C. T. Brown, L. A. Hug, B. C. Thomas, S. I. Castelle, C. J. Singh et al., Unusual biology across a group comprising more than 15% of domain Bacteria, Nature, vol.523, pp.208-219, 2015.

D. H. Parks, C. Rinke, M. Chuvochina, P. Chaumeil, B. J. Woodcroft et al., Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life, Nat Microbiol, vol.2, pp.1533-1575, 2017.

C. Rinke, P. Schwientek, A. Sczyrba, N. N. Ivanova, I. J. Anderson et al., Insights into the phylogeny and coding potential of microbial dark matter, Nature, vol.499, pp.431-438, 2013.

K. Anantharaman, C. T. Brown, L. A. Hug, S. I. Castelle, C. J. Probst et al., Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system, Nat Commun, vol.7, p.13219, 2016.

C. J. Castelle, C. T. Brown, K. Anantharaman, A. J. Probst, R. H. Huang et al., Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations, Nat Rev Microbiol, vol.16, pp.629-674, 2018.

P. S. Adam, G. Borrel, C. Brochier-armanet, and S. Gribaldo, The growing tree of Archaea: new perspectives on their diversity, evolution and ecology, ISME J, vol.11, pp.2407-2432, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-02445405

A. Spang, J. H. Saw, S. L. Jørgensen, K. Zaremba-niedzwiedzka, J. Martijn et al., Complex archaea that bridge the gap between prokaryotes and eukaryotes, Nature, vol.521, pp.173-182, 2015.

B. Luef, K. R. Frischkorn, K. C. Wrighton, H. Holman, G. Birarda et al., Diverse uncultivated ultra-small bacterial cells in groundwater, Nat Commun, vol.6, p.6372, 2015.

D. H. Parks, M. Chuvochina, D. W. Waite, C. Rinke, A. Skarshewski et al., A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life, Nat Biotechnol, 2018.

L. A. Hug, B. J. Baker, K. Anantharaman, C. T. Brown, A. J. Probst et al., A new view of the tree of life, Nat Microbiol, vol.1, p.16048, 2016.

Q. Zhu, U. Mai, W. Pfeiffer, S. Janssen, F. Asnicar et al., Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea, Nat Commun, vol.10, p.5477, 2019.

R. S. Kantor, K. C. Wrighton, K. M. Handley, S. I. Hug, L. A. Castelle et al., Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla, MBio, vol.4, pp.708-721, 2013.

C. J. Castelle and J. F. Banfield, Major new microbial groups expand diversity and alter our understanding of the tree of life, Cell, vol.172, pp.1181-97, 2018.

P. Schönheit, W. Buckel, and W. F. Martin, On the origin of heterotrophy, Trends Microbiol, vol.24, pp.12-25, 2016.

R. Méheust, D. Burstein, C. J. Castelle, and J. F. Banfield, The distinction of CPR bacteria from other bacteria based on protein family content, Nat Commun, vol.10, p.4173, 2019.

A. L. Jaffe, C. J. Castelle, C. L. Dupont, and J. F. Banfield, Lateral gene transfer shapes the distribution of RuBisCO among Candidate Phyla Radiation bacteria and DPANN archaea, Mol Biol Evol, vol.36, pp.435-481, 2019.

A. L. Jaffe, E. Corel, J. S. Pathmanathan, P. Lopez, and E. Bapteste, Bipartite graph analyses reveal interdomain LGT involving ultrasmall prokaryotes and their divergent, membrane-related proteins, Environ Microbiol, vol.18, pp.5072-81, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01480348

K. C. Wrighton, B. C. Thomas, S. I. Miller, C. S. Castelle, C. J. Verberkmoes et al., Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla, Science, vol.337, pp.1661-1666, 2012.

K. C. Wrighton, C. J. Castelle, M. J. Wilkins, L. A. Hug, S. I. Thomas et al., Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer, ISME J, vol.8, pp.1452-63, 2014.

R. E. Danczak, M. D. Johnston, C. Kenah, M. Slattery, K. C. Wrighton et al., Members of the Candidate Phyla Radiation are functionally differentiated by carbon-and nitrogen-cycling capabilities, Microbiome, vol.5, p.112, 2017.

K. C. Wrighton, C. J. Castelle, V. A. Varaljay, S. Satagopan, C. T. Brown et al., RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria, ISME J, vol.10, pp.2702-2716, 2016.

