C. I. Amos, I. P. Gorlov, Q. Dong, X. Wu, H. Zhang et al., Nicotinic acetylcholine receptor region on chromosome 15q25 and lung cancer risk among African Americans: a case-control study, J. Natl. Cancer Inst, vol.102, pp.1199-1205, 2010.

C. I. Amos, M. R. Spitz, and P. Cinciripini, Chipping away at the genetics of smoking behavior, Nat. Genet, vol.42, pp.366-368, 2010.

S. Auer, A. S. Stü-rzebecher, R. Jü-ttner, J. Santos-torres, C. Hanack et al., Silencing neurotransmission with membrane-tethered toxins, Nat. Methods, vol.7, pp.229-236, 2010.

I. Bacher, B. Wu, D. R. Shytle, and T. P. George, Mecamylaminea nicotinic acetylcholine receptor antagonist with potential for the treatment of neuropsychiatric disorders, Expert Opin. Pharmacother, vol.10, pp.2709-2721, 2009.

L. J. Bierut, Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24-25, Trends Pharmacol. Sci, vol.31, pp.46-51, 2010.

L. J. Bierut, J. A. Stitzel, J. C. Wang, A. L. Hinrichs, R. A. Grucza et al., Variants in nicotinic receptors and risk for nicotine dependence, Am. J. Psychiatry, vol.165, pp.1163-1171, 2008.

C. B. Bigger, I. N. Melnikova, and P. D. Gardner, Sp1 and Sp3 regulate expression of the neuronal nicotinic acetylcholine receptor beta4 subunit gene, J. Biol. Chem, vol.272, pp.25976-25982, 1997.

C. M. Butt, N. M. King, S. R. Hutton, A. C. Collins, and J. A. Stitzel, Modulation of nicotine but not ethanol preference by the mouse Chrna4 A529T polymorphism, Behav. Neurosci, vol.119, pp.26-37, 2005.

J. E. Carland, M. A. Cooper, S. Sugiharto, H. J. Jeong, T. M. Lewis et al., Characterization of the effects of charged residues in the intracellular loop on ion permeation in alpha1 glycine receptor channels, J. Biol. Chem, vol.284, pp.2023-2030, 2009.

J. P. Changeux, Nicotine addiction and nicotinic receptors: lessons from genetically modified mice, Nat. Rev. Neurosci, vol.11, pp.389-401, 2010.

J. A. Dani and S. Heinemann, Molecular and cellular aspects of nicotine abuse, Neuron, vol.16, pp.905-908, 1996.

M. De-biasi and R. Salas, Influence of neuronal nicotinic receptors over nicotine addiction and withdrawal, Exp. Biol. Med. (Maywood), vol.233, pp.917-929, 2008.

K. Dineley-miller, P. , and J. , Gene transcripts for the nicotinic acetylcholine receptor subunit, beta4, are distributed in multiple areas of the rat central nervous system, Brain Res. Mol. Brain Res, vol.16, pp.339-344, 1992.

A. Flora, R. Schulz, R. Benfante, E. Battaglioli, S. Terzano et al., Transcriptional regulation of the human alpha5 nicotinic receptor subunit gene in neuronal and non-neuronal tissues, Eur. J. Pharmacol, vol.393, pp.85-95, 2000.

C. D. Fowler, Q. Lu, P. M. Johnson, M. J. Marks, and P. J. Kenny, , 2011.

, Habenular a5 nicotinic receptor subunit signalling controls nicotine intake, Nature, vol.471, pp.597-601

L. C. Gahring and S. W. Rogers, Nicotinic receptor subunit alpha5 modifies assembly, up-regulation, and response to pro-inflammatory cytokines, J. Biol. Chem, vol.285, pp.26049-26057, 2010.

A. R. Glatt, K. Denton, J. D. Boughter, and . Jr, Variation in nicotine consumption in inbred mice is not linked to orosensory ability, Chem. Senses, vol.34, pp.27-35, 2009.

S. Gong, C. Zheng, M. L. Doughty, K. Losos, N. Didkovsky et al., , 2003.

, A gene expression atlas of the central nervous system based on bacterial artificial chromosomes, Nature, vol.425, pp.917-925

C. Gotti, F. Clementi, A. Fornari, A. Gaimarri, S. Guiducci et al., Structural and functional diversity of native brain neuronal nicotinic receptors, Biochem. Pharmacol, vol.78, pp.703-711, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00509504

S. R. Grady, M. Moretti, M. Zoli, M. J. Marks, A. Zanardi et al., Rodent habenulo-interpeduncular pathway expresses a large variety of uncommon nAChR subtypes, but only the alpha3beta4* and alpha3beta3beta4* subtypes mediate acetylcholine release, J. Neurosci, vol.29, pp.2272-2282, 2009.

