pp.73-79, 2004.

T. Romeis and J. V. Hö-ltje, Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli, The Journal of Biological Chemistry, vol.269, pp.21603-21607, 1994.

J. Rosain, E. Hong, C. Fieschi, P. V. Martins, E. Sissy et al., Fré meaux-Bacchi V. 2017. Strains responsible for invasive meningococcal disease in patients with terminal complement pathway deficiencies, The Journal of Infectious Diseases, vol.215, pp.1331-1338

E. Sauvage, F. Kerff, M. Terrak, J. A. Ayala, and P. Charlier, The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis, FEMS Microbiology Reviews, vol.32, pp.234-258, 2008.

R. E. Schaub, Y. A. Chan, M. Lee, D. Hesek, S. Mobashery et al., Lytic transglycosylases LtgA and LtgD perform distinct roles in remodeling, recycling and releasing peptidoglycan in Neisseria gonorrhoeae, Molecular Microbiology, vol.102, pp.865-881, 2016.

E. Scheurwater, C. W. Reid, and A. J. Clarke, Lytic transglycosylases: bacterial space-making autolysins, The International Journal of Biochemistry & Cell Biology, vol.40, pp.586-591, 2008.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

M. C. Schneider, R. M. Exley, S. Ram, R. B. Sim, and C. M. Tang, Interactions between Neisseria meningitidis and the complement system, Trends in Microbiology, vol.15, pp.233-240, 2007.

M. Sjodt, K. Brock, G. Dobihal, P. Rohs, A. G. Green et al., Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis, Nature, vol.556, pp.118-121, 2018.

B. Suay-garcía, P. Rez-gracia, and M. T. , Drug-resistant Neisseria gonorrhoeae: latest developments, European Journal of Clinical Microbiology & Infectious Diseases, vol.36, pp.1065-1071, 2017.

M. Szatanik, E. Hong, C. Ruckly, M. Ledroit, D. Giorgini et al., Experimental meningococcal Sepsis in congenic transgenic mice expressing human transferrin, PLOS ONE, vol.6, p.22210, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02084270

A. Taguchi, M. A. Welsh, L. S. Marmont, W. Lee, M. Sjodt et al., FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein, Nature Microbiology, vol.4, pp.587-594, 2019.

M. K. Taha, P. C. Morand, Y. Pereira, E. Eugè-ne, D. Giorgini et al., Pilus-mediated adhesion of Neisseria meningitidis: the essential role of cell contact-dependent transcriptional upregulation of the PilC1 protein, Molecular Microbiology, vol.28, pp.1153-1163, 1998.

M. F. Templin and D. H. Edwards, Hö ltje JV. 1992. A murein hydrolase is the specific target of bulgecin in Escherichia coli, The Journal of Biological Chemistry, vol.267, 20039.

H. Tettelin, N. J. Saunders, J. Heidelberg, A. C. Jeffries, K. E. Nelson et al., Complete genome sequence of Neisseria meningitidis serogroup B strain MC58, Science, vol.287, pp.1809-1815, 2000.

A. M. Thunnissen, A. J. Dijkstra, K. H. Kalk, H. J. Rozeboom, H. Engel et al., Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography, Nature, vol.367, pp.750-753, 1994.

S. Tomoshige, D. A. Dik, M. Akabane-nakata, C. S. Madukoma, J. F. Fisher et al., Total syntheses of bulgecins A, B, and C and their bactericidal potentiation of the b-Lactam antibiotics, ACS Infectious Diseases, vol.4, pp.860-867, 2018.

E. J. Van-asselt, A. M. Thunnissen, and B. W. Dijkstra, High resolution crystal structures of the Escherichia coli lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment, Journal of Molecular Biology, vol.291, pp.877-898, 1999.

E. J. Van-asselt and B. W. Dijkstra, Binding of calcium in the EF-hand of Escherichia coli lytic transglycosylase Slt35 is important for stability, FEBS Letters, vol.458, pp.429-435, 1999.

J. Van-heijenoort, Peptidoglycan hydrolases of Escherichia coli, Microbiology and Molecular Biology Reviews, vol.75, pp.636-663, 2011.

F. J. Veyrier, A. H. Williams, S. Mesnage, C. Schmitt, M. K. Taha et al., De-O-acetylation of peptidoglycan regulates glycan chain extension and affects in vivo survival of Neisseria meningitidis, Molecular Microbiology, vol.87, pp.1100-1112, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02089192

J. Viala, C. Chaput, I. G. Boneca, A. Cardona, S. E. Girardin et al., Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island, Nature Immunology, vol.5, pp.1166-1174, 2004.

W. Vollmer, B. Joris, P. Charlier, and S. Foster, Bacterial peptidoglycan (murein) hydrolases, FEMS Microbiology Reviews, vol.32, pp.259-286, 2008.

W. Vollmer and U. Bertsche, Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli, Biochimica Et Biophysica Acta (BBA) -Biomembranes, vol.1778, pp.1714-1734, 2008.

M. Von-rechenberg, A. Ursinus, and J. V. Hö-ltje, Affinity chromatography as a means to study multienzyme complexes involved in murein synthesis, Microbial Drug Resistance, vol.2, pp.155-157, 1996.

J. T. Weadge, J. M. Pfeffer, and A. J. Clarke, Identification of a new family of enzymes with potential O-acetylpeptidoglycan esterase activity in both Gram-positive and Gram-negative Bacteria, BMC Microbiology, vol.5, p.49, 2005.

J. T. Weadge and A. J. Clarke, Identification and characterization of O-acetylpeptidoglycan esterase: a novel enzyme discovered in Neisseria gonorrhoeae, Biochemistry, vol.45, pp.839-851, 2006.

J. T. Weadge and A. J. Clarke, Neisseria gonorrheae O-acetylpeptidoglycan esterase, a serine esterase with a Ser-His-Asp catalytic triad, Biochemistry, vol.46, pp.4932-4941, 2007.

A. I. Weaver, V. Jimé-nez-ruiz, S. R. Tallavajhala, B. P. Ransegnola, K. Q. Wong et al., Lytic transglycosylases RlpA and MltC assist in Vibrio cholerae daughter cell separation, Molecular Microbiology, vol.112, pp.1100-1115, 2019.

R. Wheeler, F. Veyrier, C. Werts, and I. G. Boneca, Peptidoglycan and Nod Receptor, Glycoscience: Biology and Medicine. 1 Springer, pp.737-747, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-02337884

A. Williams, R. Wheeler, C. Thiriau, A. Haouz, M. K. Taha et al., Bulgecin A: the key to a broad-spectrum inhibitor that targets lytic transglycosylases, Antibiotics, vol.6, issue.8, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02013262

A. H. Williams, R. Wheeler, L. Rateau, C. Malosse, J. Chamot-rooke et al., A step-bystep in crystallo guide to bond cleavage and 1,6-anhydro-sugar product synthesis by a peptidoglycandegrading lytic transglycosylase, Journal of Biological Chemistry, vol.293, pp.6000-6010, 2018.

M. L. Zarantonelli, A. Skoczynska, A. Antignac, M. El-ghachi, A. E. Deghmane et al., Penicillin resistance compromises Nod1-dependent proinflammatory activity and virulence fitness of Neisseria meningitidis, Cell Host & Microbe, vol.13, pp.735-745, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02088904