K. Mendler, H. Chen, D. H. Parks, B. Lobb, L. A. Hug et al., AnnoTree: visualization and exploration of a functionally annotated microbial tree of life, Nucleic Acids Res, vol.47, pp.4442-4450, 2019.

C. Sieber, B. G. Paul, C. J. Castelle, P. Hu, S. G. Tringe et al., Unusual metabolism and hypervariation in the genome of a Gracilibacteria (BD1-5) from an oil degrading community, bioRxiv, p.595074, 2019.

C. Bräsen, D. Esser, B. Rauch, and B. Siebers, Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation, Microbiol Mol Biol Rev, vol.78, pp.89-175, 2014.

J. E. Tuininga, C. H. Verhees, J. Van-der-oost, S. W. Kengen, A. J. Stams et al., Molecular and biochemical characterization of the ADP-dependent phosphofructokinase from the hyperthermophilic archaeon Pyrococcus furiosus, J Biol Chem, vol.274, pp.21023-21031, 1999.

T. Hansen, D. Wendorff, and P. Schönheit, Bifunctional phosphoglucose/ phosphomannose isomerases from the Archaea Aeropyrum pernix and Thermoplasma acidophilum constitute a novel enzyme family within the phosphoglucose isomerase superfamily, J Biol Chem, vol.279, pp.2262-72, 2004.

T. Hansen, B. Schlichting, M. Felgendreher, and P. Schönheit, Cupin-type phosphoglucose isomerases (Cupin-PGIs) constitute a novel metaldependent PGI family representing a convergent line of PGI evolution, J Bacteriol, vol.187, pp.1621-1652, 2005.

C. H. Verhees, M. A. Huynen, D. E. Ward, E. Schiltz, W. M. De-vos et al., The phosphoglucose isomerase from the hyperthermophilic archaeonPyrococcus furiosus is a unique glycolytic enzyme that belongs to the Cupin superfamily, J Biol Chem, vol.276, pp.40926-40958, 2001.

S. J. Cooper, G. A. Leonard, S. M. Mcsweeney, A. W. Thompson, J. H. Naismith et al., The crystal structure of a class II fructose-1,6-bisphosphate aldolase shows a novel binuclear metal-binding active site embedded in a familiar fold, Structure, vol.4, pp.1303-1318, 1996.

D. J. Van-haaster, P. J. Silva, P. Hagedoorn, J. A. Jongejan, and W. R. Hagen, Reinvestigation of the steady-state kinetics and physiological function of the soluble NiFehydrogenase I of Pyrococcus furiosus, J Bacteriol, vol.190, pp.1584-1591, 2008.

P. J. Silva, E. C. Van-den-ban, H. Wassink, H. Haaker, B. De-castro et al., Enzymes of hydrogen metabolism in Pyrococcus furiosus, Eur J Biochem, vol.267, pp.6541-51, 2000.

P. Pedroni, D. Volpe, A. Galli, G. Mura, G. M. Pratesi et al., Characterization of the locus encoding the [Ni-Fe] sulfhydrogenase from the archaeon Pyrococcus furiosus: evidence for a relationship to bacterial sulfite reductases, Microbiology, vol.141, issue.2, pp.449-58, 1995.

K. Ma, R. N. Schicho, R. M. Kelly, and M. W. Adams, Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor, Proc Natl Acad Sci, vol.90, pp.5341-5345, 1993.

P. M. Vignais and B. Billoud, Occurrence, classification, and biological function of hydrogenases: an overview, Chem Rev, vol.107, pp.4206-72, 2007.

H. Imanaka, A. Yamatsu, T. Fukui, H. Atomi, and T. Imanaka, Phosphoenolpyruvate synthase plays an essential role for glycolysis in the modified Embden-Meyerhof pathway in Thermococcus kodakarensis, Mol Microbiol, vol.61, pp.898-909, 2006.

B. Siebers and P. Schönheit, Unusual pathways and enzymes of central carbohydrate metabolism in Archaea, Curr Opin Microbiol, vol.8, pp.695-705, 2005.

C. H. Verhees, S. Kengen, J. E. Tuininga, G. J. Schut, M. Adams et al., The unique features of glycolytic pathways in Archaea, Biochem J, vol.377, pp.819-841, 2004.

J. Van-der-oost and B. Siebers, The glycolytic pathways of Archaea: evolution by tinkering, Archaea Evolution Physiol Molecular Biol, vol.22, pp.247-60, 2007.

