A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. H. Gerdes, , 2004.

, Nanotubular highways for intercellular organelle transport, Science, vol.303, issue.5660, pp.1007-1010

M. Baker, Lines of communication, Nature, vol.549, issue.7672, pp.322-324, 2017.

S. Abounit and C. Zurzolo, Wiring through tunneling nanotubes--from electrical signals to organelle transfer, J Cell Sci, vol.125, pp.1089-1098, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00716392

H. H. Gerdes, A. Rustom, and X. Wang, Tunneling nanotubes, an emerging intercellular communication route in development, Mech Dev, vol.130, issue.6-8, pp.381-387, 2013.

S. Sisakhtnezhad and L. Khosravi, Emerging physiological and pathological implications of tunneling nanotubes formation between cells, Eur J Cell Biol, vol.94, issue.10, pp.429-443, 2015.

M. L. Vignais, A. Caicedo, J. M. Brondello, and C. Jorgensen, Cell Connections by Tunneling Nanotubes: Effects of Mitochondrial Trafficking on Target Cell Metabolism, Homeostasis, and Response to Therapy, Stem Cells Int, p.6917941, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01759757

Y. Hekmatshoar, J. Nakhle, M. Galloni, and M. L. Vignais, The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance, Biochem J, vol.475, issue.14, pp.2305-2328, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01855869

S. C. Watkins and R. D. Salter, Functional connectivity between immune cells mediated by tunneling nanotubules, Immunity, vol.23, issue.3, pp.309-318, 2005.

M. Tada and M. L. Concha, Vertebrate gastrulation: calcium waves orchestrate cell movements, Curr Biol, vol.11, issue.12, pp.470-472, 2001.

M. Levin, Gap junctional communication in morphogenesis, Prog Biophys Mol Biol, vol.94, pp.186-206, 2007.

X. Wang, N. V. Bukoreshtliev, and H. H. Gerdes, Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes, PLoS One, vol.7, issue.10, p.47429, 2012.

M. Dupont, S. Souriant, G. Lugo-villarino, I. Maridonneau-parini, and C. Verollet, Tunneling Nanotubes: Intimate Communication between Myeloid Cells, Front Immunol, vol.9, p.43, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02348503

P. D. Arkwright, F. Luchetti, J. Tour, C. Roberts, R. Ayub et al., Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes, Cell Res, vol.20, issue.1, pp.72-88, 2010.

E. Lou, S. Fujisawa, A. Morozov, A. Barlas, Y. Romin et al., Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma, PLoS One, vol.7, issue.3, p.33093, 2012.

V. Thayanithy, E. L. Dickson, C. Steer, S. Subramanian, and E. Lou, , 2014.

, Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes, Transl Res, vol.164, issue.5, pp.359-365

M. Osswald, J. E. Wick, W. Winkler, and F. , Tunneling nanotube-like structures in brain tumors, Cancer Rep, p.1181, 2019.

S. Sowinski, C. Jolly, O. Berninghausen, M. A. Purbhoo, A. Chauveau et al., Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission, Nat Cell Biol, vol.10, issue.2, pp.211-219, 2008.

M. Hashimoto, F. Bhuyan, M. Hiyoshi, O. Noyori, H. Nasser et al., Potential Role of the Formation of Tunneling Nanotubes in HIV-1 Spread in Macrophages, J Immunol, vol.196, issue.4, pp.1832-1841, 2016.

K. Gousset, E. Schiff, C. Langevin, Z. Marijanovic, A. Caputo et al., Prions hijack tunnelling nanotubes for intercellular spread, Nat Cell Biol, vol.11, issue.3, pp.328-336, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00368712

S. Abounit, L. Bousset, F. Loria, S. Zhu, F. De-chaumont et al., Tunneling nanotubes spread fibrillar alpha-synuclein by intercellular trafficking of lysosomes, Embo J, vol.35, pp.2120-2138, 2016.

S. Abounit, J. W. Wu, K. Duff, G. S. Victoria, and C. Zurzolo, Tunneling nanotubes: A possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases, Prion, vol.10, issue.5, pp.344-351, 2016.

G. S. Victoria and C. Zurzolo, The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases, J Cell Biol, vol.216, issue.9, pp.2633-2644, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01855453

S. Zhu, S. Abounit, C. Korth, and C. Zurzolo, Transfer of disruptedin-schizophrenia 1 aggregates between neuronal-like cells occurs in tunnelling nanotubes and is promoted by dopamine, Open Biol, vol.7, issue.3, p.160328, 2017.

D. M. Davis and S. Sowinski, Membrane nanotubes: dynamic longdistance connections between animal cells, Nat Rev Mol Cell Biol, vol.9, issue.6, pp.431-436, 2008.

J. Hurtig, D. T. Chiu, and B. Onfelt, Intercellular nanotubes: insights from imaging studies and beyond, Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol.2, issue.3, pp.260-276, 2010.