I. Ibañ-ez-tallon, J. M. Miwa, H. L. Wang, N. C. Adams, G. W. Crabtree et al., Novel modulation of neuronal nicotinic acetylcholine receptors by association with the endogenous prototoxin lynx1, Neuron, vol.33, pp.893-903, 2002.

I. Ibañ-ez-tallon, H. Wen, J. M. Miwa, J. Xing, A. B. Tekinay et al., Tethering naturally occurring peptide toxins for cellautonomous modulation of ion channels and receptors in vivo, Neuron, vol.43, pp.305-311, 2004.

S. Ikemoto, M. Qin, and Z. H. Liu, Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area, J. Neurosci, vol.26, pp.723-730, 2006.

K. J. Jackson, B. R. Martin, J. P. Changeux, and M. I. Damaj, , 2008.

, Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs, J. Pharmacol. Exp. Ther, vol.325, pp.302-312

M. Kedmi, A. L. Beaudet, and A. Orr-urtreger, Mice lacking neuronal nicotinic acetylcholine receptor beta4-subunit and mice lacking both alpha5-and beta4-subunits are highly resistant to nicotine-induced seizures, Physiol. Genomics, vol.17, pp.221-229, 2004.

S. P. Kelley, J. I. Dunlop, E. F. Kirkness, J. J. Lambert, and J. A. Peters, , 2003.

, A cytoplasmic region determines single-channel conductance in 5-HT3 receptors, Nature, vol.424, pp.321-324

Y. Lee, J. Rudell, and M. Ferns, Rapsyn interacts with the muscle acetylcholine receptor via a-helical domains in the alpha, beta, and epsilon subunit intracellular loops, Neuroscience, vol.163, pp.222-232, 2009.

F. Levitin, M. Weiss, Y. Hahn, O. Stern, R. L. Papke et al., PATE gene clusters code for multiple, secreted TFP/Ly-6/uPAR proteins that are expressed in reproductive and neuron-rich tissues and possess neuromodulatory activity, J. Biol. Chem, vol.283, pp.16928-16939, 2008.

B. Lu, Y. Su, S. Das, H. Wang, Y. Wang et al., Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80, Nature, vol.457, pp.741-744, 2009.

M. J. Marks, D. S. Laverty, P. Whiteaker, O. Salminen, S. R. Grady et al., John Daly's compound, epibatidine, facilitates identification of nicotinic receptor subtypes, J. Mol. Neurosci, vol.40, pp.96-104, 2010.

U. Maskos, The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology, Br. J. Pharmacol, vol.153, issue.1, pp.438-445, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01573865

U. Maskos, B. E. Molles, S. Pons, M. Besson, B. P. Guiard et al., Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors, Nature, vol.436, pp.103-107, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00162546

D. S. Mcgehee and L. W. Role, Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons, Annu. Rev. Physiol, vol.57, pp.521-546, 1995.

D. S. Mcgehee, M. J. Heath, S. Gelber, P. Devay, and L. W. Role, Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors, Science, vol.269, pp.1692-1696, 1995.

Y. F. Medel and P. D. Gardner, Transcriptional repression by a conserved intronic sequence in the nicotinic receptor alpha3 subunit gene, J. Biol. Chem, vol.282, pp.19062-19070, 2007.

C. J. Meliska, A. Bartke, G. Mcglacken, and R. A. Jensen, Ethanol, nicotine, amphetamine, and aspartame consumption and preferences in C57BL/6 and DBA/2 mice, Pharmacol. Biochem. Behav, vol.50, pp.619-626, 1995.

R. Nashmi, M. E. Dickinson, S. Mckinney, M. Jareb, C. Labarca et al., Assembly of alpha4beta2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons, J. Neurosci, vol.23, pp.11554-11567, 2003.

L. E. O'dell and T. V. Khroyan, Rodent models of nicotine reward: what do they tell us about tobacco abuse in humans? Pharmacol, Biochem. Behav, vol.91, pp.481-488, 2009.

D. C. Perry and K. J. Kellar, 3H]epibatidine labels nicotinic receptors in rat brain: an autoradiographic study, J. Pharmacol. Exp. Ther, vol.275, pp.1030-1034, 1995.

M. R. Picciotto, Common aspects of the action of nicotine and other drugs of abuse, Drug Alcohol Depend, vol.51, pp.165-172, 1998.

M. W. Quick, R. M. Ceballos, M. Kasten, J. M. Mcintosh, and R. A. Lester, Alpha3beta4 subunit-containing nicotinic receptors dominate function in rat medial habenula neurons, Neuropharmacology, vol.38, pp.769-783, 1999.

X. Q. Ren, S. B. Cheng, M. W. Treuil, J. Mukherjee, J. Rao et al., Structural determinants of alpha4beta2 nicotinic acetylcholine receptor trafficking, J. Neurosci, vol.25, pp.6676-6686, 2005.

K. Rezvani, Y. Teng, D. Biasi, and M. , The ubiquitin-proteasome system regulates the stability of neuronal nicotinic acetylcholine receptors, J. Mol. Neurosci, vol.40, pp.177-184, 2010.

S. F. Robinson, M. J. Marks, and A. C. Collins, Inbred mouse strains vary in oral self-selection of nicotine, Psychopharmacology (Berl.), vol.124, pp.332-339, 1996.

J. E. Rose, Multiple brain pathways and receptors underlying tobacco addiction, Biochem. Pharmacol, vol.74, pp.1263-1270, 2007.

N. L. Saccone, J. C. Wang, N. Breslau, E. O. Johnson, D. Hatsukami et al., The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans, Cancer Res, vol.69, pp.6848-6856, 2009.

R. Salas, F. Pieri, D. Biasi, and M. , Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit, J. Neurosci, vol.24, pp.10035-10039, 2004.

R. Salas, R. Sturm, J. Boulter, D. Biasi, and M. , Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice, J. Neurosci, vol.29, pp.3014-3018, 2009.

M. D. Scofield, A. R. Tapper, and P. D. Gardner, A transcriptional regulatory element critical for CHRNB4 promoter activity in vivo, Neuroscience, vol.170, pp.1056-1064, 2010.

A. S. Stü-rzebecher, J. Hu, E. S. Smith, S. Frahm, J. Santos-torres et al., An in vivo tethered toxin approach for the cell-autonomous inactivation of voltage-gated sodium channel currents in nociceptors, J. Physiol, vol.588, pp.1695-1707, 2010.

A. R. Tapper, S. L. Mckinney, R. Nashmi, J. Schwarz, P. Deshpande et al., Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization, Science, vol.306, pp.1029-1032, 2004.

O. D. Taraschenko, J. M. Shulan, I. M. Maisonneuve, and S. D. Glick, , 2007.

, -MC acts in the medial habenula and interpeduncular nucleus to attenuate dopamine sensitization to morphine in the nucleus accumbens, Synapse, vol.61, pp.547-560

T. E. Thorgeirsson, F. Geller, P. Sulem, T. Rafnar, A. Wiste et al., A variant associated with nicotine dependence, lung cancer and peripheral arterial disease, Nature, vol.452, pp.638-642, 2008.

N. Unwin, Refined structure of the nicotinic acetylcholine receptor at 4A resolution, J. Mol. Biol, vol.346, pp.967-989, 2005.

R. B. Weiss, T. B. Baker, D. S. Cannon, A. Von-niederhausern, D. M. Dunn et al., A candidate gene approach identifies the CHRNA5-A3-B4 region as a risk factor for age-dependent nicotine addiction, J. Neurosci, vol.4, pp.3395-3404, 1988.

W. Xu, S. Gelber, A. Orr-urtreger, D. Armstrong, R. A. Lewis et al., Megacystis, mydriasis, and ion channel defect in mice lacking the alpha3 neuronal nicotinic acetylcholine receptor, Proc. Natl. Acad. Sci. USA, vol.96, pp.5746-5751, 1999.

X. Xu, M. M. Scott, and E. S. Deneris, Shared long-range regulatory elements coordinate expression of a gene cluster encoding nicotinic receptor heteromeric subtypes, Mol. Cell. Biol, vol.26, pp.5636-5649, 2006.

K. Yang, J. Hu, L. Lucero, Q. Liu, C. Zheng et al., Distinctive nicotinic acetylcholine receptor functional phenotypes of rat ventral tegmental area dopaminergic neurons, J. Physiol, vol.587, pp.345-361, 2009.

M. Zoli, N. Le-novè-re, J. A. Hill, . Jr, and J. P. Changeux, Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous systems, J. Neurosci, vol.15, pp.1912-1939, 1995.

M. Zoli, C. Lé-na, M. R. Picciotto, and J. P. Changeux, Identification of four classes of brain nicotinic receptors using beta2 mutant mice, J. Neurosci, vol.18, pp.4461-4472, 1998.