A. Stechmann, M. Baumgartner, J. D. Silberman, and A. J. Roger, The glycolytic pathway of Trimastix pyriformis is an evolutionary mosaic, BMC Evol Biol, vol.6, p.101, 2006.

T. Sato, H. Atomi, and T. Imanaka, Archaeal type III RuBisCOs function in a pathway for AMP metabolism, Science, vol.315, pp.1003-1009, 2007.

U. Sauer and B. J. Eikmanns, The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria, FEMS Microbiol Rev, vol.29, pp.765-94, 2005.

T. Conway, The Entner-Doudoroff pathway: history, physiology and molecular biology, FEMS Microbiol Rev, vol.9, pp.1-27, 1992.

C. J. Castelle, C. T. Brown, B. C. Thomas, K. H. Williams, and J. F. Banfield, Unusual respiratory capacity and nitrogen metabolism in a Parcubacterium (OD1) of the Candidate Phyla Radiation, Sci Rep, vol.7, p.40101, 2017.

E. P. Starr, S. Shi, S. J. Blazewicz, A. J. Probst, D. J. Herman et al., Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome, vol.6, p.122, 2018.

N. A. Moran and J. J. Wernegreen, Lifestyle evolution in symbiotic bacteria: insights from genomics, Trends Ecol Evol, vol.15, pp.321-327, 2000.

A. J. Probst, C. J. Castelle, A. Singh, C. T. Brown, K. Anantharaman et al., Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO 2 concentrations, Environ Microbiol, vol.19, pp.459-74, 2017.

A. J. Probst, B. Ladd, J. K. Jarett, D. E. Geller-mcgrath, C. Sieber et al., Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface, Nat Microbiol, vol.3, pp.328-364, 2018.

K. Bouma-gregson, M. R. Olm, A. J. Probst, K. Anantharaman, M. E. Power et al., Impacts of microbial assemblage and environmental conditions on the distribution of anatoxin-a producing cyanobacteria within a river network, ISME J, vol.13, pp.1618-1652, 2019.

D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, and G. W. Tyson, CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res, vol.25, pp.1043-55, 2015.

M. R. Olm, C. T. Brown, B. Brooks, and J. F. Banfield, dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication, ISME J, vol.11, pp.2864-2872, 2017.

D. Hyatt, G. Chen, P. F. Locascio, M. L. Land, F. W. Larimer et al., Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinformatics, vol.11, p.119, 2010.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol Biol Evol, vol.30, pp.772-80, 2013.

M. N. Price, P. S. Dehal, and A. P. Arkin, FastTree 2--approximately maximumlikelihood trees for large alignments, PLoS One, vol.5, p.9490, 2010.

A. Criscuolo, S. Gribaldo, and . Bmge, Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evol Biol, vol.10, p.210, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02445904

D. T. Hoang, O. Chernomor, V. Haeseler, A. Minh, B. Q. Vinh et al., UFBoot2: improving the ultrafast bootstrap approximation, Mol Biol Evol, vol.35, pp.518-540, 2018.

S. Kalyaanamoorthy, B. Q. Minh, T. Wong, V. Haeseler, A. Jermiin et al., ModelFinder: fast model selection for accurate phylogenetic estimates, Nat Methods, vol.14, pp.587-596, 2017.

L. Nguyen, H. A. Schmidt, V. Haeseler, A. Minh, and B. Q. , IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol Biol Evol, vol.32, pp.268-74, 2015.

H. Wang, E. Susko, and A. J. Roger, The relative importance of modeling site pattern heterogeneity versus partition-wise heterotachy in phylogenomic inference, Syst Biol, 2019.

A. C. Martiny, K. Treseder, and G. Pusch, Phylogenetic conservatism of functional traits in microorganisms, ISME J, vol.7, pp.830-838, 2013.

M. Carnevali, P. B. Schulz, F. Castelle, C. J. Kantor, R. S. Shih et al., Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria, Nat Commun, vol.10, p.463, 2019.

C. Greening, A. Biswas, C. R. Carere, C. J. Jackson, M. C. Taylor et al., Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival, ISME J, vol.10, pp.761-77, 2016.

P. Constant, S. P. Chowdhury, L. Hesse, J. Pratscher, and R. Conrad, Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H (2)-oxidizing bacteria, Appl Environ Microbiol, vol.77, pp.6027-6062, 2011.

I. Letunic and P. Bork, Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Res, vol.44, pp.242-247, 2016.

A. Jaffe, alexanderjaffe/cpr-phylo-metab: release 2, 2020.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations