E. Rosenberg, O. Koren, L. Reshef, R. Efrony, and I. Zilber-rosenberg, The role of microorganisms in coral health, disease and evolution, Nat. Rev. Microbiol, vol.5, p.355, 2007.

I. Zilber-rosenberg and E. Rosenberg, Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution, FEMS Microbiol. Rev, vol.32, pp.723-735, 2008.

M. Mcfall-ngai, Animals in a bacterial world, a new imperative for the life sciences, Proc. Natl. Acad. Sci, vol.110, pp.3229-3236, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00972300

J. Taffner, What Is the Role of Archaea in Plants? New Insights from the Vegetation of Alpine Bogs, vol.3, pp.122-140, 2018.

A. A. Ross, K. M. Müller, J. S. Weese, and J. D. Neufeld, Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia, Proc. Natl. Acad. Sci, vol.115, pp.5786-5795, 2018.

K. Raymann, A. H. Moeller, A. L. Goodman, and H. Ochman, Unexplored archaeal diversity in the great ape gut microbiome, vol.2, pp.26-43, 2017.

C. Moissl-eichinger, Archaea Are Interactive Components of Complex Microbiomes, Trends Microbiol, vol.26, 2018.

C. Bang and R. A. Schmitz, Archaea: forgotten players in the microbiome, Emerg. Top. Life Sci. ETLS20180035, 2018.

E. C. De-macario and A. J. Macario, in (Endo) symbiotic Methanogenic Archaea, pp.103-119, 2018.

P. P. Chaudhary, P. L. Conway, and J. Schlundt, Methanogens in humans: potentially beneficial or harmful for health, Appl. Microbiol. Biotechnol, vol.102, pp.3095-3104, 2018.

C. Bang and R. A. Schmitz, Archaea associated with human surfaces: not to be underestimated, FEMS Microbiol. Rev, vol.39, pp.631-648, 2015.

R. Cavicchioli, P. M. Curmi, N. Saunders, and T. Thomas, Pathogenic archaea: do they exist?, BioEssays, vol.25, pp.1119-1128, 2003.

P. B. Eckburg, P. W. Lepp, and D. A. Relman, Archaea and their potential role in human disease, Infect. Immun, vol.71, pp.591-596, 2003.

H. Horz and G. Conrads, The discussion goes on: What is the role of Euryarchaeota in humans? Archaea, p.967271, 2010.

R. I. Aminov, Role of archaea in human disease, Front. Cell. Infect. Microbiol, vol.3, p.42, 2013.

B. Dridi, D. Raoult, and M. Drancourt, Archaea as emerging organisms in complex human microbiomes, Anaerobe, vol.17, pp.56-63, 2011.

N. Gaci, G. Borrel, W. Tottey, P. W. O'toole, and J. Brugère, Archaea and the human gut: New beginning of an old story, World J. Gastroenterol. WJG, vol.20, p.16062, 2014.

S. Saengkerdsub and S. C. Ricke, Ecology and characteristics of methanogenic archaea in animals and humans, Crit. Rev. Microbiol, vol.40, pp.97-116, 2014.

B. Levy and E. Jami, Exploring the Prokaryotic Community Associated With the Rumen Ciliate Protozoa Population, Front. Microbiol, vol.9, p.2526, 2018.

J. H. Hackstein, Endo) symbiotic methanogenic archaea, vol.19, 2018.

M. Muller, The hydrogenosome, J. Gen. Microbiol, vol.139, pp.2879-2889, 1993.

T. O. Fenchel and B. J. Finlay, Endosymbiotic methanogenic bacteria in anaerobic ciliates: significance for the growth efficiency of the host, J. Protozool, vol.38, pp.18-22, 1991.

D. E. Holmes, Methane production from protozoan endosymbionts following stimulation of microbial metabolism within subsurface sediments, Front. Microbiol, vol.5, p.366, 2014.

T. Fenchel, Methanogenesis in marine shallow water sediments: The quantitative role of anaerobic protozoa with endosymbiotic methanogenic bacteria, Ophelia, vol.37, pp.67-82, 1993.

G. D. Vogels, W. F. Hoppe, and C. K. Stumm, Association of methanogenic bacteria with rumen ciliates, Appl. Environ. Microbiol, vol.40, pp.608-612, 1980.

