L. A. O'neill and E. J. Pearce, Immunometabolism governs dendritic cell and macrophage function, J. Exp. Med, vol.213, pp.15-23, 2016.

J. Van-den-bossche, L. A. O'neill, and D. Menon, Macrophage immunometabolism: where are we (going)?, Trends Immunol, vol.38, pp.395-406, 2017.

P. Millet, V. Vachharajani, L. Mcphail, B. Yoza, and C. E. Mccall, GAPDH binding to TNF-alpha mRNA contributes to posttranscriptional repression in monocytes: a novel mechanism of communication between inflammation and metabolism, J. Immunol, vol.196, pp.2541-2551, 2016.

E. M. Palsson-mcdermott, Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages, Cell Metab, vol.21, pp.65-80, 2015.

A. K. Jha, Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization, Immunity, vol.42, pp.419-430, 2015.

V. Lampropoulou, Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation, Cell Metab, vol.24, pp.158-166, 2016.

E. L. Mills, Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages, Cell, vol.167, p.413, 2016.

J. Van-den-bossche, Mitochondrial dysfunction prevents repolarization of inflammatory macrophages, Cell Rep, vol.17, pp.684-696, 2016.

G. M. Tannahill, Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha, Nature, vol.496, pp.238-242, 2013.

R. Stienstra, R. T. Netea-maier, N. P. Riksen, L. A. Joosten, and M. G. Netea, Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses, Cell Metab, vol.26, pp.142-156, 2017.

S. C. Cheng, mTOR-and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity, Science, vol.345, p.1250684, 2014.

E. Lachmandas, Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells, Eur. J. Immunol, vol.46, pp.2574-2586, 2016.

M. Wickersham, Metabolic stress drives keratinocyte defenses against Staphylococcus aureus infection. Cell Rep, vol.18, pp.2742-2751, 2017.

E. Lachmandas, Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes, Nat. Microbiol, vol.2, p.16246, 2016.

M. G. Netea, L. A. Joosten, J. W. Van-der-meer, B. J. Kullberg, and F. L. Van-de-veerdonk, Immune defence against Candida fungal infections, Nat. Rev. Immunol, vol.15, pp.630-642, 2015.

F. L. Van-de-veerdonk, M. S. Gresnigt, L. Romani, M. G. Netea, and J. P. Latge, Aspergillus fumigatus morphology and dynamic host interactions, Nat. Rev. Microbiol, vol.15, pp.661-674, 2017.

R. J. Arts, Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity, Cell Metab, vol.24, pp.807-819, 2016.

S. Bekkering, Metabolic induction of trained immunity through the mevalonate pathway, Cell, vol.172, p.139, 2018.

J. Dominguez-andres, The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity, Cell Metab, vol.29, pp.211-233, 2018.

J. Dominguez-andres, Rewiring monocyte glucose metabolism via Ctype lectin signaling protects against disseminated candidiasis, PLoS Pathog, vol.13, p.1006632, 2017.

S. C. Cheng, Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis, Nat. Immunol, vol.17, pp.406-413, 2016.

T. M. Tucey, Glucose homeostasis is important for immune cell viability during candida challenge and host survival of systemic fungal infection, Cell Metab, vol.27, p.1007, 2018.

B. H. Segal and . Aspergillosis, N. Engl. J. Med, vol.360, pp.1870-1884, 2009.

G. D. Brown, Hidden killers: human fungal infections, Sci. Transl. Med, vol.4, pp.165-113, 2012.

J. A. Maertens, Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial, Lancet, vol.387, pp.760-769, 2016.

S. Herbst, Phagocytosis-dependent activation of a TLR9-BTKcalcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus, EMBO Mol. Med, vol.7, pp.240-258, 2015.

A. Shah, Calcineurin orchestrates lateral transfer of Aspergillus fumigatus during macrophage cell death, Am. J. Respir. Crit. Care Med, vol.194, pp.1127-1139, 2016.

V. Espinosa, Inflammatory monocytes orchestrate innate antifungal immunity in the lung, PLoS Pathog, vol.10, p.1003940, 2014.

C. Cunha, Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient-and donor-dependent mechanisms of antifungal immunity, Blood, vol.116, pp.5394-5402, 2010.

C. Cunha, IL-10 overexpression predisposes to invasive aspergillosis by suppressing antifungal immunity, J. Allergy Clin. Immunol, vol.140, p.869, 2017.

M. S. Gresnigt, Genetic deficiency of NOD2 confers resistance to invasive aspergillosis, Nat. Commun, vol.9, p.2636, 2018.

M. H. Stappers, Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus, Nature, vol.555, pp.382-386, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02501369

A. Liberzon, The molecular signatures database (MSigDB) hallmark gene set collection, Cell Syst, vol.1, pp.417-425, 2015.

H. Parikh, TXNIP regulates peripheral glucose metabolism in humans, PLoS Med, vol.4, p.158, 2007.

J. P. Latge, A. Beauvais, and G. Chamilos, The cell wall of the human fungal pathogen aspergillus fumigatus: biosynthesis, organization, immune response, and virulence, Annu. Rev. Microbiol, vol.71, pp.99-116, 2017.

V. Aimanianda, Surface hydrophobin prevents immune recognition of airborne fungal spores, Nature, vol.460, pp.1117-1121, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01500616

B. Jahn, Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence, Infect. Immun, vol.65, pp.5110-5117, 1997.

J. Sarfati, A new experimental murine aspergillosis model to identify strains of Aspergillus fumigatus with reduced virulence, Nihon Ishinkin Gakkai Zasshi, vol.43, pp.203-213, 2002.

K. Langfelder, M. Streibel, B. Jahn, G. Haase, and A. A. Brakhage, Biosynthesis of fungal melanins and their importance for human pathogenic fungi, Fungal Genet. Biol, vol.38, pp.143-158, 2003.

