S. Abe, K. Kobayashi, A. Oji, T. Sakuma, K. Kazuki et al., Modification of single-nucleotide polymorphism in a fully humanized CYP3A mouse by genome editing technology, Scientific Reports, vol.7, p.15189, 2017.

J. L. Ables, A. Gorlich, B. Antolin-fontes, C. Wang, S. M. Lipford et al., Retrograde inhibition by a specific subset of interpeduncular alpha5 nicotinic neurons regulates nicotine preference, Proc Natl Acad Sci U S A, vol.114, pp.13012-13017, 2017.

S. Ahn, T. Kim, K. Kim, and S. Chung, Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs, Caudal Ganglionic Eminence cells. Methods, vol.101, pp.103-112, 2016.

T. J. Aitman, J. K. Critser, E. Cuppen, A. Dominiczak, X. M. Fernandez-suarez et al., Progress and prospects in rat genetics: a community view, Nature genetics, vol.40, pp.516-522, 2008.

S. Alemany, M. Ribasés, N. Vilor-tejedor, M. Bustamante, C. Sánchez-mora et al., New suggestive genetic loci and biological pathways for attention function in adult attention-deficit/hyperactivity disorder, American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, vol.168, pp.459-470, 2015.

C. I. Amos, X. Wu, P. Broderick, I. P. Gorlov, J. Gu et al., Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1, Nature genetics, vol.40, pp.616-622, 2008.

J. Anthony, C. Lynn, A. Warner, and R. C. Kessler, Controlled Substances, and Inhalants: Basic Findings From the National Comorbidity Survey. Experimental and Clinical Psycho pharmacology, vol.2, pp.244-268, 1994.

B. Antolin-fontes, J. L. Ables, A. Gorlich, and I. Ibanez-tallon, The habenulo-interpeduncular pathway in nicotine aversion and withdrawal, Neuropharmacology, vol.96, pp.213-222, 2015.

M. E. Avale, P. Faure, S. Pons, P. Robledo, T. Deltheil et al., Interplay of beta2* nicotinic receptors and dopamine pathways in the control of spontaneous locomotion, Proc Natl Acad Sci U S A, vol.105, pp.15991-15996, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00408804

L. Azam, U. H. Winzer-serhan, Y. Chen, and F. M. Leslie, Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs within midbrain dopamine neurons, Journal of Comparative Neurology, vol.444, pp.260-274, 2002.

S. Babb, A. Malarcher, G. Schauer, K. Asman, and A. Jamal, Quitting Smoking Among Adults -United States, MMWR Morb Mortal Wkly Rep, vol.65, pp.1457-1464, 2000.

C. G. Baddick and M. J. Marks, An autoradiographic survey of mouse brain nicotinic acetylcholine receptors defined by null mutants, Biochem Pharmacol, vol.82, pp.828-841, 2011.

C. D. Bailey, M. De-biasi, P. J. Fletcher, and E. K. Lambe, The Nicotinic Acetylcholine Receptor, vol.5, 2010.

, Subunit Plays a Key Role in Attention Circuitry and Accuracy, Journal of Neuroscience, vol.30, pp.9241-9252

Y. Baran, M. Subramaniam, A. Biton, T. Tukiainen, E. K. Tsang et al., The landscape of genomic imprinting across diverse adult human tissues, Genome Research, vol.25, pp.927-936, 2015.

E. S. Barrie, K. Hartmann, S. Lee, J. T. Frater, M. Seweryn et al., The CHRNA5/CHRNA3/CHRNB4 Nicotinic Receptor Regulome: Genomic Architecture, Regulatory Variants, and Clinical Associations, Human Mutation, vol.38, pp.112-119, 2017.

S. Batzoglou, L. Pachter, J. P. Mesirov, B. Berger, and E. S. Lander, Human and mouse gene structure: comparative analysis and application to exon prediction, Genome Res, vol.10, pp.950-958, 2000.

F. Beiranvand, C. Zlabinger, A. Orr-urtreger, R. Ristl, S. Huck et al., Nicotinic acetylcholine receptors control acetylcholine and noradrenaline release in the rodent habenulointerpeduncular complex, Br J Pharmacol, vol.171, pp.5209-5224, 2014.

D. W. Belsky, T. E. Moffitt, T. B. Baker, A. K. Biddle, J. P. Evans et al., Polygenic risk and the developmental progression to heavy, persistent smoking and nicotine dependence: evidence from a 4-decade longitudinal study, JAMA Psychiatry, vol.70, pp.534-542, 2013.

W. Berrettini, X. Yuan, F. Tozzi, K. Song, C. Francks et al., Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking, Mol Psychiatry, vol.13, pp.368-373, 2008.

M. Besson, B. Forget, M. Besson, B. Forget, C. Correia et al., Profound alteration in reward processing due to a human polymorphism in CHRNA5: a role in alcohol dependence and feeding behavior, Frontiers in Psychiatry, vol.7, pp.1906-1916, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02888319

M. Besson, S. Guiducci, S. Granon, J. P. Guilloux, B. Guiard et al., Alterations in alpha5* nicotinic acetylcholine receptors result in midbrain-and hippocampus-dependent behavioural and neural impairments, Psychopharmacology (Berl), vol.233, pp.3297-3314, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346030

S. Bian, M. Repic, Z. Guo, A. Kavirayani, T. Burkard et al., Genetically engineered cerebral organoids model brain tumor formation, Nature Methods, vol.15, pp.631-639, 2018.

L. J. Bierut, P. A. Madden, N. Breslau, E. O. Johnson, D. Hatsukami et al., Novel genes identified in a high-density genome wide association study for nicotine dependence, Hum Mol Genet, vol.16, pp.24-35, 2007.

L. J. Bierut, J. A. Stitzel, J. C. Wang, A. L. Hinrichs, R. A. Grucza et al., Variants in Nicotinic Receptors and Risk for Nicotine Dependence, American Journal of Psychiatry, vol.165, pp.1163-1171, 2008.

M. Birge, S. Duffy, J. A. Miler, and P. Hajek, What Proportion of People Who Try One Cigarette Become Daily Smokers? A Meta-Analysis of Representative Surveys, Nicotine Tob Res, vol.20, pp.1427-1433, 2018.

A. J. Bloom, S. M. Hartz, T. B. Baker, L. S. Chen, M. E. Piper et al., Beyond cigarettes per day. A genome-wide association study of the biomarker carbon monoxide, Annals of the American Thoracic Society, vol.11, pp.1003-1010, 2014.

C. Boissart, A. Poulet, P. Georges, H. Darville, E. Julita et al., Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening, Translational Psychiatry, vol.3, pp.294-294, 2013.

J. Boulter, K. Evans, D. Goldman, G. Martin, D. Treco et al., Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alpha-subunit, Nature, vol.319, pp.368-374, 1986.

A. P. Boyle, E. L. Hong, M. Hariharan, Y. Cheng, M. A. Schaub et al., Annotation of functional variation in personal genomes using RegulomeDB, Genome Research, vol.22, pp.1790-1797, 2012.

L. S. Bueno-junior, N. W. Simon, M. A. Wegener, and B. Moghaddam, Repeated Nicotine Strengthens Gamma Oscillations in the Prefrontal Cortex and Improves Visual Attention, Neuropsychopharmacology, vol.42, pp.1590-1598, 2017.

C. J. Bult, J. A. Blake, C. L. Smith, J. A. Kadin, J. E. Richardson et al., Mouse Genome Database (MGD) 2019, Nucleic Acids Res, vol.47, pp.801-806, 2019.

A. B. Cachelin and R. Jaggi, Beta subunits determine the time course of desensitization in rat alpha 3 neuronal nicotinic acetylcholine receptors, Pflugers Arch, vol.419, pp.579-582, 1991.

S. Caille, K. Clemens, L. Stinus, and M. Cador, Modeling nicotine addiction in rats, Methods Mol Biol, vol.829, pp.243-256, 2012.

M. W. Campos, D. Serebrisky, and J. Castaldelli-maia, Smoking and Cognition, Current Drug Abuse Reviews, vol.9, pp.76-79, 2017.

B. Chaarani, K. Kan, S. Mackey, P. A. Spechler, A. Potter et al., Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, vol.4, pp.672-679, 2019.

M. Chaiton, L. Diemert, J. E. Cohen, S. J. Bondy, P. Selby et al., Estimating the number of quit attempts it takes to quit smoking successfully in a longitudinal cohort of smokers, BMJ Open, vol.6, 2016.

J. Changeux, Nicotine addiction and nicotinic receptors: lessons from genetically modified mice, Nature Reviews Neuroscience, vol.11, pp.389-401, 2010.

K. Chatterjee, B. Alzghoul, A. Innabi, and N. Meena, Is vaping a gateway to smoking: a review of the longitudinal studies, Int J Adolesc Med Health, vol.30, 2016.

L. S. Chen, R. J. Hung, T. Baker, A. Horton, R. Culverhouse et al., CHRNA5 risk variant predicts delayed smoking cessation and earlier lung cancer diagnosis--a meta-analysis, J Natl Cancer Inst, vol.107, 2015.

L. S. Chen, N. L. Saccone, R. C. Culverhouse, P. M. Bracci, C. H. Chen et al., Genet Epidemiol, vol.36, pp.340-351, 2012.

M. Civelek and A. J. Lusis, Systems genetics approaches to understand complex traits, Nat Rev Genet, vol.15, pp.34-48, 2014.

S. L. Clark, J. L. Mcclay, D. E. Adkins, K. A. Aberg, G. Kumar et al., , 2016.

, Three Loci Implicated in Large-Scale Genome-Wide Association Study Smoking Meta-Analyses, Nicotine Tob Res, vol.18, pp.626-631

K. J. Clemens, M. R. Castino, J. L. Cornish, A. K. Goodchild, and N. M. Holmes, Behavioral and neural substrates of habit formation in rats intravenously self-administering nicotine, Neuropsychopharmacology, vol.39, pp.2584-2593, 2014.

A. Cohen, G. F. Koob, and O. George, Robust escalation of nicotine intake with extended access to nicotine self-administration and intermittent periods of abstinence, Neuropsychopharmacology, vol.37, pp.2153-2160, 2012.

G. Collo, L. Cavalleri, F. Bono, C. Mora, S. Fedele et al., Ropinirole and Pramipexole Promote Structural Plasticity in Human iPSC-Derived Dopaminergic Neurons via BDNF and mTOR Signaling, Neural Plasticity, pp.1-15, 2018.

M. S. Conlon and M. A. Bewick, Single Nucleotide Polymorphisms in CHRNA5 rs16969968, CHRNA3 rs578776, and LOC123688 rs8034191 Are Associated With Heaviness of Smoking in Women in Northeastern Ontario, Canada. Nicotine & Tobacco Research, vol.13, pp.1076-1083, 2011.

A. Crespi, S. F. Colombo, and C. Gotti, Proteins and chemical chaperones involved in neuronal nicotinic receptor expression and function: an update: Chaperones for nAChRs, British Journal of Pharmacology, vol.175, pp.1869-1879, 2018.

H. S. Crombag, J. M. Bossert, E. Koya, and Y. Shaham, Review. Context-induced relapse to drug seeking: a review, Philos Trans R Soc Lond B Biol Sci, vol.363, pp.3233-3243, 2008.

K. Curtis, H. Viswanath, K. M. Velasquez, D. L. Molfese, M. J. Harding et al., Increased habenular connectivity in opioid users is associated with an alpha5 subunit nicotinic receptor genetic variant, Am J Addict, vol.26, pp.751-759, 2017.

R. David, A. Ciuraszkiewicz, X. Simeone, A. Orr-urtreger, R. L. Papke et al., Biochemical and functional properties of distinct nicotinic acetylcholine receptors in the superior cervical ganglion of mice with targeted deletions of nAChR subunit genes, Eur J Neurosci, vol.31, pp.978-993, 2010.

M. De-biasi and J. A. Dani, Reward, addiction, withdrawal to nicotine, Annu Rev Neurosci, vol.34, pp.105-130, 2011.

C. Deflorio, S. Blanchard, M. Carla-carisì, D. Bohl, and U. Maskos, Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons, The FASEB Journal, vol.31, pp.828-839, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01548019

D. P. Dever, S. G. Scharenberg, J. Camarena, E. J. Kildebeck, J. T. Clark et al., CRISPR/Cas9 Genome Engineering in Engraftable Human Brain-Derived Neural Stem Cells, vol.15, pp.524-535, 2019.

K. Dineley-miller and J. Patrick, Gene transcripts for the nicotinic acetylcholine receptor subunit, beta4, are distributed in multiple areas of the rat central nervous system, Molecular Brain Research, vol.16, pp.339-344, 1992.

P. Dome, J. Lazary, M. P. Kalapos, and Z. Rihmer, Smoking, nicotine and neuropsychiatric disorders, Neurosci Biobehav Rev, vol.34, pp.295-342, 2010.

F. Ducci and D. Goldman, The genetic basis of addictive disorders, Psychiatr Clin North Am, vol.35, pp.495-519, 2012.

B. Ellenbroek and J. Youn, Rodent models in neuroscience research: is it a rat race?, Dis Model Mech, vol.9, pp.1079-1087, 2016.

A. M. Erzurumluoglu, M. Liu, V. E. Jackson, D. R. Barnes, G. Datta et al., , 2019.

J. F. Etter, Gateway effects and electronic cigarettes, Addiction, vol.113, pp.1776-1783, 2018.

D. E. Evans, D. A. Macqueen, K. G. Jentink, J. Y. Park, H. Y. Lin et al., CHRNA5 variants moderate the effect of nicotine deprivation on a neural index of cognitive control, Genes, Brain, and Behavior, vol.13, pp.626-632, 2014.

R. Exley, J. M. Mcintosh, M. J. Marks, U. Maskos, and S. J. Cragg, Striatal ?5 nicotinic receptor subunit regulates dopamine transmission in dorsal striatum, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.32, pp.2352-2356, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01531461

B. Forget, P. Scholze, F. Langa, C. Morel, S. Pons et al., A Human Polymorphism in CHRNA5 Is Linked to Relapse to Nicotine Seeking in Transgenic Rats, Current Biology, vol.28, pp.3244-3253, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02391001

C. D. Fowler, Q. Lu, P. M. Johnson, M. J. Marks, and P. J. Kenny, Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake, Nature, vol.471, pp.597-601, 2011.

S. Frahm, M. A. Slimak, L. Ferrarese, J. Santos-torres, B. Antolin-fontes et al., Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula, Neuron, vol.70, pp.522-535, 2011.

T. R. Franklin, Z. Wang, J. Wang, N. Sciortino, D. Harper et al., Limbic Activation to Cigarette Smoking Cues Independent of Nicotine Withdrawal: A Perfusion fMRI Study, Neuropsychopharmacology, vol.32, pp.2301-2309, 2007.

D. Fürth, T. Vaissière, O. Tzortzi, Y. Xuan, A. Märtin et al., An interactive framework for whole-brain maps at cellular resolution, Nature Neuroscience, vol.21, pp.139-149, 2018.

L. C. Gahring, K. Persiyanov, D. Dunn, R. Weiss, E. L. Meyer et al., Mouse Strain-Specific Nicotinic Acetylcholine Receptor Expression by Inhibitory Interneurons and Astrocytes in the Dorsal Hippocampus, Journal of Comparative Neurology, vol.468, pp.334-346, 2004.

X. Gallego, S. Molas, A. Amador-arjona, M. J. Marks, N. Robles et al., Overexpression of the CHRNA5/A3/B4 genomic cluster in mice increases the sensitivity to nicotine and modifies its reinforcing effects, Amino Acids, vol.43, pp.897-909, 2012.

T. R. Gaunt, H. A. Shihab, G. Hemani, J. L. Min, G. Woodward et al., Systematic identification of genetic influences on methylation across the human life course, Genome Biology, vol.17, pp.61-74, 2016.

J. Gelernter, Genetics of complex traits in psychiatry, Biol Psychiatry, vol.77, pp.36-42, 2015.

N. W. Gilpin, A. M. Whitaker, B. Baynes, A. Y. Abdel, M. T. Weil et al., Nicotine vapor inhalation escalates nicotine self-administration, Addict Biol, vol.19, pp.587-592, 2014.

A. D. Giorgio, R. M. Smith, L. Fazio, E. D'ambrosio, B. Gelao et al., DRD2/CHRNA5 Interaction on Prefrontal Biology and Physiology during Working Memory. PLOS ONE 9, p.95997, 2014.

S. D. Glick, E. M. Sell, S. E. Mccallum, and I. M. Maisonneuve, Brain regions mediating alpha3beta4 nicotinic antagonist effects of 18-MC on nicotine self-administration, Eur J Pharmacol, vol.669, pp.71-75, 2011.

C. Gotti and F. Clementi, Neuronal nicotinic receptors: From structure to pathology, Progress in Neurobiology, pp.363-396, 2004.

C. Gotti, F. Clementi, A. Fornari, A. Gaimarri, S. Guiducci et al., Structural and functional diversity of native brain neuronal nicotinic receptors, Biochem Pharmacol, vol.78, pp.703-711, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00509504

A. L. Goulburn, E. G. Stanley, A. G. Elefanty, and S. A. Anderson, Generating GABAergic cerebral cortical interneurons from mouse and human embryonic stem cells, Stem Cell Research, vol.8, pp.416-426, 2012.

S. R. Grady, M. Moretti, M. Zoli, M. J. Marks, A. Zanardi et al., Rodent habenulo-interpeduncular pathway expresses a large variety of uncommon nAChR subtypes, but only the ??4* and ??3?4* subtypes mediate acetylcholine release, Journal of Neuroscience, vol.29, pp.2272-2282, 2009.

L. Greenbaum and B. Lerer, Differential contribution of genetic variation in multiple brain nicotinic cholinergic receptors to nicotine dependence: Recent progress and emerging open questions, Mol Psychiatry, vol.14, pp.912-945, 2009.

R. A. Grucza, J. C. Wang, J. A. Stitzel, A. L. Hinrichs, S. F. Saccone et al., Biol Psychiatry, vol.64, pp.922-929, 2008.

A. Hahn, M. Breakspear, L. Rischka, W. Wadsak, G. M. Godbersen et al., Reconfiguration of functional brain networks and metabolic cost converge during task performance, vol.9, pp.103-135, 2015.

G. Haller, T. Druley, F. L. Vallania, R. D. Mitra, P. Li et al., Rare missense variants in CHRNB4 are associated with reduced risk of nicotine dependence, Hum Mol Genet, vol.21, pp.647-655, 2012.

G. Haller, M. Kapoor, J. Budde, X. Xuei, H. Edenberg et al., Rare missense variants in CHRNB3 and CHRNA3 are associated with risk of alcohol and cocaine dependence, Hum Mol Genet, vol.23, pp.810-819, 2014.

W. Han, T. Zhang, T. Ni, L. Zhu, D. Liu et al., Relationship of common variants in CHRNA5 with early-onset schizophrenia and executive function, Schizophrenia Research, vol.206, pp.407-412, 2019.

L. Harrington, X. Vinals, A. Herrera-solis, A. Flores, C. Morel et al., Role of beta4* Nicotinic Acetylcholine Receptors in the Habenulo-Interpeduncular Pathway in Nicotine Reinforcement in Mice, Neuropsychopharmacology, vol.41, p.1790, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01542255

K. Hashimoto, Targeting of ?7 Nicotinic Acetylcholine Receptors in the Treatment of Schizophrenia and the Use of Auditory Sensory Gating as a Translational Biomarker, Current Pharmaceutical Design, vol.21, pp.3797-3806, 2015.

M. J. Hawrylycz, E. S. Lein, A. L. Guillozet-bongaarts, E. H. Shen, L. Ng et al., Nature, vol.489, pp.391-399, 2012.

S. Hellwig and K. Domschke, Update on PET imaging biomarkers in the diagnosis of neuropsychiatric disorders, Current Opinion in Neurology, vol.32, pp.539-547, 2019.

S. C. Hernandez, S. Vicini, Y. Xiao, M. I. Davila-garcia, R. P. Yasuda et al., The nicotinic receptor in the rat pineal gland is an alpha3beta4 subtype, Mol Pharmacol, vol.66, pp.978-987, 2004.

L. E. Hong, C. A. Hodgkinson, Y. Yang, H. Sampath, T. J. Ross et al., A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction, Proceedings of the National Academy of Sciences, vol.107, pp.13509-13514, 2010.

Y. W. Hsu, L. Tempest, L. A. Quina, A. D. Wei, H. Zeng et al., Medial habenula output circuit mediated by alpha5 nicotinic receptor-expressing GABAergic neurons in the interpeduncular nucleus, J Neurosci, vol.33, pp.18022-18035, 2013.

R. J. Hung, J. D. Mckay, V. Gaborieau, P. Boffetta, M. Hashibe et al., A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25, vol.452, pp.633-637, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00944415

M. Husson, L. Harrington, L. Tochon, Y. Cho, I. Ibanez-tallon et al., 2020. beta4-Nicotinic Receptors Are Critically Involved in Reward-Related Behaviors and Self-Regulation of Nicotine Reinforcement, J Neurosci, vol.40, pp.3465-3477

M. R. Improgo, M. D. Scofield, A. R. Tapper, and P. D. Gardner, The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: dual role in nicotine addiction and lung cancer, Progress in Neurobiology, vol.92, pp.212-226, 2010.

K. J. Jackson, A. H. Fanous, J. Chen, K. S. Kendler, and X. Chen, Variants in the 15q25 gene cluster are associated with risk for schizophrenia and bipolar disorder, Psychiatric Genetics, vol.23, pp.20-28, 2013.

K. J. Jackson, M. J. Marks, R. E. Vann, X. Chen, T. F. Gamage et al., Role of alpha5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice, J Pharmacol Exp Ther, vol.334, pp.137-146, 2010.

K. J. Jackson, B. R. Martin, J. P. Changeux, and M. I. Damaj, Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs, J Pharmacol Exp Ther, vol.325, pp.302-312, 2008.

K. J. Jackson, S. S. Sanjakdar, P. P. Muldoon, J. M. Mcintosh, and M. I. Damaj, The ?3?4* nicotinic acetylcholine receptor subtype mediates nicotine reward and physical nicotine withdrawal signs independently of the ?5 subunit in the mouse, Neuropharmacology, vol.70, pp.228-235, 2013.

A. C. Janes, J. W. Smoller, S. P. David, B. Frederick, S. Haddad et al., Association between CHRNA5 genetic variation at rs16969968 and brain reactivity to smoking images in nicotine dependent women, Drug Alcohol Depend, vol.120, pp.7-13, 2012.

K. P. Jensen, E. E. Devito, A. I. Herman, G. W. Valentine, J. Gelernter et al., A CHRNA5 Smoking Risk Variant Decreases the Aversive Effects of Nicotine in Humans, Neuropsychopharmacology, vol.40, pp.2813-2821, 2015.

E. G. Jones, The Origins of Cortical Interneurons: Mouse versus Monkey and Human, Cerebral Cortex, vol.19, pp.1953-1956, 2009.

D. Kandel, K. Chen, L. A. Warner, R. C. Kessler, and B. Grant, Prevalence and demographic correlates of symptoms of last year dependence on alcohol, nicotine, marijuana and cocaine in the U, S. population. Drug Alcohol Depend, vol.44, pp.11-29, 1997.

J. D. Kassel, Smoking and attention: a review and reformulation of the stimulus-filter hypothesis, Clinical Psychology Review, vol.17, pp.451-478, 1997.

K. P. Kennedy, K. R. Cullen, C. G. Deyoung, and B. Klimes-dougan, The genetics of early-onset bipolar disorder: A systematic review, Journal of Affective Disorders, vol.184, pp.1-12, 2015.

R. Klink, A. De-kerchove-d'exaerde, M. Zoli, and J. P. Changeux, Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei, J Neurosci, vol.21, pp.1452-1463, 2001.

F. Koukouli, M. Rooy, D. Tziotis, K. A. Sailor, H. C. O'neill et al., Nicotine reverses hypofrontality in animal models of addiction and schizophrenia, Nature Medicine, vol.23, pp.347-354, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01452384

H. R. Kranzler, H. Zhou, R. L. Kember, R. V. Smith, A. C. Justice et al., Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations, Nature Communications, vol.10, pp.1-11, 2019.

A. Krishnaswamy and E. Cooper, An activity-dependent retrograde signal induces the expression of the high-affinity choline transporter in cholinergic neurons, Neuron, vol.61, pp.272-286, 2009.

A. Kuryatov, J. Onksen, and J. Lindstrom, Roles of accessory subunits in alpha4beta2(*) nicotinic receptors, Mol Pharmacol, vol.74, pp.132-143, 2008.

G. Lassi, A. E. Taylor, N. J. Timpson, P. J. Kenny, R. J. Mather et al., The CHRNA5-A3-B4 Gene Cluster and Smoking: From Discovery to Therapeutics, Trends in Neurosciences, vol.39, pp.851-861, 2016.

B. D. Le and J. L. Stein, Mapping causal pathways from genetics to neuropsychiatric disorders using genome-wide imaging genetics: Current status and future directions, Psychiatry and Clinical Neurosciences, vol.73, pp.357-369, 2019.

S. H. Lee, W. Y. Ahn, M. Seweryn, W. Sadee, E. S. Lein et al., Combined genetic influence of the nicotinic receptor gene cluster CHRNA5/A3/B4 on nicotine dependence, vol.19, pp.168-176, 2007.

M. D. Li, R. Cheng, J. Z. Ma, and G. E. Swan, A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins, Addiction, vol.98, pp.23-31, 2003.

L. Lim, D. Mi, A. Llorca, and O. Marín, Development and Functional Diversification of Cortical Interneurons, Neuron, vol.100, pp.294-313, 2018.

J. Z. Liu, F. Tozzi, D. M. Waterworth, S. G. Pillai, P. Muglia et al., Nature Genetics, vol.42, pp.436-440, 2010.

Q. Liu, H. Han, M. Wang, Y. Yao, L. Wen et al., Association and cis-mQTL analysis of variants in CHRNA3-A5, CHRNA7, CHRNB2, and CHRNB4 in relation to nicotine dependence in a Chinese Han population, Translational Psychiatry, vol.8, p.83, 2018.

T. Liu, J. Porter, C. Zhao, H. Zhu, N. Wang et al., Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells, Nature Protocols, vol.20, pp.1670-1679, 2013.

L. Popa, L. Dragos, H. Pantelemon, C. Verisezan-rosu, O. Strilciuc et al., The Role of Quantitative EEG in the Diagnosis of Neuropsychiatric Disorders, Journal of Medicine and Life, vol.13, pp.8-15, 2020.

D. A. Macqueen, B. W. Heckman, M. D. Blank, J. Van-rensburg, K. Park et al., Variation in the ? 5 nicotinic acetylcholine receptor subunit gene predicts cigarette smoking intensity as a function of nicotine content, The Pharmacogenomics Journal, vol.14, pp.70-76, 2014.

I. M. Maisonneuve and S. D. Glick, Anti-addictive actions of an iboga alkaloid congener: a novel mechanism for a novel treatment, Pharmacol Biochem Behav, vol.75, pp.607-618, 2003.

H. D. Mansvelder, K. I. Van-aerde, J. J. Couey, and A. B. Brussaard, Nicotinic modulation of neuronal networks: from receptors to cognition, Psychopharmacology (Berl), vol.184, pp.292-305, 2006.

A. C. Mar, A. E. Horner, S. R. Nilsson, J. Alsio, B. A. Kent et al., The touchscreen operant platform for assessing executive function in rats and mice, Nat Protoc, vol.8, 1985.

A. T. Marees, A. R. Hammerschlag, L. Bastarache, H. De-kluiver, F. Vorspan et al., Exploring the role of low-frequency and rare exonic variants in alcohol and tobacco use, Drug Alcohol Depend, vol.188, pp.94-101, 2018.

M. J. Marks, J. R. Pauly, S. D. Gross, E. S. Deneris, I. Hermans-borgmeyer et al., Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment, J Neurosci, vol.12, pp.2765-2784, 1992.

U. Maskos, The nicotinic receptor alpha5 coding polymorphism rs16969968 as a major target in disease: Functional dissection and remaining challenges, J Neurochem, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02888325

J. L. Mccauley, S. J. Kenealy, E. H. Margulies, N. Schnetz-boutaud, S. G. Gregory et al., SNPs in Multi-species Conserved Sequences (MCS) as useful markers in association studies: a practical approach, Biochem Pharmacol, vol.8, pp.1120-1133, 2007.

N. Mechawar, A. Saghatelyan, R. Grailhe, L. Scoriels, G. Gheusi et al., Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb, Proc Natl Acad Sci U S A, vol.101, pp.9822-9826, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00163446

Y. S. Mineur, A. Abizaid, Y. Rao, R. Salas, R. J. Dileone et al., Nicotine decreases food intake through activation of POMC neurons, Science, vol.332, pp.1330-1332, 2011.

K. Miranda, W. Girard-dias, M. Attias, W. De-souza, I. ;. Ramos et al., Three dimensional reconstruction by electron microscopy in the life sciences: An introduction for cell and tissue biologists, Molecular Reproduction and Development, vol.82, pp.530-547, 2015.

C. Morel, L. Fattore, S. Pons, Y. A. Hay, F. Marti et al., Nicotine consumption is regulated by a human polymorphism in dopamine neurons, Mol Psychiatry, vol.19, pp.930-936, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01541366

B. J. Morley, The embryonic and post-natal expression of the nicotinic receptor ?3-subunit in rat lower brainstem, Molecular Brain Research, vol.48, pp.407-412, 1997.

J. D. Morrow and S. B. Flagel, Neuroscience of resilience and vulnerability for addiction medicine: From genes to behavior, Prog Brain Res, vol.223, pp.3-18, 2016.

G. Morton, N. Nasirova, D. W. Sparks, M. Brodsky, S. Sivakumaran et al., Chrna5-Expressing Neurons in the Interpeduncular Nucleus Mediate Aversion Primed by Prior Stimulation or Nicotine Exposure, J Neurosci, vol.38, pp.6900-6920, 2018.

C. R. Nicholas, J. Chen, Y. Tang, D. G. Southwell, N. Chalmers et al., Functional Maturation of hPSC-Derived Forebrain Interneurons Requires an Extended Timeline and Mimics Human Neural Development, Cell Stem Cell, vol.12, pp.573-586, 2013.

H. C. O'neill, C. R. Wageman, S. E. Sherman, S. R. Grady, M. J. Marks et al., Increased nicotine response in iPSC-derived human neurons carrying the CHRNA5 N398 allele, Scientific Reports, vol.17, pp.250-258, 2014.

M. J. Parker, A. Beck, and C. W. Luetje, Neuronal nicotinic receptor beta2 and beta4 subunits confer large differences in agonist binding affinity, Mol Pharmacol, vol.54, pp.1132-1139, 1998.

C. Peng, Y. Yan, V. J. Kim, S. E. Engle, J. N. Berry et al., Gene editing vectors for studying nicotinic acetylcholine receptors in cholinergic transmission, Eur J Neurosci, vol.50, pp.2224-2238, 2019.

R. Pérez-morales, A. González-zamora, M. F. González-delgado, E. Y. Calleros-rincón, E. H. Olivas-calderón et al., CHRNA3 rs1051730 and CHRNA5 rs16969968 polymorphisms are associated with heavy smoking, lung cancer, and chronic obstructive pulmonary disease in a mexican population, Annals of Human Genetics, vol.82, pp.415-424, 2018.

D. C. Perry, Y. Xiao, H. N. Nguyen, J. L. Musachio, M. I. Dávila-garcí et al., Measuring nicotinic receptors with characteristics of ?4?2, ?3?2 and ?3?4 subtypes in rat tissues by autoradiography, Journal of Neurochemistry, vol.82, pp.468-481, 2002.

S. A. Peters, R. R. Huxley, M. Woodward, R. E. Peterson, K. Kuchenbaecker et al., Do smoking habits differ between women and men in contemporary Western populations? Evidence from half a million people in the UK Biobank study, Genome-wide Association Studies in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and Recommendations, vol.4, pp.589-603, 2014.

N. Petrovsky, B. B. Quednow, U. Ettinger, A. Schmechtig, R. Mossner et al., Sensorimotor gating is associated with CHRNA3 polymorphisms in schizophrenia and healthy volunteers, Neuropsychopharmacology, vol.35, pp.1429-1439, 2010.

M. R. Picciotto, P. J. Kenny, J. Polich, and J. R. Criado, Molecular mechanisms underlying behaviors related to nicotine addiction. Cold Spring Harb Perspect Med 3, a012112, International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, vol.60, pp.172-185, 2006.

R. B. Poorthuis and H. D. Mansvelder, Nicotinic acetylcholine receptors controlling attention: behavior, circuits and sensitivity to disruption by nicotine, Biochem Pharmacol, vol.86, pp.1089-1098, 2013.

J. J. Prochaska and N. L. Benowitz, Current advances in research in treatment and recovery: Nicotine addiction, Sci Adv, vol.5, p.9763, 2019.

E. Proulx, M. Piva, M. K. Tian, C. D. Bailey, and E. K. Lambe, Nicotinic acetylcholine receptors in attention circuitry: the role of layer VI neurons of prefrontal cortex, Cell Mol Life Sci, vol.71, pp.1225-1244, 2014.

M. W. Quick, R. M. Ceballos, M. Kasten, J. M. Mcintosh, and R. A. Lester, Alpha3beta4 subunitcontaining nicotinic receptors dominate function in rat medial habenula neurons, Neuropharmacology, vol.38, pp.769-783, 1999.

N. V. Radonji?, A. E. Ayoub, F. Memi, X. Yu, A. Maroof et al., Diversity of Cortical Interneurons in Primates: The Role of the Dorsal Proliferative Niche, Cell Reports, vol.9, pp.2139-2151, 2014.

J. Ramirez-latorre, C. R. Yu, X. Qu, F. Perin, A. Karlin et al., Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels, Nature, vol.380, pp.347-351, 1996.

S. Rassadi, A. Krishnaswamy, B. Pie, R. Mcconnell, M. H. Jacob et al., A null mutation for the alpha3 nicotinic acetylcholine (ACh) receptor gene abolishes fast synaptic activity in sympathetic ganglia and reveals that ACh output from developing preganglionic terminals is regulated in an activity-dependent retrograde manner, J Neurosci, vol.25, pp.8555-8566, 2005.

A. Rigbi, K. Kanyas, A. Yakir, L. Greenbaum, Y. Pollak et al., Why do young women smoke? V. Role of direct and interactive effects of nicotinic cholinergic receptor gene variation on neurocognitive function, Genes, Brain and Behavior, vol.7, pp.164-172, 2008.

J. D. Robinson, F. Versace, C. Y. Lam, J. A. Minnix, J. M. Engelmann et al., The CHRNA3 rs578776 Variant is Associated with an Intrinsic Reward Sensitivity Deficit in Smokers, Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco, vol.4, pp.1684-1696, 2013.

S. W. Roy, A. Fedorov, and W. Gilbert, Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain, Proc Natl Acad Sci U S A, vol.100, pp.7158-7162, 2003.

S. F. Saccone, A. L. Hinrichs, N. L. Saccone, G. A. Chase, K. Konvicka et al., Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs, Hum Mol Genet, vol.16, pp.36-49, 2007.

R. Salas, K. D. Cook, L. Bassetto, and M. De-biasi, The alpha3 and beta4 nicotinic acetylcholine receptor subunits are necessary for nicotine-induced seizures and hypolocomotion in mice, Neuropharmacology, vol.47, pp.401-407, 2004.