M. J. Lee, P. J. Schreurs, A. C. Messer, and S. H. Zinder, Association of methanogenic bacteria with flagellated protozoa from a termite hindgut, Curr. Microbiol, vol.15, pp.337-341, 1987.

H. J. Gijzen, C. A. Broers, M. Barughare, and C. K. Stumm, Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut, Appl. Environ. Microbiol, vol.57, pp.1630-1634, 1991.

A. H. Van-hoek, Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates, Mol. Biol. Evol, vol.17, pp.251-258, 2000.

C. J. Newbold, G. De-la-fuente, A. Belanche, E. Ramos-morales, and N. R. Mcewan, The Role of Ciliate Protozoa in the Rumen, Front. Microbiol, vol.6, p.1313, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02697885

A. Patra, T. Park, M. Kim, and Z. Yu, Rumen methanogens and mitigation of methane emission by antimethanogenic compounds and substances, J. Anim. Sci. Biotechnol, vol.8, p.13, 2017.

K. Ushida, in (Endo) symbiotic Methanogenic Archaea, pp.25-35, 2018.

D. Lloyd, K. Hillman, N. Yarlett, and A. G. Williams, Hydrogen production by rumen holotrich protozoa: effects of oxygen and implications for metabolic control by in situ conditions, J. Protozool, vol.36, pp.205-213, 1989.

J. Guyader, Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach, Animal, vol.8, pp.1816-1825, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639438

R. S. Hegarty, Reducing rumen methane emissions through elimination of rumen protozoa, Aust. J. Agric. Res, vol.50, pp.1321-1328, 1999.

D. P. Morgavi, E. Forano, C. Martin, and C. J. Newbold, Microbial ecosystem and methanogenesis in ruminants, Animal, vol.4, pp.1024-1036, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02662346

D. P. Morgavi, C. Martin, J. Jouany, and M. J. Ranilla, Rumen protozoa and methanogenesis: not a simple cause-effect relationship, Br. J. Nutr, vol.107, pp.388-397, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02650906

T. Park and Z. Yu, Do Ruminal Ciliates Select Their Preys and Prokaryotic Symbionts?, Front. Microbiol, vol.9, p.1710, 2018.

G. Henderson, Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range, Sci. Rep, vol.5, p.14567, 2015.

W. H. Lewis, K. M. Sendra, T. M. Embley, and G. F. Esteban, Morphology and Phylogeny of a New Species of Anaerobic Ciliate, Trimyema finlayi n. sp., with Endosymbiotic Methanogens. Front. Microbiol, vol.9, p.140, 2018.

A. E. Lind, Genomes of two archaeal endosymbionts show convergent adaptations to an intracellular lifestyle, ISME J, vol.12, pp.2655-2667, 2018.

R. A. Beinart, J. Rotterová, I. ?epi?ka, R. J. Gast, and V. P. Edgcomb, The genome of an endosymbiotic methanogen is very similar to those of its free-living relatives, Environ. Microbiol, vol.20, pp.2538-2551, 2018.

G. Gutiérrez, Draft genome sequence of Methanobacterium formicicum DSM 3637, an archaebacterium isolated from the methane producer amoeba Pelomyxa palustris, 2012.

G. Berg, M. Grube, M. Schloter, and K. Smalla, Unraveling the plant microbiome: looking back and future perspectives, Front. Microbiol, vol.5, p.148, 2014.

J. Taffner, T. Cernava, A. Erlacher, and G. Berg, Novel insights into plant-associated archaea and their functioning in arugula (Eruca sativa Mill, J. Adv. Res, 2019.

Y. Lu and R. Conrad, In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science (80-. ), vol.309, pp.1088-1090, 2005.

H. J. Lee, S. E. Jeong, P. J. Kim, E. L. Madsen, and C. O. Jeon, High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy, Front. Microbiol, vol.6, p.639, 2015.

J. Pump, J. Pratscher, and R. Conrad, Colonization of rice roots with methanogenic archaea controls photosynthesis-derived methane emission, Environ. Microbiol, vol.17, pp.2254-2260, 2015.

A. Joabsson, T. R. Christensen, and B. Wallén, Vascular plant controls on methane emissions from northern peatforming wetlands, Trends Ecol. Evol, vol.14, pp.385-388, 1999.

R. Conrad, The global methane cycle: recent advances in understanding the microbial processes involved, Environ. Microbiol. Rep, vol.1, pp.285-292, 2009.

