L. Guariguata, D. R. Whiting, I. R. Hambleton, J. Beagley, U. Linnenkamp et al., Global estimates of diabetes prevalence for 2013 and projections for 2035, Diabetes Res. Clin. Pract, vol.103, pp.137-149, 2014.

R. A. Defronzo, Pathogenesis of type 2 diabetes mellitus, Med. Clin. N. Am, vol.88, pp.787-835, 2004.

J. R. Sowers and E. D. Frohlich, Insulin and insulin resistance: Impact on blood pressure and cardiovascular disease, Med. Clin. N. Am, vol.88, pp.63-82, 2004.

P. A. Halban, K. S. Polonsky, N. W. Bowden, M. A. Hawkins, C. Ling et al., ?-Cell Failure in Type 2 Diabetes: Postulated Mechanisms and Prospects for Prevention and Treatment, J. Clin. Endocrinol. Metab, vol.99, 1983.

B. Ahrén, Autonomic regulation of islet hormone secretion-Implications for health and disease, Diabetologia, vol.43, pp.393-410, 2000.

J. Lausier, W. C. Diaz, V. Roskens, K. Larock, K. Herzer et al., Vagal control of pancreatic ß-cell proliferation, Am. J. Physiol. Metab, vol.299, pp.786-793, 2010.

Y. Guo, M. Traurig, L. Ma, S. Kobes, I. Harper et al., CHRM3 Gene Variation Is Associated With Decreased Acute Insulin Secretion and Increased Risk for Early-Onset Type 2 Diabetes in Pima Indians, Diabetes, vol.55, pp.3625-3629, 2006.

P. Gilon, Mechanisms and Physiological Significance of the Cholinergic Control of Pancreatic -Cell Function, Endocr. Rev, vol.22, pp.565-604, 2001.

K. Ejiri, H. Taniguchi, K. Ishihara, Y. Hara, and S. Baba, Possible involvement of cholinergic nicotinic receptor in insulin release from isolated rat islets, Diabetes Res. Clin. Pract, vol.8, pp.193-199, 1990.

H. Yoshikawa, E. Hellström-lindahl, and V. Grill, Evidence for functional nicotinic receptors on pancreatic ? cells, Metabolism, vol.54, pp.247-254, 2005.

M. Ohtani, T. Oka, M. Badyuk, Y. Xiao, K. J. Kellar et al., Mouse ?-TC6 Insulinoma Cells: High Expression of Functional ?3?4 Nicotinic Receptors Mediating Membrane Potential, Intracellular Calcium, and Insulin Release, Mol. Pharmacol, vol.69, pp.899-907, 2005.

J. Maddatu, E. Anderson-baucum, and C. Evans-molina, Smoking and the risk of type 2 diabetes, Transl. Res, vol.184, pp.101-107, 2017.

E. Ganic, T. Singh, C. Luan, J. Fadista, J. K. Johansson et al., MafA-Controlled Nicotinic Receptor Expression Is Essential for Insulin Secretion and Is Impaired in Patients with Type 2 Diabetes, Cell Rep, vol.14, 1991.

J. Changeux, The Nicotinic Acetylcholine Receptor: The Founding Father of the Pentameric Ligand-gated Ion Channel Superfamily, J. Biol. Chem, vol.287, pp.40207-40215, 2012.

J. H. Steinbach, Mechanism of Action of the Nicotinic Acetylcholine Receptor, Ciba Found. Symp. Bilharz, pp.53-67, 2007.

P. Séguéla, J. Wadiche, K. Dineley-miller, J. Dani, and J. Patrick, Molecular cloning, functional properties, and distribution of rat brain alpha 7: A nicotinic cation channel highly permeable to calcium, J. Neurosci, vol.13, pp.596-604, 1993.

K. Maouche, M. Polette, T. Jolly, K. Medjber, I. Cloëz-tayarani et al., ?7 Nicotinic Acetylcholine Receptor Regulates Airway Epithelium Differentiation by Controlling Basal Cell Proliferation, Am. J. Pathol, vol.175, pp.1868-1882, 2009.

A. Catassi, D. Servent, L. Paleari, A. Cesario, and P. Russo, Multiple roles of nicotine on cell proliferation and inhibition of apoptosis: Implications on lung carcinogenesis, Mutat. Res. Mutat. Res, vol.659, pp.221-231, 2008.

H. Wang, M. Yu, M. Ochani, C. A. Amella, M. Tanovic et al., Nicotinic acetylcholine receptor ?7 subunit is an essential regulator of inflammation, Nature, vol.421, pp.384-388, 2002.

R. Cancello, A. Zulian, S. Maestrini, M. Mencarelli, A. Della-barba et al., The nicotinic acetylcholine receptor ?7 in subcutaneous mature adipocytes: Downregulation in human obesity and modulation by diet-induced weight loss, Int. J. Obes, vol.36, pp.1552-1557, 2012.

M. B. Marrero, R. Lucas, C. Salet, T. A. Hauser, A. Mazurov et al., An ?7 Nicotinic Acetylcholine Receptor-Selective Agonist Reduces Weight Gain and Metabolic Changes in a Mouse Model of Diabetes, J. Pharmacol. Exp. Ther, vol.332, pp.173-180, 2009.

X. Wang, Z. Yang, B. Xue, and H. Shi, Activation of the cholinergic antiinflammatory pathway ameliorates obesity-induced inflammation and insulin resistance, Endocrinology, vol.152, pp.836-846, 2011.

T. Xu, L. Guo, P. Wang, J. Song, Y. Le et al., Chronic Exposure to Nicotine Enhances Insulin Sensitivity through ?7 Nicotinic Acetylcholine Receptor-STAT3 Pathway, PLoS ONE, vol.7, 2012.

E. Somm, A. Guérardel, K. Maouche, A. Toulotte, C. Veyrat-durebex et al., Concomitant alpha7 and beta2 nicotinic AChR subunit deficiency leads to impaired energy homeostasis and increased physical activity in mice, Mol. Genet. Metab, vol.112, pp.64-72, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01573845

H. Lerat, M. R. Imache, J. Polyte, A. Gaudin, M. Mercey et al., Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice, J. Biol. Chem, vol.292, pp.12860-12873, 2017.

J. Movassat, C. Saulnier, P. Serradas, and B. Portha, Impaired development of pancreatic beta-cell mass is a primary event during the progression to diabetes in the GK rat, Diabetologia, vol.40, pp.916-925, 1997.

F. Figeac, A. Ilias, D. Bailbé, B. Portha, and J. Movassat, Local In Vivo GSK3? Knockdown Promotes Pancreatic ? Cell and Acinar Cell Regeneration in 90% Pancreatectomized Rat, Mol. Ther, vol.20, pp.1944-1952, 2012.

C. Cruciani-guglielmacci, L. Bellini, J. Denom, M. Oshima, N. Fernandez et al., Molecular phenotyping of multiple mouse strains under metabolic challenge uncovers a role for Elovl2 in glucose-induced insulin secretion, Mol. Metab, vol.6, pp.340-351, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02192068

N. Bansal, Prediabetes diagnosis and treatment: A review, World J. Diabetes, vol.6, pp.296-303, 2015.

M. Kergoat, M. Guerre-millo, M. Lauva, and B. Portha, Increased insulin action in rats with mild insulin deficiency induced by neonatal streptozotocin, Am. J. Physiol. Metab, vol.260, pp.561-567, 1991.

P. J. Randle, Regulatory interactions between lipids and carbohydrates: The glucose fatty acid cycle after 35 years, Diabetes Metab. Rev, vol.14, pp.263-283, 1998.

P. Nuutila, V. A. Koivisto, J. Knuuti, U. Ruotsalainen, M. Teräs et al., Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo, J. Clin. Investig, vol.89, pp.1767-1774, 1992.

T. K. Lam, G. Van-de-werve, and A. Giacca, Free fatty acids increase basal hepatic glucose production and induce hepatic insulin resistance at different sites, Am. J. Physiol. Metab, vol.284, pp.281-290, 2003.

H. Stingl, M. Kr??ák, M. Krebs, M. G. Bischof, P. Nowotny et al., Lipid-dependent control of hepatic glycogen stores in healthy humans, Diabetologia, vol.44, pp.48-54, 2001.

G. Perseghin, K. Petersen, and G. I. Shulman, Cellular mechanism of insulin resistance: Potential links with inflammation, Int. J. Obes, vol.27, pp.6-11, 2003.

B. Portha, A. Chavey, and J. Movassat, Early-Life Origins of Type 2 Diabetes: Fetal Programming of the Beta-Cell Mass, Exp. Diabetes Res, pp.1-16, 2011.

C. N. Lumeng and A. R. Saltiel, Inflammatory links between obesity and metabolic disease, J. Clin. Investig, vol.121, pp.2111-2117, 2011.

G. S. Hotamisligil, Inflammation and metabolic disorders, Nature, vol.444, pp.860-867, 2006.

S. Ramanathan, G. Lacraz, Y. C. Donates, M. Mayhue, M. F. Langois et al., Interleukin-15 in the Regulation of Obesity and Fatty Liver Disease, J. Clin. Exp. Hepatol, 2014.