M. W. Austefjord, H. H. Gerdes, and X. Wang, Tunneling nanotubes: Diversity in morphology and structure, Commun Integr Biol, vol.7, issue.1, p.27934, 2014.

J. Ariazi, A. Benowitz, D. Biasi, V. , D. Boer et al., Tunneling Nanotubes and Gap Junctions-Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions, Front Mol Neurosci, vol.10, p.333, 2017.

Y. M. Yamashita, M. Inaba, and M. Buszczak, Specialized Intercellular Communications via Cytonemes and Nanotubes, Annu Rev Cell Dev Biol, vol.34, pp.59-84, 2018.

M. Buszczak, M. Inaba, and Y. M. Yamashita, Signaling by Cellular Protrusions: Keeping the Conversation Private, Trends Cell Biol, vol.26, issue.7, pp.526-534, 2016.

E. Delage, D. C. Cervantes, E. Penard, C. Schmitt, S. Syan et al., Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes, Sci Rep, vol.6, p.39632, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01511571

A. Sartori-rupp, C. Cervantes, D. Pepe, A. Delage, E. Gousset et al., , 2019.

, neuronal cells, Correlative cryo-electron microscopy reveals the structure of TNTs in Cell Stress | FEBRUARY 2020 |, vol.4, p.342

S. Abounit, E. Delage, and C. Zurzolo, Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking, Curr Protoc Cell Biol, vol.67, 2015.

B. Mattes and S. Scholpp, Emerging role of contact-mediated cell communication in tissue development and diseases, Histochem Cell Biol, vol.150, issue.5, pp.431-442, 2018.

X. Wang and H. H. Gerdes, Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells, Cell Death Differ, vol.22, issue.7, pp.1181-1191, 2015.

B. Onfelt, S. Nedvetzki, R. K. Benninger, M. A. Purbhoo, S. Sowinski et al., Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria, J Immunol, vol.177, issue.12, pp.8476-8483, 2006.

X. Wang and H. H. Gerdes, Long-distance electrical coupling via tunneling nanotubes, Biochimica et biophysica acta, vol.1818, issue.8, pp.2082-2086, 2012.

A. B. Bohil, B. W. Robertson, and R. E. Cheney, Myosin-X is a molecular motor that functions in filopodia formation, Proc Natl Acad Sci, vol.103, issue.33, pp.12411-12416, 2006.

K. Gousset, L. Marzo, P. H. Commere, and C. Zurzolo, Myo10 is a key regulator of TNT formation in neuronal cells, J Cell Sci, vol.126, pp.4424-4435, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00874699

M. P. Greenbaum, T. Iwamori, G. M. Buchold, and M. M. Matzuk, , 2011.

, Germ cell intercellular bridges, Cold Spring Harb Perspect Biol, vol.3, issue.8, p.5850

K. Haglund, I. P. Nezis, and H. Stenmark, Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development, Commun Integr Biol, vol.4, issue.1, pp.1-9, 2011.

D. N. Robinson and L. Cooley, Stable intercellular bridges in development: the cytoskeleton lining the tunnel, Trends Cell Biol, vol.6, issue.12, pp.84945-84947, 1996.

D. N. Robinson and L. Cooley, Genetic analysis of the actin cytoskeleton in the Drosophila ovary, Annu Rev Cell Dev Biol, vol.13, pp.147-170, 1997.

L. G. Tilney, M. S. Tilney, and G. M. Guild, Formation of actin filament bundles in the ring canals of developing Drosophila follicles, J Cell Biol, vol.133, issue.1, pp.61-74, 1996.

R. I. Woodruff and L. G. Tilney, Intercellular bridges between epithelial cells in the Drosophila ovarian follicle: a possible aid to localized signaling, Dev Biol, vol.200, issue.1, pp.82-91, 1998.

L. Caneparo, P. Pantazis, W. Dempsey, and S. E. Fraser, Intercellular bridges in vertebrate gastrulation, PLoS One, vol.6, issue.5, p.20230, 2011.

J. Miller, S. E. Fraser, and D. Mcclay, Dynamics of thin filopodia during sea urchin gastrulation, Development, vol.121, issue.8, pp.2501-2511, 1995.

E. Salas-vidal and H. Lomeli, Imaging filopodia dynamics in the mouse blastocyst, Dev Biol, vol.265, issue.1, pp.75-89, 2004.

F. A. Ramirez-weber and T. B. Kornberg, Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs, Cell, vol.97, issue.5, pp.80771-80771, 1999.

T. B. Kornberg and S. Roy, Cytonemes as specialized signaling filopodia, Development, vol.141, issue.4, pp.729-736, 2014.

L. Wolpert, Positional information and the spatial pattern of cellular differentiation, J Theor Biol, vol.25, issue.1, pp.80016-80016, 1969.

E. Stanganello, S. Scholpp, E. Stanganello, A. I. Hagemann, B. Mattes et al., Filopodia-based Wnt transport during vertebrate tissue patterning, J Cell Sci, vol.129, issue.4, p.5846, 2015.

