A. Flotho and F. Melchior, Sumoylation: a regulatory protein modification in health and disease, Annu Rev Biochem, vol.82, pp.357-85, 2013.

I. A. Hendriks and A. C. Vertegaal, A comprehensive compilation of SUMO proteomics, Nat Rev Mol Cell Biol, vol.17, pp.581-95, 2016.

F. Golebiowski, I. Matic, M. H. Tatham, C. Cole, Y. Yin et al., System-wide changes to SUMO modifications in response to heat shock, Sci Signal, vol.2, p.24, 2009.

N. Stankovic-valentin and F. Melchior, Control of SUMO and Ubiquitin by ROS: signaling and disease implications, Mol Asp Med, vol.63, pp.3-17, 2018.

S. P. Jackson and D. Durocher, Regulation of DNA damage responses by ubiquitin and SUMO, Mol Cell, vol.49, pp.795-807, 2013.

K. Bettermann, M. Benesch, S. Weis, and J. Haybaeck, SUMOylation in carcinogenesis, Cancer Lett, vol.316, pp.113-138, 2012.

J. S. Seeler and A. Dejean, SUMO and the robustness of cancer, Nat Rev Cancer, vol.17, pp.184-97, 2017.

W. Seufert, B. Futcher, and S. Jentsch, Role of a ubiquitin-conjugating enzyme in degradation of S-and M-phase cyclins, Nature, vol.373, pp.78-81, 1995.

T. Hayashi, M. Seki, D. Maeda, W. Wang, Y. Kawabe et al., Ubc9 is essential for viability of higher eukaryotic cells, Exp Cell Res, vol.280, pp.212-233, 2002.

K. Nacerddine, F. Lehembre, M. Bhaumik, J. Artus, M. Cohen-tannoudji et al., The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice, Dev Cell, vol.9, pp.769-79, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-02075525

H. Neyret-kahn, M. Benhamed, T. Ye, L. Gras, S. Cossec et al., Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation, Genome Res, vol.23, pp.1563-79, 2013.

J. Luo, N. L. Solimini, and S. J. Elledge, Principles of cancer therapy: oncogene and non-oncogene addiction, Cell, vol.136, pp.823-860, 2009.

R. Nagel, E. A. Semenova, and A. Berns, Drugging the addict: nononcogene addiction as a target for cancer therapy, EMBO Rep, vol.17, pp.1516-1547, 2016.

J. D. Kessler, K. T. Kahle, T. Sun, K. L. Meerbrey, M. R. Schlabach et al., A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis, Science, vol.335, pp.348-53, 2012.

B. Yu, S. Swatkoski, A. Holly, L. C. Lee, V. Giroux et al., Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9, Proc Natl Acad Sci, vol.112, pp.1724-1757, 2015.

X. He, J. Riceberg, T. Soucy, E. Koenig, J. Minissale et al., Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor, Nat Chem Biol, vol.13, pp.1164-71, 2017.

H. Clevers, The intestinal crypt, a prototype stem cell compartment, Cell, vol.154, pp.274-84, 2013.

K. W. Kinzler and B. Vogelstein, Lessons from hereditary colorectal cancer, Cell, vol.87, pp.159-70, 1996.

M. S. Pino and D. C. Chung, The chromosomal instability pathway in colon cancer, Gastroenterology, vol.138, pp.2059-72, 2010.

R. Jackstadt and O. J. Sansom, Mouse models of intestinal cancer, J Pathol, vol.238, pp.141-51, 2016.

N. Barker, J. H. Van-es, J. Kuipers, P. Kujala, M. Van-den-born et al., Identification of stem cells in small intestine and colon by marker gene Lgr5, Nature, vol.449, pp.1003-1010, 2007.

N. Barker, R. A. Ridgway, J. H. Van-es, M. Van-de-wetering, H. Begthel et al., Crypt stem cells as the cells-of-origin of intestinal cancer, Nature, vol.457, pp.608-619, 2009.