C. S. Nunemaker, H. G. Chung, G. M. Verrilli, K. L. Corbin, A. Upadhye et al., Increased serum CXCL1 and CXCL5 are linked to obesity, hyperglycemia, and impaired islet function, J. Endocrinol, vol.222, pp.267-276, 2014.

B. L. Wajchenberg, ?-Cell Failure in Diabetes and Preservation by Clinical Treatment, Endocr. Rev, vol.28, pp.187-218, 2007.

A. Pick, J. Clark, C. Kubstrup, M. Levisetti, W. Pugh et al., Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat, Diabetes, vol.47, pp.358-364, 1998.

S. C. Woods and D. Porte, Neural control of the endocrine pancreas, Physiol. Rev, vol.54, pp.596-619, 1974.

A. Edvell and P. Lindström, Vagotomy in young obese hyperglycemic mice: Effects on syndrome development and islet proliferation, Am. J. Physiol. Content, vol.274, pp.1034-1039, 1998.

J. Yamamoto, J. Imai, T. Izumi, H. Takahashi, Y. Kawana et al., Neuronal signals regulate obesity induced ?-cell proliferation by FoxM1 dependent mechanism, Nat. Commun, vol.8, 1930.

D. Gupta, A. A. Lacayo, S. M. Greene, J. L. Leahy, and T. L. Jetton, ?-Cell mass restoration by ?7 nicotinic acetylcholine receptor activation, J. Biol. Chem, vol.293, pp.20295-20306, 2018.

K. Fujimoto and K. S. Polonsky, Pdx1 and other factors that regulate pancreatic beta-cell survival, Diabetes Obes. Metab, vol.11, pp.30-37, 2009.

A. Duttaroy, C. L. Zimliki, D. Gautam, Y. Cui, D. Mears et al., Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in m3 muscarinic acetylcholine receptor-deficient mice, Diabetes, vol.53, pp.1714-1720, 2004.

D. Gautam, S. Han, F. F. Hamdan, J. Jeon, B. Li et al., A critical role for ? cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo, Cell Metab, vol.3, pp.449-461, 2006.

J. Devedjian, M. George, A. Casellas, A. Pujol, J. Visa et al., Transgenic mice overexpressing insulin-like growth factor-II in ? cells develop type 2 diabetes, J. Clin. Investig, vol.105, pp.731-740, 2000.

J. Petrik, B. Reusens, E. Arany, C. Remacle, C. Coelho et al., A Low Protein Diet Alters the Balance of Islet Cell Replication and Apoptosis in the Fetal and Neonatal Rat and Is Associated with a Reduced Pancreatic Expression of Insulin-Like Growth Factor-II1, Endocrinology, vol.140, pp.4861-4873, 1999.

C. Alvarez, Contrasted Impact of Maternal Rat Food Restriction on the Fetal Endocrine Pancreas, Endocrinology, vol.138, pp.2267-2273, 1997.

E. Fernandez, M. A. Martín, S. Fajardo, F. Escrivá, and C. Alvarez, Increased IRS-2 content and activation of IGF-I pathway contribute to enhance ?-cell mass in fetuses from undernourished pregnant rats, Am. J. Physiol. Metab, vol.292, pp.187-195, 2007.

M. A. Martín, P. Serradas, S. Ramos, E. Fernandez, L. Goya et al., Protein-Caloric Food Restriction Affects Insulin-Like Growth Factor System in Fetal Wistar Rat, Endocrinology, vol.146, pp.1364-1371, 2005.

F. Thorel, V. Nepote, I. Avril, K. Kohno, R. Desgraz et al., Conversion of adult pancreatic ?-cells to ?-cells after extreme ?-cell loss, Nature, vol.464, pp.1149-1154, 2010.

Y. Yang, F. Thorel, D. F. Boyer, P. L. Herrera, and C. V. Wright, Context-specific ?-to-?-cell reprogramming by forced Pdx1 expression, Genes Dev, vol.25, pp.1680-1685, 2011.

G. C. Weir and S. Bonner-weir, Five of stages of evolving ?-cell dysfunction during progression to diabetes, Diabetes, vol.53, pp.16-21, 2004.

A. J. King, The use of animal models in diabetes research, Br. J. Pharmacol, vol.166, pp.877-894, 2012.

S. Bonner-weir, D. F. Trent, R. N. Honey, and G. C. Weir, Responses of neonatal rat islets to streptozotocin: Limited B-cell regeneration and hyperglycemia, Diabetes, vol.30, pp.64-69, 1981.

J. L. Leahy, H. E. Cooper, and G. C. Weir, Impaired Insulin Secretion Associated With Near Normoglycemia: Study in Normal Rats With 96-h In Vivo Glucose Infusions, Diabetes, vol.36, pp.459-464, 1987.