H. Müller, Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees, Front. Microbiol, vol.6, 2015.

J. Taffner, A. Bergna, T. Cernava, and G. Berg, Tomato-associated archaea show a cultivar-specific rhizosphere effect but an unspecific transmission by seeds, Phytobiomes J, 2020.

G. C. Song, Plant growth-promoting archaea trigger induced systemic resistance in Arabidopsis thaliana against Pectobacterium carotovorum and Pseudomonas syringae, Environ. Microbiol, vol.21, pp.940-948, 2019.

S. J. Hallam, Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum, Proc. Natl. Acad. Sci, vol.103, pp.18296-18301, 2006.

C. M. Preston, K. Y. Wu, T. F. Molinski, and E. F. Delong, A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov, Proc. Natl. Acad. Sci, vol.93, pp.6241-6246, 1996.

S. A. Jackson, Archaea appear to dominate the microbiome of Inflatella pellicula deep sea sponges, PLoS One, vol.8, p.84438, 2013.

R. Kinsman, F. D. Sauer, H. A. Jackson, and M. S. Wolynetz, Methane and carbon dioxide emissions from dairy cows in full lactation monitored over a six-month period, J. Dairy Sci, vol.78, pp.2760-2766, 1995.

E. C. Duin, Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.6172-6177, 2016.

S. K. Shabat and . Ben, Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants, ISME J, vol.10, pp.2958-2972, 2016.

P. A. Nauer, L. B. Hutley, and S. K. Arndt, Termite mounds mitigate half of termite methane emissions, Proc. Natl. Acad. Sci. U. S. A, vol.115, pp.13306-13311, 2018.

A. Oxley, Halophilic archaea in the human intestinal mucosa, Environ. Microbiol, vol.12, pp.2398-2410, 2010.

X. Liu, Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages, vol.6, p.102, 2018.

M. Arumugam, Enterotypes of the human gut microbiome, Nature, vol.473, pp.174-180, 2013.
URL : https://hal.archives-ouvertes.fr/cea-00903625

G. Hajishengallis, R. P. Darveau, and M. A. Curtis, The keystone-pathogen hypothesis, Nat. Rev. Microbiol, vol.10, pp.717-725, 2012.

B. Dridi, M. Henry, A. El-khechine, D. Raoult, and M. Drancourt, High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol, PLoS One, vol.4, pp.7063-7063, 2009.

D. Polag and F. Keppler, Global methane emissions from the human body: Past, present and future, Atmos. Environ, vol.214, p.116823, 2019.

, Summarizes the current knowledge on the methane emission of children and adults in different countries and calculates the level of human methane production over time

M. Saunois, The global methane budget 2000-2012, Earth Syst. Sci. Data, vol.8, pp.697-751, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02317451

K. Gottlieb, Selection of a cut-off for high-and low-methane producers using a spot-methane breath test: results from a large north American dataset of hydrogen, methane and carbon dioxide measurements in breath, Gastroenterol. Rep, p.48, 2017.

H. Morii, K. Oda, Y. Suenaga, and T. Nakamura, Low methane concentration in the breath of Japanese, J. UOEH, vol.25, pp.397-407, 2003.

I. Segal, A. R. Walker, S. Lord, and J. H. Cummings, Breath methane and large bowel cancer risk in contrasting African populations, Gut, vol.29, pp.608-613, 1988.

M. J. Hudson, A. M. Tomkins, H. S. Wiggins, and B. S. Drasar, Breath methane excretion and intestinal methanogenesis in children and adults in rural Nigeria, Scand. J. Gastroenterol, vol.28, pp.993-998, 1993.

S. J. O'keefe, Why do African Americans get more colon cancer than Native Africans?, J. Nutr, vol.137, pp.175-182, 2007.

G. M. Nava, Hydrogenotrophic microbiota distinguish native Africans from African and European Americans, Environ. Microbiol. Rep, vol.4, pp.307-315, 2012.

M. D. Levitt, J. K. Furne, M. Kuskowski, and J. Ruddy, Stability of human methanogenic flora over 35 years and a review of insights obtained from breath methane measurements, Clin. Gastroenterol. Hepatol, vol.4, pp.123-129, 2006.

G. A. Weaver, J. A. Krause, T. L. Miller, and M. J. Wolin, Incidence of methanogenic bacteria in a sigmoidoscopy population: an association of methanogenic bacteria and diverticulosis, Gut, vol.27, pp.698-704, 1986.