M. D. Demarque, K. Nacerddine, H. Neyret-kahn, A. Andrieux, E. Danenberg et al., Sumoylation by Ubc9 regulates the stem cell compartment and structure and function of the intestinal epithelium in mice, Gastroenterology, vol.140, pp.286-96, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00572277

A. Alvarez, G. A. Barisone, and E. Diaz, Focus formation: a cell-based assay to determine the oncogenic potential of a gene, J Vis Exp, 2014.

S. Borowicz, M. Van-scoyk, S. Avasarala, K. Rathinam, M. K. Tauler et al., The soft agar colony formation assay, J Vis Exp, 2014.

H. Rafehi, C. Orlowski, G. T. Georgiadis, K. Ververis, A. El-osta et al., Clonogenic assay: adherent cells, J Vis Exp, 2011.

S. Colnot, T. Decaens, M. Niwa-kawakita, C. Godard, G. Hamard et al., Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas, Proc Natl Acad Sci USA, vol.101, pp.17216-17237, 2004.

F. El-marjou, K. P. Janssen, B. H. Chang, M. Li, V. Hindie et al., Tissue-specific and inducible Cre-mediated recombination in the gut epithelium, Genesis, vol.39, pp.186-93, 2004.

T. Fevr, S. Robine, D. Louvard, and J. Huelsken, Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells, Mol Cell Biol, vol.27, pp.7551-7560, 2007.

J. Muñoz, D. E. Stange, A. G. Schepers, M. Van-de-wetering, B. K. Koo et al., The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers, EMBO J, vol.31, pp.3079-91, 2012.

T. C. He, A. B. Sparks, C. Rago, H. Hermeking, L. Zawel et al., Identification of c-MYC as a target of the APC pathway, Science, vol.281, pp.1509-1521, 1998.

P. Ordonez-moran, C. Dafflon, M. Imajo, E. Nishida, and J. Huelsken, HOXA5 counteracts stem cell traits by inhibiting Wnt signaling in colorectal cancer, Cancer Cell, vol.28, pp.815-844, 2015.

R. Moll, R. Zimbelmann, M. D. Goldschmidt, M. Keith, J. Laufer et al., The human gene encoding cytokeratin 20 and its expression during fetal development and in gastrointestinal carcinomas, Differentiation, vol.53, pp.75-93, 1993.

S. J. Moschos, D. M. Jukic, C. Athanassiou, R. Bhargava, S. Dacic et al., Expression analysis of Ubc9, the single small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, in normal and malignant tissues, Hum Pathol, vol.41, pp.1286-98, 2010.

Z. Tang, C. Li, B. Kang, G. Gao, C. Li et al., GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses, Nucleic Acids Res, vol.45, pp.98-102, 2017.

A. Decque, O. Joffre, J. G. Magalhaes, J. C. Cossec, R. Blecher-gonen et al.,

, An unanticipated tumor-suppressive role of the SUMO pathway in the intestine unveiled by Ubc9

, inflammatory and anti-viral gene-expression programs during innate sensing, Nat Immunol, vol.17, pp.140-149, 2016.

S. A. Mustfa, M. Singh, A. Suhail, G. Mohapatra, S. Verma et al., SUMOylation pathway alteration coupled with downregulation of SUMO E2 enzyme at mucosal epithelium modulates inflammation in inflammatory bowel disease, Open Biol, vol.7, 2017.

A. Suhail, Z. A. Rizvi, P. Mujagond, S. A. Ali, P. Gaur et al., DeSUMOylase SENP7-mediated epithelial signaling triggers intestinal inflammation via expansion of gamma-delta T cells, Cell Rep, vol.29, pp.3522-3560, 2019.

P. Bu, L. Wang, K. Y. Chen, T. Srinivasan, P. K. Murthy et al., A miR-34a-numb feedforward loop triggered by inflammation regulates asymmetric stem cell division in intestine and colon cancer, Cell Stem Cell, vol.18, pp.189-202, 2016.

C. A. Lindemans, M. Calafiore, A. M. Mertelsmann, M. H. O'connor, J. A. Dudakov et al., Interleukin-22 promotes intestinalstem-cell-mediated epithelial regeneration, Nature, vol.528, pp.560-564, 2015.

S. I. Grivennikov, F. R. Greten, and M. Karin, Immunity, inflammation, and cancer. Cell, vol.140, pp.883-99, 2010.

M. Karin and H. Clevers, Reparative inflammation takes charge of tissue regeneration, Nature, vol.529, pp.307-322, 2016.

S. Cheloufi, U. Elling, B. Hopfgartner, Y. L. Jung, J. Murn et al., The histone chaperone CAF-1 safeguards somatic cell identity, Nature, vol.528, pp.218-242, 2015.

J. C. Cossec, I. Theurillat, C. Chica, S. Bua-aguin, X. Gaume et al., SUMO safeguards somatic and pluripotent cell identities by enforcing distinct chromatin states, Cell Stem Cell, vol.23, pp.742-57, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02869159

H. Tian, B. Biehs, S. Warming, K. G. Leong, L. Rangell et al., A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable, Nature, vol.478, pp.255-264, 2011.

J. H. Van-es, T. Sato, M. Van-de-wetering, A. Lyubimova, Y. Nee et al., Dll1+ secretory progenitor cells revert to stem cells upon crypt damage, Nat Cell Biol, vol.14, pp.1099-104, 2012.

S. J. Buczacki, H. I. Zecchini, A. M. Nicholson, R. Russell, L. Vermeulen et al., Intestinal label-retaining cells are secretory precursors expressing Lgr5, Nature, vol.495, pp.65-74, 2013.

O. Basak, M. Van-de-born, J. Korving, J. Beumer, S. Van-der-elst et al., Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele, EMBO J, vol.33, pp.2057-68, 2014.

P. W. Tetteh, O. Basak, H. F. Farin, K. Wiebrands, K. Kretzschmar et al., Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters, Cell Stem Cell, vol.18, pp.203-216, 2016.

S. Schwitalla, A. A. Fingerle, P. Cammareri, T. Nebelsiek, S. I. Goktuna et al., Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties, Cell, vol.152, pp.25-38, 2013.

A. J. Pierce, R. D. Johnson, L. H. Thompson, and M. Jasin, XRCC3 promotes homology-directed repair of DNA damage in mammalian cells, Genes Dev, vol.13, pp.2633-2641, 1999.

T. Sato, R. G. Vries, H. J. Snippert, M. Van-de-wetering, N. Barker et al., Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche, Nature, vol.459, pp.262-267, 2009.

B. S. Carvalho and R. A. Irizarry, A framework for oligonucleotide microarray preprocessing, Bioinformatics, vol.26, pp.2363-2370, 2010.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.47, 2015.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat Genet, vol.25, pp.25-34, 2000.

, The Gene Ontology Consortium. The Gene Ontology resource: 20 years and still GOing strong, Nucleic Acids Res, vol.47, pp.330-338, 2019.

A. Fabregat, S. Jupe, L. Matthews, K. Sidiropoulos, M. Gillespie et al., The reactome pathway knowledgebase, Nucleic Acids Res, vol.46, pp.649-55, 2018.

M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res, vol.45, pp.353-61, 2017.

H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono et al., KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res, vol.27, pp.29-34, 1999.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., Gene set enrichment analysis: a knowledgebased approach for interpreting genome-wide expression profiles, Proc Natl Acad Sci, vol.102, pp.15545-50, 2005.

J. Chen, E. E. Bardes, B. J. Aronow, and A. G. Jegga, ToppGene Suite for gene list enrichment analysis and candidate gene prioritization, Nucleic Acids Res, vol.37, pp.305-311, 2009.