K. Duvel, Activation of a metabolic gene regulatory network downstream of mTOR complex 1, Mol. Cell, vol.39, pp.171-183, 2010.

C. C. Dibble and L. C. Cantley, Regulation of mTORC1 by PI3K signaling, Trends Cell Biol, vol.25, pp.545-555, 2015.

P. K. Majumder, mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways, Nat. Med, vol.10, pp.594-601, 2004.

I. Kyrmizi, Calcium sequestration by fungal melanin inhibits calciumcalmodulin signalling to prevent LC3-associated phagocytosis, Nat. Microbiol, vol.3, pp.791-803, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02392085

A. Raffaello, C. Mammucari, G. Gherardi, and R. Rizzuto, Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes, Trends Biochem. Sci, vol.41, pp.1035-1049, 2016.

J. Liou, STIM is a Ca 2+ sensor essential for Ca 2+ -store-depletiontriggered Ca 2+ influx, Curr. Biol, vol.15, pp.1235-1241, 2005.

N. C. Howard, Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes, Nat. Microbiol, vol.3, pp.1099-1108, 2018.

T. Akoumianaki, Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity, Cell Host Microbe, vol.19, pp.79-90, 2016.

A. Thywissen, Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway, Front. Microbiol, vol.2, p.96, 2011.

K. Volling, A. Thywissen, A. A. Brakhage, and H. P. Saluz, Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling, Cell. Microbiol, vol.13, pp.1130-1148, 2011.

M. Ugolini and L. E. Sander, Dead or alive: how the immune system detects microbial viability, Curr. Opin. Immunol, vol.56, pp.60-66, 2018.

J. Moretti, STING senses microbial viability to orchestrate stressmediated autophagy of the endoplasmic reticulum, Cell, vol.171, p.813, 2017.

B. Briard, Fungal ligands released by innate immune effectors promote inflammasome activation during Aspergillus fumigatus infection, Nat. Microbiol, vol.4, pp.316-327, 2019.

R. Karki, Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection, Cell Host Microbe, vol.17, pp.357-368, 2015.

S. D. Willger, N. Grahl, and R. A. Cramer, Aspergillus fumigatus metabolism: clues to mechanisms of in vivo fungal growth and virulence, Med. Mycol, vol.47, issue.1, pp.72-79, 2009.

H. Schmidt, Proteomics of Aspergillus fumigatus conidia-containing phagolysosomes identifies processes governing immune evasion, Mol. Cell. Proteom, vol.17, pp.1084-1096, 2018.

J. M. Scheffler, LAMTOR2 regulates dendritic cell homeostasis through FLT3-dependent mTOR signalling, Nat. Commun, vol.5, p.5138, 2014.

T. Sakamoto, Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP, Mol. Cell. Biol, vol.34, pp.30-42, 2014.

K. M. Shepardson, Myeloid derived hypoxia inducible factor 1-alpha is required for protection against pulmonary Aspergillus fumigatus infection, PLoS Pathog, vol.10, p.1004378, 2014.

M. Fliesser, Hypoxia-inducible factor 1alpha modulates metabolic activity and cytokine release in anti-Aspergillus fumigatus immune responses initiated by human dendritic cells, Int J. Med. Mycol, vol.305, pp.865-873, 2015.

M. C. Corretti, Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts, J. Clin. Invest, vol.88, pp.1014-1025, 1991.

G. Takagaki, Control of aerobic glycolysis and pyruvate kinase activity in cerebral cortex slices, J. Neurochem, vol.15, pp.903-916, 1968.

M. Krajcovic, S. Krishna, L. Akkari, and J. A. Joyce, & Overholtzer, M. mTOR regulates phagosome and entotic vacuole fission, Mol. Biol. Cell, vol.24, pp.3736-3745, 2013.

K. Shen and D. M. Sabatini, Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms, Proc. Natl. Acad. Sci. USA, vol.115, pp.9545-9550, 2018.

M. E. Da-silva-ferreira, The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus, Eukaryot. Cell, vol.5, pp.207-211, 2006.

H. F. Tsai, R. G. Washburn, Y. C. Chang, and K. J. Kwon-chung, Aspergillus fumigatus arp1 modulates conidial pigmentation and complement deposition, Mol. Microbiol, vol.26, pp.175-183, 1997.

H. F. Tsai, M. H. Wheeler, Y. C. Chang, and K. J. Kwon-chung, A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus, J. Bacteriol, vol.181, pp.6469-6477, 1999.

J. Bayry, Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response, Infect. Immun, vol.82, pp.3141-3153, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02455511

A. Mortazavi, B. A. Williams, K. Mccue, L. Schaeffer, and B. Wold, Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nat. Methods, vol.5, pp.621-628, 2008.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

A. V. Misharin, L. Morales-nebreda, G. M. Mutlu, G. R. Budinger, and H. Perlman, Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung, Am. J. Respir. Cell Mol. Biol, vol.49, pp.503-510, 2013.

C. D. Pd/bd/137680, and the European Society of Clinical Microbiology and Infectious Diseases, 2018.

M. G. , was supported by a Spinoza grant of the Netherlands Organization for Scientific Research. A.A.B. was supported by the Deutsche Forschungsgemeinschaft Collaborative

, Wellcome Trust (102705), the MRC Centre for Medical Mycology and the University of Aberdeen

M. G. , C. F. , I. , M. A. , G. C. et al., performed flow cytometry and cell-sorting experiments, and G.C. performed the live recording of calcium levels. N.S.O. analyzed RNA-seq data, and M.F.G. and C.B. performed targeted metabolomics. A.M. supervised the collection of samples from healthy donors