J. A. Stewart, V. S. Chadwick, and A. Murray, Carriage, quantification, and predominance of methanogens and sulfate-reducing bacteria in faecal samples, Lett. Appl. Microbiol, vol.43, pp.58-63, 2006.

A. Mihajlovski, J. Doré, F. Levenez, M. Alric, and J. Brugère, Molecular evaluation of the human gut methanogenic archaeal microbiota reveals an age-associated increase of the diversity, Environ. Microbiol. Rep, vol.2, pp.272-280, 2010.

J. K. Goodrich, Genetic determinants of the gut microbiome in UK twins, Cell Host Microbe, vol.19, pp.731-743, 2016.

E. E. Hansen, Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins, Proc. Natl. Acad. Sci, vol.108, pp.4599-4606, 2011.

J. K. Goodrich, E. R. Davenport, A. G. Clark, and R. E. Ley, The Relationship Between the Human Genome and Microbiome Comes into View, Annu. Rev. Genet, vol.51, pp.413-433, 2017.

M. J. Bonder, The effect of host genetics on the gut microbiome, Nat. Genet, vol.48, pp.1407-1412, 2016.

J. J. Goodrich, Human genetics shape the gut microbiome, Cell, vol.159, pp.789-799, 2014.

A. Ruaud, Syntrophy via Interspecies H2 Transfer between Christensenella and Methanobrevibacter Underlies Their Global Cooccurrence in the Human Gut, MBio, vol.11, 2020.

C. Hoffmann, Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents, PLoS One, vol.8, 2013.

Y. Nam, Bacterial, archaeal, and eukaryal diversity in the intestines of Korean people, J. Microbiol, vol.46, pp.491-501, 2008.

S. Khelaifia and D. Raoult, Haloferax massiliensis sp. nov., the first human-associated halophilic archaea, New Microbes New Infect, vol.12, pp.96-98, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01476270

V. D. Nkamga, B. Henrissat, and M. Drancourt, Archaea: essential inhabitants of the human digestive microbiota, Hum. Microbiome J, vol.3, pp.1-8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01803296

B. S. Samuel, Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut, Proc. Natl. Acad. Sci, vol.104, pp.10643-10648, 2007.

, Describes the level of adaptation of a human-associated archaeon to the human gastrointestinal tract

F. Ng, An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms, Environ. Microbiol, vol.18, issue.9, pp.3010-3021, 2016.

M. N. Lurie-weinberger, M. Peeri, T. Tuller, and U. Gophna, Extensive inter-domain lateral gene transfer in the evolution of the human commensal Methanosphaera stadtmanae, Front. Genet, vol.3, p.182, 2012.

M. N. Lurie-weinberger, M. Peeri, and U. Gophna, Contribution of lateral gene transfer to the gene repertoire of a gut-adapted methanogen, Genomics, vol.99, pp.52-58, 2012.

C. Bang, Biofilm formation of mucosa-associated methanoarchaeal strains, Front. Microbiol, vol.5, p.353, 2014.

P. W. Lepp, Methanogenic Archaea and human periodontal disease, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.6176-6181, 2004.

, First in-depth analysis of the link between archaea and periodontitis and proposition of their involvement in this disease

V. D. Nkamga, Methanobrevibacter oralis detected along with Aggregatibacter actinomycetemcomitans in a series of community-acquired brain abscesses, Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis, vol.24, p.207, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01780645

G. Borrel, Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine, BMC Genomics, vol.15, p.679, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01059404

B. V. Jones, M. Begley, C. Hill, C. G. Gahan, and J. R. Marchesi, Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome, Proc. Natl. Acad. Sci. 105, pp.13580-13585, 2008.

C. Bang, Effects of antimicrobial peptides on methanogenic archaea, Antimicrob. Agents Chemother, vol.56, pp.4123-4130, 2012.

P. Blais-lecours, Immunogenic properties of archaeal species found in bioaerosols, PLoS One, vol.6, p.23326, 2011.

T. Vierbuchen, C. Bang, H. Rosigkeit, R. A. Schmitz, and H. Heine, The human-associated archaeon Methanosphaera stadtmanae is recognized through its rna and induces Tlr8-Dependent nlrP3 inflammasome activation, Front. Immunol, vol.8, p.1535, 2017.

, Report on methanoarchaeal RNA as immune stimulator and identification of the methanoarchaeal receptor

A. Haines, J. Dilawari, G. Metz, L. Blendis, and H. Wiggins, Breath-methane in patients with cancer of the large bowel, Lancet, vol.310, pp.481-483, 1977.

A. Mahnert, M. Blohs, M. R. Pausan, and C. Moissl-eichinger, The human archaeome: methodological pitfalls and knowledge gaps, Emerg. Top. Life Sci, vol.2, pp.469-482, 2018.

N. Belay, B. Mukhopadhyay, E. Conway-de-macario, R. Galask, and L. Daniels, Methanogenic bacteria in human vaginal samples, J. Clin. Microbiol, vol.28, pp.1666-1668, 1990.

G. Grine, Detection of Methanobrevibacter smithii in vaginal samples collected from women diagnosed with bacterial vaginosis, Eur. J. Clin. Microbiol. Infect. Dis, pp.1-7, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02263644

A. E. Pérez-cobas, C. Ginevra, C. Rusniok, S. Jarraud, and C. Buchrieser, Legionella pneumophila infection and antibiotic treatment engenders a highly disturbed pulmonary microbiome with decreased microbial diversity, bioRxiv, vol.808238, 2019.

G. Grine, Co-culture of Methanobrevibacter smithii with enterobacteria during urinary infection, EBioMedicine, vol.43, pp.333-337, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02202785

E. Sogodogo, Nine Cases of Methanogenic Archaea in Refractory Sinusitis, an Emerging Clinical Entity, Front. public Heal, vol.7, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02243413

M. Drancourt, Evidence of Archaeal Methanogens in Brain Abscess, Clin. Infect. Dis, vol.65, pp.1-5, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01573764

T. Nguyen-hieu, S. Khelaifia, G. Aboudharam, and M. Drancourt, Methanogenic archaea in subgingival sites: a review, APMIS, vol.121, pp.467-77, 2013.

S. Belkacemi, Peri-implantitis-associated methanogens: a preliminary report, Sci. Rep, vol.8, p.9447, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01858891

M. E. Vianna, S. Holtgraewe, I. Seyfarth, G. Conrads, and H. P. Horz, Quantitative analysis of three hydrogenotrophic microbial groups, methanogenic archaea, sulfate-reducing bacteria, and acetogenic bacteria, within plaque biofilms associated with human periodontal disease, J. Bacteriol, vol.190, pp.3779-3785, 2008.

J. F. Siqueira and I. N. Rocas, Community as the unit of pathogenicity: an emerging concept as to the microbial pathogenesis of apical periodontitis. Oral Surg. Oral Med. Oral Pathol, Oral Radiol. Endod, vol.107, pp.870-878, 2009.

E. C. De-macario and A. J. Macario, Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis, Int. J. Med. Microbiol, vol.299, pp.99-108, 2009.

S. L. Benoit, R. J. Maier, R. G. Sawers, and C. Greening, Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol, Mol. Biol. Rev, vol.84, 2020.

P. B. Lecours, Increased prevalence of methanosphaera stadtmanae in inflammatory bowel diseases, PLoS One, vol.9, pp.1-7, 2014.

D. J. Barnett, M. Mommers, and J. Penders, Arts, I. C. W. & Thijs, C. Intestinal archaea inversely associated with childhood asthma, J. Allergy Clin. Immunol, vol.143, pp.2305-2307, 2019.

M. Pimentel, Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity, AJP Gastrointest. Liver Physiol, vol.290, pp.1089-1095, 2006.

S. Chatterjee, S. Park, K. Low, Y. Kong, and M. Pimentel, The degree of breath methane production in IBS correlates with the severity of constipation, Am. J. Gastroenterol, vol.102, p.837, 2007.

A. Attaluri, M. Jackson, J. Valestin, and S. S. Rao, Methanogenic flora is associated with altered colonic transit but not stool characteristics in constipation without IBS, Am. J. Gastroenterol, vol.105, p.1407, 2010.

W. Tottey, Colonic transit time is a driven force of the gut microbiota composition and metabolism: in vitro evidence, J. Neurogastroenterol. Motil, vol.23, p.124, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595498

M. N. Lurie-weinberger and U. Gophna, Archaea in and on the human body: health implications and future directions, PLOS Pathog, vol.11, p.1004833, 2015.

K. Gottlieb, V. Wacher, J. Sliman, and M. Pimentel, inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders, Aliment. Pharmacol. Ther, vol.43, pp.197-212, 2016.

Y. Jia, Z. Li, C. Liu, and J. Zhang, Methane Medicine: A Rising Star Gas with Powerful Anti-Inflammation, Antioxidant, and Antiapoptosis Properties, Oxid. Med. Cell. Longev, p.1912746, 2018.

L. Xin, X. Sun, and S. Lou, Effects of Methane-Rich Saline on the Capability of One-Time Exhaustive Exercise in Male SD Rats, PLoS One, vol.11, p.150925, 2016.

R. Laverdure, A. Mezouari, M. A. Carson, N. Basiliko, and J. Gagnon, A role for methanogens and methane in the regulation of GLP-1, Endocrinol. diabetes Metab, vol.1, p.6, 2018.

M. Boros and F. Keppler, Methane Production and Bioactivity-A Link to Oxido-Reductive Stress, Front. Physiol, vol.10, p.1244, 2019.

M. Al-waiz, M. Mikov, S. C. Mitchell, and R. L. Smith, The exogenous origin of trimethylamine in the mouse, Metabolism, vol.41, pp.135-136, 1992.

Z. Wang, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease, Nature, vol.472, p.57, 2011.

W. H. Tang, Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease, Circ. Res, vol.116, pp.448-455, 2015.

R. J. Mackay, C. J. Mcentyre, C. Henderson, M. Lever, and P. M. George, Trimethylaminuria: causes and diagnosis of a socially distressing condition, Clin. Biochem. Rev, vol.32, p.33, 2011.

G. Srinivasan, C. M. James, and J. A. Krzycki, Pyrrolysine encoded by UAG in Archaea: charging of a UAGdecoding specialized tRNA, Science, vol.296, pp.1459-1462, 2002.

M. A. Gaston, R. Jiang, and J. A. Krzycki, Functional context, biosynthesis, and genetic encoding of pyrrolysine, Curr. Opin. Microbiol, vol.14, pp.342-349, 2011.

J. Brugère, J. F. Atkins, P. W. O'toole, and G. Borrel, Pyrrolysine in archaea: a 22nd amino acid encoded through a genetic code expansion, Emerg. Top. Life Sci, vol.2, pp.607-618, 2018.

B. Dridi, M. Fardeau, B. Ollivier, D. Raoult, and M. Drancourt, Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces, Int. J. Syst. Evol. Microbiol, vol.62, pp.1902-1907, 2012.

A. Ramezani, Gut Colonization with Methanogenic Archaea Lowers Plasma Trimethylamine Noxide Concentrations in Apolipoprotein e?/? Mice, Sci. Rep, vol.8, p.14752, 2018.

K. Fadhlaoui, Archaea, specific genetic traits, and development of improved bacterial live biotherapeutic products: another face of next-generation probiotics, Appl. Microbiol. Biotechnol, vol.104, pp.4705-4716, 2020.

D. Prangishvili, Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus, J. Bacteriol, vol.182, pp.2985-2988, 2000.

W. Martin, Pathogenic archaebacteria: do they not exist because archaebacteria use different vitamins?, BioEssays, vol.26, pp.592-593, 2004.

R. Cavicchioli and P. Curmi, Response to William Martin's letter, 2004.

E. E. Gill and F. S. Brinkman, The proportional lack of archaeal pathogens: Do viruses/phages hold the key?, BioEssays, vol.33, pp.248-254, 2011.

D. Prangishvili, The enigmatic archaeal virosphere, Nat. Rev. Microbiol, vol.15, pp.724-739, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01977353

, Microbiology by numbers, Nat. Rev. Microbiol, vol.9, p.628, 2011.

J. L. Sachs, R. G. Skophammer, and J. U. Regus, Evolutionary transitions in bacterial symbiosis, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.10800-10807, 2011.

D. L. Valentine, Adaptations to energy stress dictate the ecology and evolution of the Archaea, Nat. Rev. Microbiol, vol.5, pp.316-339, 2007.

C. J. Castelle and J. F. Banfield, Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life, Cell, vol.172, pp.1181-1197, 2018.

G. Borrel, Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea, Nat. Microbiol, vol.4, pp.603-613, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02059013

. Anonymous, Statistical Yearbook of the Food and Agriculture Organisation for the United Nations, 2016.