R. Salas, A. Orr-urtreger, R. S. Broide, A. Beaudet, R. Paylor et al., The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo, Mol Pharmacol, vol.63, pp.1059-1066, 2003.

R. Salas, F. Pieri, and M. De-biasi, Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit, J Neurosci, vol.24, pp.10035-10039, 2004.

R. Salas, F. Pieri, B. Fung, J. A. Dani, and M. De-biasi, Altered anxiety-related responses in mutant mice lacking the beta4 subunit of the nicotinic receptor, J Neurosci, vol.23, pp.6255-6263, 2003.

R. Salas, R. Sturm, J. Boulter, and M. De-biasi, Nicotinic receptors in the habenulointerpeduncular system are necessary for nicotine withdrawal in mice, J Neurosci, vol.29, pp.3014-3018, 2009.

G. Scherer and P. N. Lee, Smoking behaviour and compensation: a review of the literature with meta-analysis, Regul Toxicol Pharmacol, vol.70, pp.615-628, 2014.

. Schizophrenia-working-group-of-the-psychiatric, C. Genomics, S. Ripke, B. M. Neale, A. Corvin et al.,

J. Shi, E. Sigurdsson, T. Silagadze, J. M. Silverman, K. Sim et al., Biological insights from 108 schizophreniaassociated genetic loci, Nature, vol.511, pp.421-427, 2014.

L. L. Schmitz, A. M. Gard, and E. B. Ware, Examining sex differences in pleiotropic effects for depression and smoking using polygenic and gene-region aggregation techniques, Am J Med Genet B Neuropsychiatr Genet, vol.180, pp.448-468, 2019.

P. Scholze, G. Koth, A. Orr-urtreger, and S. Huck, Subunit composition of alpha5-containing nicotinic receptors in the rodent habenula, J Neurochem, vol.121, pp.551-560, 2012.

A. B. Schote, C. , A. L. Pabst, K. Meier, J. K. Frings et al., Sex, ADHD symptoms, and CHRNA5 genotype influence reaction time but not response inhibition, J Neurosci Res, vol.97, pp.215-224, 2019.

J. B. Schuch, E. R. Polina, D. L. Rovaris, D. B. Kappel, N. R. Mota et al., Pleiotropic effects of Chr15q25 nicotinic gene cluster and the relationship between smoking, cognition and ADHD, Journal of Psychiatric Research, vol.80, pp.73-78, 2016.

B. M. Sharp and H. Chen, Neurogenetic determinants and mechanisms of addiction to nicotine and smoked tobacco, Eur J Neurosci, vol.50, pp.2164-2179, 2019.

E. B. Sheffield, M. W. Quick, and R. A. Lester, Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons, Neuropharmacology, vol.39, pp.2591-2603, 2000.

R. Sherva, H. R. Kranzler, Y. Yu, M. W. Logue, J. Poling et al., Variation in nicotinic acetylcholine receptor genes is associated with multiple substance dependence phenotypes, Neuropsychopharmacology, vol.35, pp.1921-1931, 2010.

R. Sherva, K. Wilhelmsen, C. S. Pomerleau, S. A. Chasse, J. P. Rice et al., Association of a single nucleotide polymorphism in neuronal acetylcholine receptor subunit alpha 5 (CHRNA5) with smoking status and with 'pleasurable buzz' during early experimentation with smoking, Addiction, vol.103, pp.1544-1552, 2008.

L. E. Shorey-kendrick, M. M. Ford, D. C. Allen, A. Kuryatov, J. Lindstrom et al., Nicotinic receptors in non-human primates: Analysis of genetic and functional conservation with humans, Neuropharmacology, vol.96, pp.263-273, 2015.

M. R. Silva, G. J. Gattás, J. Antonio, I. Firigato, O. A. Curioni et al., Polymorphisms of CHRNA3 and CHRNA5 : Head and neck cancer and cigarette consumption intensity in a Brazilian population, Molecular Genetics & Genomic Medicine, vol.7, pp.448-455, 1009.

M. A. Slimak, J. L. Ables, S. Frahm, B. Antolin-fontes, J. Santos-torres et al., Habenular expression of rare missense variants of the beta4 nicotinic receptor subunit alters nicotine consumption. Front Hum Neurosci 8, 12, Methods, vol.53, pp.411-416, 2011.

J. R. Smith, G. T. Hayman, S. J. Wang, S. J. Laulederkind, M. J. Hoffman et al., The Year of the Rat: The Rat Genome Database at 20: a multi-species knowledgebase and analysis platform, Nucleic Acids Res, vol.48, pp.731-742, 2020.

G. Solda, S. Boi, S. Duga, D. Fornasari, R. Benfante et al., In vivo RNA-RNA duplexes from human alpha3 and alpha5 nicotinic receptor subunit mRNAs, Gene, vol.345, pp.155-164, 2005.

R. Spanagel, Animal models of addiction, Dialogues Clin Neurosci, vol.19, pp.247-258, 2017.

V. L. Stevens, L. J. Bierut, J. T. Talbot, J. C. Wang, J. Sun et al., Nicotinic receptor gene variants influence susceptibility to heavy smoking, Cancer Epidemiol Biomarkers Prev, vol.17, pp.3517-3525, 2008.

A. K. Stoker, B. Olivier, and A. Markou, Role of alpha7-and beta4-containing nicotinic acetylcholine receptors in the affective and somatic aspects of nicotine withdrawal: studies in knockout mice, Behav Genet, vol.42, pp.423-436, 2012.

J. Stout, F. Hozer, A. Coste, F. Mauconduit, N. Djebrani-oussedik et al., Accumulation of Lithium in the Hippocampus of Patients With Bipolar Disorder: A Lithium-7 Magnetic Resonance Imaging Study at 7 Tesla, Nature Neuroscience, vol.22, pp.1357-1370, 2019.

A. Taly, P. J. Corringer, D. Guedin, P. Lestage, and J. P. Changeux, Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system, Nat Rev Drug Discov, vol.8, pp.733-750, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-02542745

L. Tapia, A. Kuryatov, and J. Lindstrom, Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors, Mol Pharmacol, vol.71, pp.769-776, 2007.

T. E. Thorgeirsson, F. Geller, P. Sulem, T. Rafnar, A. Wiste et al., Nature, vol.452, pp.638-642, 2008.

M. K. Tian, C. D. Bailey, M. De-biasi, M. R. Picciotto, and E. K. Lambe, Plasticity of Prefrontal Attention Circuitry: Upregulated Muscarinic Excitability in Response to Decreased Nicotinic Signaling Following Deletion of 5 or 2 Subunits, Tobacco and Genetics Consortium, vol.31, pp.441-447, 2010.

L. Toll, N. T. Zaveri, W. E. Polgar, F. Jiang, T. V. Khroyan et al., AT-1001: A high affinity and selective ?3?4 nicotinic acetylcholine receptor antagonist blocks nicotine self-administration in rats, Neuropsychopharmacology, vol.37, pp.1367-1376, 2012.

L. M. Tuesta, Z. Chen, A. Duncan, C. D. Fowler, M. Ishikawa et al., GLP-1 acts on habenular avoidance circuits to control nicotine intake, Nat Neurosci, vol.20, pp.708-716, 2017.

J. R. Turner and K. J. Kellar, Nicotinic cholinergic receptors in the rat cerebellum: Multiple heteromeric subtypes, Journal of Neuroscience, vol.25, pp.9258-9265, 2005.

T. Vazin, R. S. Ashton, A. Conway, N. A. Rode, S. M. Lee et al., The effect of multivalent Sonic hedgehog on differentiation of human embryonic stem cells into dopaminergic and GABAergic neurons, Biomaterials, vol.35, pp.941-948, 2014.

J. M. Vermeulen, R. E. Wootton, J. L. Treur, H. M. Sallis, H. J. Jones et al., Smoking and the risk for bipolar disorder: evidence from a bidirectional Mendelian randomisation study, The British Journal of Psychiatry, pp.1-7, 2019.

E. Wada, D. Mckinnon, S. Heinemann, J. Patrick, and L. W. Swanson, The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (alpha 5) in the rat central nervous system, Brain Res, vol.526, pp.45-53, 1990.

J. C. Wang, R. Grucza, C. Cruchaga, A. L. Hinrichs, S. Bertelsen et al., Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence, Mol Psychiatry, vol.14, pp.501-510, 2009.

R. B. Weiss, T. B. Baker, D. S. Cannon, A. Von-niederhausern, D. M. Dunn et al., , 2008.

, PLoS Genet, vol.4, 1000125.

G. Winterer, K. Mittelstrass, I. Giegling, C. Lamina, C. Fehr et al., Risk gene variants for nicotine dependence in the CHRNA5-CHRNA3-CHRNB4 cluster are associated with cognitive performance, American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, vol.153, pp.1448-1458, 2010.

U. H. Winzer-serhan and F. M. Leslie, Codistribution of nicotinic acetylcholine receptor subunit ?3 and ?4 mRNAs during rat brain development, Journal of Comparative Neurology, vol.386, pp.540-554, 1997.

J. Wu and R. J. Lukas, Naturally-expressed nicotinic acetylcholine receptor subtypes, Biochem Pharmacol, vol.82, pp.800-807, 2011.

P. Xie, H. R. Kranzler, H. Zhang, D. Oslin, R. F. Anton et al., Childhood adversity increases risk for nicotine dependence and interacts with alpha5 nicotinic acetylcholine receptor genotype specifically in males, Neuropsychopharmacology, vol.37, pp.669-676, 2012.

W. Xu, S. Gelber, A. Orr-urtreger, D. Armstrong, R. A. Lewis et al., Megacystis, mydriasis, and ion channel defect in mice lacking the alpha3 neuronal nicotinic acetylcholine receptor, Proc Natl Acad Sci U S A, vol.96, pp.5746-5751, 1999.

W. Xu, A. Orr-urtreger, F. Nigro, S. Gelber, C. B. Sutcliffe et al., Multiorgan Autonomic Dysfunction in Mice Lacking the ?2 and the ?4 Subunits of Neuronal Nicotinic Acetylcholine Receptors, The Journal of Neuroscience, vol.19, pp.9298-9305, 1999.

P. E. Yoo, S. E. John, S. Farquharson, J. O. Cleary, Y. T. Wong et al., 7T-fMRI: Faster temporal resolution yields optimal BOLD sensitivity for functional network imaging specifically at high spatial resolution, NeuroImage, vol.164, pp.214-229, 2018.

M. Yucel, E. Oldenhof, S. H. Ahmed, D. Belin, J. Billieux et al., Addiction, vol.114, pp.1095-1109, 2019.

H. Zhang, H. R. Kranzler, J. Poling, and J. Gelernter, Variation in the Nicotinic Acetylcholine Receptor Gene Cluster CHRNA5-CHRNA3-CHRNB4 and Its Interaction with Recent Tobacco Use Influence Cognitive Flexibility, Neuropsychopharmacology, vol.35, pp.2211-2224, 2010.

X. Zhang, T. Lan, T. Wang, W. Xue, X. Tong et al., Considering Genetic Heterogeneity in the Association Analysis Finds Genes Associated With Nicotine Dependence, Frontiers in Genetics, vol.10, pp.2327-2335, 2013.

M. Zoli, N. Le-novere, J. A. Hill, and J. P. Changeux, Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous systems, Journal of Neuroscience, vol.15, pp.1912-1939, 1995.

M. Zoli, C. Lena, M. R. Picciotto, and J. P. Changeux, Identification of four classes of brain nicotinic receptors using beta2 mutant mice, J Neurosci, vol.18, pp.4461-4472, 1998.

M. Zoli, F. Pistillo, and C. Gotti, Diversity of native nicotinic receptor subtypes in mammalian brain, Neuropharmacology, vol.96, pp.302-311, 2015.

, All were trans methylation sites. c rs11637890 and rs7178270 were the only ones to be associated with upregulation of CHRNA3

, All were trans methylation sites. c rs11637890 and rs7178270 were the only ones to be associated with upregulation of CHRNA3