B. Mattes, Y. Dang, G. Greicius, L. T. Kaufmann, B. Prunsche et al., Wnt/PCP controls spreading of Wnt/betacatenin signals by cytonemes in vertebrates, vol.7, p.36953, 2018.

T. A. Sanders, E. Llagostera, and M. Barna, Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning, Nature, vol.497, issue.7451, pp.628-632, 2013.

J. Schlueter and T. Mikawa, Body Cavity Development Is Guided by Morphogen Transfer between Germ Layers, Cell Rep, vol.24, issue.6, pp.1456-1463, 2018.

S. Roy, F. Hsiung, and T. B. Kornberg, Specificity of Drosophila cytonemes for distinct signaling pathways, Science, vol.332, issue.6027, pp.354-358, 2011.

H. H. Gerdes and R. N. Carvalho, Intercellular transfer mediated by tunneling nanotubes, Curr Opin Cell Biol, vol.20, issue.4, pp.470-475, 2008.

A. C. Gradilla, E. Gonzalez, I. Seijo, G. Andres, M. Bischoff et al., Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion, Nat Commun, vol.5, p.5649, 2014.

A. Disanza, S. Mantoani, M. Hertzog, S. Gerboth, E. Frittoli et al., Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex, Nat Cell Biol, vol.8, p.1337, 2006.

A. Disanza, S. Bisi, M. Winterhoff, F. Milanesi, D. S. Ushakov et al., CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP, Embo J, vol.32, issue.20, pp.2735-2750, 2013.

S. Kimura, K. Hase, and H. Ohno, The molecular basis of induction and formation of tunneling nanotubes, Cell Tissue Res, vol.352, issue.1, pp.67-76, 2013.

K. Hase, S. Kimura, H. Takatsu, M. Ohmae, S. Kawano et al., M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex, Nat Cell Biol, vol.11, issue.12, pp.1427-1432, 2009.

Y. Wang, J. Cui, X. Sun, and Y. Zhang, Tunneling-nanotube development in astrocytes depends on p53 activation, Cell Death Differ, vol.18, issue.4, pp.732-742, 2011.

S. Zhu, S. Bhat, S. Syan, Y. Kuchitsu, M. Fukuda et al., , 2018.

, Rab11a-Rab8a cascade regulates the formation of tunneling nanotubes through vesicle recycling, J Cell Sci, vol.131, p.215889

, Cell Stress | FEBRUARY 2020 |, vol.4

L. Marzo, K. Gousset, and C. Zurzolo, Multifaceted roles of tunneling nanotubes in intercellular communication, Front Physiol, vol.3, p.72, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00716379

J. Y. Vargas, F. Loria, J. W. Wu, G. Cordova, T. Nonaka et al., The Wnt/Ca2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes, Embo J, vol.38, p.101230, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02466969

D. Zhu, K. S. Tan, X. Zhang, A. Y. Sun, G. Y. Sun et al., Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes, J Cell Sci, vol.118, pp.3695-3703, 2005.

A. Aggarwal, T. L. Iemma, I. Shih, T. P. Newsome, S. Mcallery et al., Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells, PLoS Pathog, vol.8, issue.6, p.1002762, 2012.

S. Zhu, G. S. Victoria, L. Marzo, R. Ghosh, and C. Zurzolo, Prion aggregates transfer through tunneling nanotubes in endocytic vesicles, Prion, vol.9, issue.2, pp.125-135, 2015.

E. Lou, S. Gholami, Y. Romin, V. Thayanithy, S. Fujisawa et al., , 2017.

, Imaging Tunneling Membrane Tubes Elucidates Cell Communication in Tumors, Trends Cancer, vol.3, issue.10, pp.678-685

L. Murray and A. D. Krasnodembskaya, Concise Review: Intercellular Communication Via Organelle Transfer in the Biology and Therapeutic Applications of Stem Cells, Stem Cells, vol.37, issue.1, pp.14-25, 2018.

J. M. Teddy and P. M. Kulesa, In vivo evidence for short-and longrange cell communication in cranial neural crest cells, Development, vol.131, issue.24, pp.6141-6151, 2004.

C. Pyrgaki, P. Trainor, A. K. Hadjantonakis, and L. Niswander, Dynamic imaging of mammalian neural tube closure, Dev Biol, vol.344, issue.2, pp.941-947, 2010.

M. C. Mckinney, D. A. Stark, J. Teddy, and P. M. Kulesa, Neural crest cell communication involves an exchange of cytoplasmic material through cellular bridges revealed by photoconversion of KikGR, Dev Dyn, vol.240, issue.6, pp.1391-1401, 2011.

M. Danilchik, M. Williams, and E. Brown, Blastocoel-spanning filopodia in cleavage-stage Xenopus laevis: Potential roles in morphogen distribution and detection, Dev Biol, vol.382, issue.1, pp.70-81, 2013.

T. Wang, Z. Xu, W. Jiang, and A. Ma, Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell, Int J Cardiol, vol.109, issue.1, pp.74-81, 2006.