A. L. Monteiro, The role of small ruminants on global climate change, Acta Sci. Anim. Sci, vol.40, 2018.

M. G. Sanderson, Biomass of termites and their emissions of methane and carbon dioxide: A global database, Global Biogeochem. Cycles, vol.10, pp.543-557, 1996.

U. Daemmgen, Enteric methane emissions from German pigs, Agric. For. Res, vol.3, pp.83-96, 2012.

J. Brou?ek and B. ?ermák, Emission of harmful gases from poultry farms and possibilities of their reduction, Ekologia, vol.34, pp.89-100, 2015.

A. Almeida, A new genomic blueprint of the human gut microbiota, Nature, vol.568, p.499, 2019.

C. Quast, The SILVA ribosomal RNA gene database project: improved data processing and webbased tools, Nucleic Acids Res, vol.41, pp.590-596, 2013.

S. Albers and B. H. Meyer, The archaeal cell envelope, Nat. Rev. Microbiol, vol.9, p.414, 2011.

K. W. Becker, Unusual butane-and pentanetriol-based tetraether lipids in Methanomassiliicoccus luminyensis, a representative of the seventh order of methanogens, Appl. Environ. Microbiol, vol.82, pp.4505-4516, 2016.

A. Klingl, S-layer and cytoplasmic membrane -exceptions from the typical archaeal cell wall with a focus on double membranes, Front. Microbiol, vol.5, pp.1-6, 2014.

R. Shahapure, R. P. Driessen, M. F. Haurat, S. Albers, and R. T. Dame, The archaellum: a rotating type IV pilus, Mol. Microbiol, vol.91, pp.716-723, 2014.

P. Chaudhury, T. E. Quax, and S. Albers, Versatile cell surface structures of archaea, Mol. Microbiol, vol.107, pp.298-311, 2018.

E. R. Quemin, First insights into the entry process of hyperthermophilic archaeal viruses, J. Virol, vol.87, pp.13379-13385, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00932216

T. Sato and H. Atomi, Novel metabolic pathways in Archaea, Curr. Opin. Microbiol, vol.14, pp.307-314, 2011.

C. Brasen, D. Esser, B. Rauch, and B. Siebers, Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol, Mol. Biol. Rev, vol.78, pp.89-175, 2014.

S. Leininger, Archaea predominate among ammonia-oxidizing prokaryotes in soils, Nature, vol.442, pp.806-809, 2006.

L. Y. Stein, Insights into the physiology of ammonia-oxidizing microorganisms, Curr. Opin. Chem. Biol, vol.49, pp.9-15, 2019.

T. D. Mand and W. W. Metcalf, Energy Conservation and Hydrogenase Function in Methanogenic Archaea, Particular the Genus Methanosarcina. Microbiol. Mol. Biol. Rev, vol.83, 2019.

G. Borrel, P. S. Adam, and S. Gribaldo, Methanogenesis and the Wood-Ljungdahl pathway: an ancient, versatile, and fragile association, Genome Biol. Evol, p.114, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-02445396

A. J. Stams and C. M. Plugge, Electron transfer in syntrophic communities of anaerobic bacteria and archaea, Nat. Rev. Microbiol, vol.7, pp.568-577, 2009.

K. F. Ettwig, Archaea catalyze iron-dependent anaerobic oxidation of methane, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.12792-12796, 2016.

C. Cai, A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction, ISME J, vol.12, pp.1929-1939, 2018.

S. Scheller, H. Yu, G. L. Chadwick, S. E. Mcglynn, and V. J. Orphan, Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction, Science, vol.351, pp.703-707, 2016.

G. Wegener, V. Krukenberg, D. Riedel, H. E. Tegetmeyer, and A. Boetius, Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria, Nature, vol.526, pp.587-590, 2015.

A. Kiener, H. Konig, J. Winter, and T. Leisinger, Purification and use of Methanobacterium wolfei pseudomurein endopeptidase for lysis of Methanobacterium thermoautotrophicum, J. Bacteriol, vol.169, pp.1010-1016, 1987.

Z. Lee, C. Bussema, and T. Schmidt, rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea, Nucleic Acids Res, vol.37, pp.489-493, 2009.

Y. Sun, Y. Liu, J. Pan, F. Wang, and M. Li, Perspectives on Cultivation Strategies of Archaea. Microb. Ecol, 2019.