M. C. Laury, F. Takao, D. Bailbé, L. Penicaud, B. Portha et al., Differential Effects of Prolonged Hyperglycemia on in Vivo and in Vitro Insulin Secretion in Rats, Endocrinology, vol.128, pp.2526-2533, 1991.

M. Chen and D. Porte, The Effect of Rate and Dose of Glucose Infusion on the Acute Insulin Response in Man, J. Clin. Endocrinol. Metab, vol.42, pp.1168-1175, 1976.

D. Thiebaud, E. Jacot, R. A. Defronzo, E. Maeder, E. Jequier et al., The Effect of Graded Doses of Insulin on Total Glucose Uptake, Glucose Oxidation, and Glucose Storage in Man, Diabetes, vol.31, pp.957-963, 1982.

S. Lillioja, D. M. Mott, M. Spraul, R. Ferraro, J. E. Foley et al., Insulin Resistance and Insulin Secretory Dysfunction as Precursors of Non-Insulin-Dependent Diabetes Mellitus: Prospective Studies of Pima Indians, N. Engl. J. Med, vol.329, 1988.

R. Liu, T. Kurose, and S. Matsukura, Oral nicotine administration decreases tumor necrosis factor-alpha expression in fat tissues in obese rats, Metabolism, vol.50, pp.79-85, 2001.

G. Hotamisligil, N. Shargill, and B. Spiegelman, Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance, Science, vol.259, pp.87-91, 1993.

K. T. Uysal, S. M. Wiesbrock, and G. Hotamisligil, Functional Analysis of Tumor Necrosis Factor (TNF) Receptors in TNF-?-Mediated Insulin Resistance in Genetic Obesity, Endocrinology, vol.139, pp.4832-4838, 1998.

M. W. Schwartz, S. C. Woods, D. Porte, R. J. Seeley, and D. G. Baskin, Central nervous system control of food intake, Nature, vol.404, pp.661-671, 2000.

K. L. Mcfadden, M. Cornier, and J. R. Tregellas, The role of alpha-7 nicotinic receptors in food intake behaviors, Front. Psychol, vol.5, 2014.

Y. Jo, D. Talmage, and L. W. Role, Nicotinic receptor-mediated effects on appetite and food intake, J. Neurobiol, vol.53, pp.618-632, 2002.

A. Souza, C. M. Souza, C. L. Amaral, S. F. Lemes, L. F. Santucci et al., Short-Term High-Fat Diet Consumption Reduces Hypothalamic Expression of the Nicotinic Acetylcholine Receptor ?7 Subunit (?7nAChR) and Affects the Anti-inflammatory Response in a Mouse Model of Sepsis, Front. Immunol, vol.10, 2019.

B. Riley, M. Williamson, D. Collier, H. Wilkie, and A. Makoff, A 3-Mb Map of a Large Segmental Duplication Overlapping the ?7-Nicotinic Acetylcholine Receptor Gene (CHRNA7) at Human 15q13-q14, Genomics, vol.79, pp.197-209, 2002.

D. Lucas-cerrillo, A. M. Maldifassi, M. C. Arnalich, F. Renart, J. Atienza et al., Andrés-Mateos, E.; Montiel, C. Function of Partially Duplicated Human ?7 Nicotinic Receptor Subunit CHRFAM7A Gene, J. Biol. Chem, vol.286, pp.594-606, 2010.

A. L. Brody, M. A. Mandelkern, E. D. London, R. E. Olmstead, J. Farahi et al., Cigarette Smoking Saturates Brain ?4?2 Nicotinic Acetylcholine Receptors, Arch. Gen. Psychiatry, vol.63, pp.907-915, 2006.

P. Corringer, S. Bertrand, S. Bohler, S. J. Edelstein, J. Changeux et al., Critical Elements Determining Diversity in Agonist Binding and Desensitization of Neuronal Nicotinic Acetylcholine Receptors, J. Neurosci, vol.18, pp.648-657, 1998.
URL : https://hal.archives-ouvertes.fr/pasteur-01718328

F. Olale, V. Gerzanich, A. Kuryatov, F. Wang, and J. Lindstrom, Chronic nicotine exposure differentially affects the function of human ?3, ?4, and ?7 neuronal nicotinic receptor subtypes, J. Pharmacol. Exp. Ther, vol.283, pp.675-683, 1997.

R. Giniatullin, A. Nistri, and J. L. Yakel, Desensitization of nicotinic ACh receptors: Shaping cholinergic signaling, Trends Neurosci, vol.28, pp.371-378, 2005.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI