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Abstract

Nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central nervous system and modulate
neuronal function in most mammalian brain structures. The contribution of defined nAChR subunits to a specific behavior is
thus difficult to assess. Mice deleted for ß2-containing nAChRs (ß22/2) have been shown to be hyperactive in an open-field
paradigm, without determining the origin of this hyperactivity. We here develop a quantitative description of mouse
behavior in the open field based upon first order Markov and variable length Markov chain analysis focusing on the time-
organized sequence that behaviors are composed of. This description reveals that this hyperactivity is the consequence of
the absence of specific inactive states or ‘‘stops’’. These stops are associated with a scanning of the environment in wild-
type mice (WT), and they affect the way that animals organize their sequence of behaviors when compared with stops
without scanning. They characterize a specific ‘‘decision moment’’ that is reduced in ß22/2 mutant mice, suggesting an
important role of ß2-nAChRs in the strategy used by animals to explore an environment and collect information in order to
organize their behavior. This integrated analysis of the displacement of an animal in a simple environment offers new
insights, specifically into the contribution of nAChRs to higher brain functions and more generally into the principles that
organize sequences of behaviors in animals.
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¤ Permanent address: LPTMC, Université Pierre et Marie Curie, Paris, France

Introduction

nAChRs are well-characterized transmembrane allosteric

oligomers composed of five identical (homopentamers) or different

(heteropentamers) subunits [1]. Nine different subunits are widely

expressed in the mammalian brain, modulating neurotransmitter

release, neuronal excitability and activity dependent plasticity in

most, if not all, mammalian brain structures [2,3]. The elementary

mechanisms of nAChRs functions are investigated in great details,

yet important issues relevant for the role of nAChRs at the higher

level, have received less attention. The need to fill this gap is

reinforced by nAChR participation in a diverse array of

neuropathologies, including Alzheimer’s disease, Parkinson’s

disease, schizophrenia, epilepsy and Attention-deficit hyperactivity

disorder. The complex nature of all these disorders underlines the

nicotinic influences over neuronal circuits involved in attention,

motivation and cognition [2,3].

The issue then becomes how to tackle this problem in mouse

models that allow pharmacological and genetic manipulations, but

for which ‘‘psychological’’ processes must be inferred from

observable behaviors. Mice deleted for ß2-subunit containing

nAChR (ß22/2) have been the first nicotinic receptor mutant to

be characterized, and found to exhibit more rigid behavior and

less behavioral flexibility than wild-type (WT) animals [4]. Overall,

these experiments suggest that ß22/2 mice reduce the time

allocated to explore a novel environment [4,5]. Lentiviral

reexpression techniques indicate that this phenotype is linked to

the expression of ß2*-nAChRs in the ventral tegmental area [6,7]

and in the Substantia Nigra [8].

ß22/2 mice were shown to be hyperactive in an open-field

paradigm, with a reduced movement at low speed, and

consequently an increased movement at high speed. Hyperactivity

in an open field is often used as a general and non-specific term

characterizing experimental conditions where animals show either

an increased amount of displacement and related locomotor

behaviors, or changes in the frequency of specific motor acts [9].

Increased locomotor activity in an open field can reflect different

processing and alterations in the organization of behavior [9]. A

complete description of hyperactivity then requires to study

duration and temporal patterning (i.e. the sequence) of behavioral

acts. In this paper, we address the problem of tracing, by analyzing

temporal organization of movement, mouse cognitive and/or

decision making behavior that can account for mouse hyperactiv-

ity in the open-field.

Open-field behaviors have been used to study forced exploration

of a new environment. It has been shown that it involves both

exploratory and stress/fear components [10–13]. Furthermore,

kinematic features based on instantaneous speed and location have

been used to demonstrate that rat and mouse trajectories are far

from random [14,15], and that animals can stop more frequently in
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specific locations of the field that structure their trajectory [16,17].

Here, we focus on the analysis of the behavioral sequence, namely

the time-organized sequence of patterns that composes the behavior.

Considering a sequence of acts, a question would be whether

information contained in the structure of this sequence and the

presence of specific associations between acts reflects decision-

making behavior and can be used to assess alterations of this process.

We developed further the method already successfully applied

to detect modifications of locomotor behavior caused by mutations

in ß22/2 mice [4,6], or in goldfish [18]. The principle of the

method is to decompose animal trajectories into a combination of

discrete units extracted by applying a threshold to continuous

variables. We show that the use of a variable-length Markov model

[19] to analyze the sequence of symbols allows to unravel

significant alterations in the way ß2 mutant mice organize their

behavior, and use ‘‘stops’’ to explore their environment.

Results

Hyperactive Behaviors in ß22/2 Mice Reflects a
Decrease in the Duration of Inactive States

Both WT and ß22/2 mice were active in the open-field. They

exhibited movements along the wall, sequences of trajectories in

the middle of the field (Figure 1A), and alternation between

locomotor progression and periods of slow movements. This

allowed us to describe locomotor activity in terms of a sequence of

four states {PI, PA, CI, CA} (Figure 1B and 1C).

ß22/2 mice have been shown to be hyperactive in the open-

field (Granon et al 2003, Avale et al, 2008), with a distance

traveled during 30 min being 1.25 times longer in KO compared

to WT mice (Figure 2A, D= 34.57 m). This hyperactivity was

reflected in the time spent in an inactive or active state with a

decreased time in the inactive state in mutant mice (Figure 2B).

The relation between the distance traveled and the duration of the

different states were however not different in the two strains. For

both strains, the distance traveled during active or inactive states

was different, but both exhibited a linear relationship with the

duration of a given event (m= 0.113 and 0.117 in active phase for

wt and ß22/2 mice, and m= 0.02 and 0.023 in inactive phase).

These relationships tended to break down for long events, but

were not different in WT (Figure 1C, left) and in ß22/2 mice

(Figure 1C, right). The distance traveled was then roughly

reflected in the time spent in inactive or active states. These

results suggest that higher locomotor activity in ß22/2 mice is

not due to a modification of the velocity distribution (either in the

active or inactive phase), but rather to a significant change in the

organization of the behavior.

Figure 1. Principle of decomposition of behavior into subunits.
(A) Mouse in an open field (1 meter diameter), and two-dimensional
trajectory of 30 minutes duration. Position of the animal is here
digitized at 25 frames per second. (B) Transformation of continuous
variables, velocity and position, into binary symbols. A velocity
threshold was set to differentiate inactivity (I - White) and activity (A -
Black) periods. Sample of trajectories with two enlarged periods
corresponding to an inactivity period and to a velocity decrease
following a change in direction (marked by an arrow in the velocity
graph) and not identified as an inactivity period. Furthermore, the arena
was divided into two concentric zones, P (periphery, shaded) and C
(center), the radius of the latter being equal to 0.65. (C) Symbolic
sequence analysis: Combining symbols leads to the definition of four
states PI | PA | CI | CA. The trajectory is then represented by a sequence
of symbols (marked by steps) and associated residence times (t).
doi:10.1371/journal.pcbi.1000229.g001

Author Summary

Understanding mechanisms underlying complex behaviors
and the abnormalities that accompany most neuropathol-
ogies is a current challenge in biomedical research. A
number of approaches is primarily based on the identifi-
cation of genes and their associated molecular pathways
implicated in complex motor or cognitive pathologies.
However, optimal use of the large body of genetic,
molecular, electro-physiological, and imaging data is
hampered by the practical and theoretical limitations of
currently available behavioral analysis methods. Complex
behaviors consist of a finite number of actions combined
in a variety of spatial and temporal patterns. In this paper
we develop a sequential analysis of mouse displacement in
an open-field paradigm and demonstrate that a descrip-
tion based on a Markov model can be used to describe
quantitatively patterns of behaviors and to detect changes
in the way that animals organize their displacement,
especially in mice lacking nicotinic acetylcholine receptor
subunits. This paper would be of broad interest not only to
those concerned with this particular mice model but also
generally to those interested in modeling complex
behavior traits in mice.

Symbolic Sequence Analysis of Mouse Behavior
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First-Order Markov Description of the Animal Trajectory
Is Modified in ß22/2 Mice

A change in the time spent in inactive states does not give any

insight into the modification of the temporal structure of

behaviors. Analysis of transition frequencies and conditional

probabilities between different states of the animal were then

carried out (Figure 3A1). Using only four states {PI, PA, CI, CA}

did not allow to build a first-order Markov description of the

sequence of states. Indeed, when checking for all possible

combinations of states X, Y, Z whether P(X|YZ) = P(X|Y) was

satisfied, revealed that the probability of states X after Y = PA did

not depend only on the present state PA, but also on the previous

one Z (Figure 3A2). In order to obtain a first order Markov

dynamics, PA symbols had to be differentiated into peripheral

movement that follows central movement (CA), and peripheral

movement that follows inactivity in the periphery (PI). They will

be designated by the symbols PAc and PAp, respectively. Using

the five symbols {PAc, PAp, PI, CA, CI} allowed to describe open-

field activity by a first-order process (Figure 3A3). This implies

that, with such a state description, the animal movement depends

only on the preceding state, suggesting a very local organization of

decision-making. The same description could be applied to ß22/

2 mice. However, in mutants, the percentage of transitions from

periphery to center (PA R CA) was enhanced, while the ‘‘stops in

the center’’ transitions (CA R CI) were reduced (Figure 3B).

Stationarity has been tested by comparing transition probabil-

ities obtained during the first and the second 15 minutes of the

experiment. We observed (i) a slight modification of (PI R PA)

probability of transition (it decreases from 97.7% to 95.5%, and

from 98.0% to 96.0% in WT and ß22/2 respectively), and (ii) an

increase of (CA R CI) transition with time (from 22.3% to 32.2

and from 13.9% to 25.3 in WT and ß22/2 mice respectively).

This last modification indicates that animals have a higher

tendency to stop at the center in the second part of the experiment.

This increase is similar in WT and in ß22/2 mice.

Distributions of residence times were also modified in ß22/2

mice (Figure 3C). Comparison of the mean of residence times in

individual using the Wilcoxon test indicated that PI , PAc and PAp

residence times were significantly modified in ß22/2 mice. PI

average duration was reduced 13% (D mean = 0.58 sec,

p = 0.028), while PAp and PAc average duration were increased

15.2 and 35.3% (D mean = 0.72, p = 0.0017 and 1.66 sec p = 1.7e-

6), respectively. Mean of CI or CA states were not statistically

modified, despite an apparent difference in the distribution of CI

(not shown).

In the state sequence, CA is preceded either by PAp, PAc or CI.

In WT, there was no significant difference between time

distributions of CA, depending on the preceding state (Wilcoxon

test). In contrast, CA resident time was increased after a CI when

compared with PI preceding a PAp or a PAc (mean = 3.09 against

2.7 and 2.8 sec, Wilcoxon test, p,0.001 in both cases). Similar

dependencies on preceding state were observed for PI state

duration. Mean duration varied significantly (mean = 4.01, 5.16

and 4.11 sec, Wilcoxon test, p,0.001 in pair comparison) after

CI, PAc or PAp, respectively (mean = 4.01, 5.16 and 4.11 sec,

Wilcoxon test, p,0.001 in all pair comparisons). Similar

properties were observed in ß22/2 mice (mean = 3.08, 4.32

and 4.08 sec, Wilcoxon test, p,0.001 in all pair comparisons).

Elements Explaining Hyperactivity
Deletion of the ß2-subunit gene affected both the residence time

distribution and the transition matrix. To identify more specifically

the locus of the behavioral sequence where the mutation effect

takes place, we used a modeling strategy (see Methods).

We first checked the validity of the simulation (see also Text S1

and Figure S1 and Figure S2) and that the numbers of occurrences

of each of the five states in 30 min experiment agreed well in both

WT and ß22/2 mice with numbers obtained with simulated data

when the respective matrix of transition and residence times were

used. Accordingly, the total traveled distance being almost linearly

(Figure 2C) related to the total time spent in each of the five states,

it was also well-reproduced using simulation (Figure 4A). We also

tested the impact of non-stationarity and resident time sequence

dependency (see also Text S1 and Figure S1) on the simulation.

To further dissect the respective contribution of the transition

matrix and of the residence time distributions, we modeled data

based on: (i) transition matrix of WT and residence time

distribution of WT (labeled WT/WT), (ii) transition matrix of

ß22/2 and residence time distribution of WT (ß2/WT), (iii)

transition matrix of WT and residence time distribution of ß2

(WT/ß2), and (iv) transition matrix of ß22/2 and residence time

of ß22/2 (ß2/ß2), and we compared the time spent in PI and in

PAc (Figure 4B) for the various model configurations. Convolving

matrix and residence time distribution demonstrated that none of

them fully explained modifications of the time spent in a given

state and consequently the ‘‘hyperactivity profile’’. Transition

probabilities and residence time distribution explained individually

no more than 56% of the total difference observed between WT

and ß22/2, while their sum effect explained 95 and 92% of the

total mean difference observed between WT and ß22/2. In

Figure 2. Relation between duration of state and traveled
distance. (A) Boxplot of the total traveled distance and (B) time spent
in inactive state during a 30 min session in the open-field respectively
for wild-type (WT, n = 32) and mutant mice (ß22/2, n = 33). (C) Relation
between the times spent in a given state (PA and CA in red, PI and CI in
black) and the distance traveled during this time. Best linear fits were
indicated for active and inactive states with the respective slope (m).
Number of stars indicates the statistical level of significance (- p.0.05, *
p,0.05, ** p,0.01, *** p,0.001).
doi:10.1371/journal.pcbi.1000229.g002

Symbolic Sequence Analysis of Mouse Behavior
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terms of quantification this suggested that both matrices and

distributions of residence time should be used.

A final question was whether a single modification of a WT

sequence property could reproduce most of the ß22/2

phenotype. The observed behavioral changes between WT and

ß22/2 are open to a variety of interpretations. One of them is

that ß22/2 specifically reduce some stops. The main advantage

of such hypothesis is that modification of only one element

(decreased number of stop) accounts for matrix and residence time

difference between WT and ß22/2 mice. A simple simulation

(see Methods, ‘‘stop reduction’’ model) revealed that removing

30% of stops in WT sequences reproduced well the number of

occurrences of each of the five states (Figure 5A), matrices

(Figure 5B), and residence time distributions (Figure 5C). More

precisely, PI was not changed, which means that the model does

not explain the decrease observed in ß22/2 mice. However, Pap

and Pac increased to a level compatible with resident time

observed in ß22/2 mice (D mean = 0.27 sec, Wilcoxon test,

p = 0.09 and D mean = 0.43 sec, Wilcoxon test, p = 0.49 for Pap

and Pac respectively). Such modeling identified the ‘‘stop’’ as an

element that could explain differences between WT and ß22/.

We then focused our analysis on this particular moment.

Ethological Analysis of Inactivity
Finite-state systems deriving from the discrete analysis of a

continuous movement necessarily coarsen the fine structure of that

movement. What has been, so far, identified as inactivity in this

paper, is a mode of motion close to a complete stop of the animal.

During this period of inactivity the mouse can however make a

variety of movements. The animal can progress forward slowly

(with a small but constant speed), freeze, perform a number of

action patterns (i.e., grooming, rearing, scratching, etc), or

orienting movements (head scanning, sniffing, etc). In order to

be able to differentiate some of these patterns, we have

simultaneously recorded the position of the animal and digitized

video images (25 frames/second). These images have been used as

the input for fine off-line movement analysis (Figure 6A). Visual

analysis of video images allowed us to distinguish periods with

rearing and head scanning movements, from periods with only

reorientation or no change in orientation. Five classes of inactivity

periods were have been distinguished. They corresponded to

rearing, scanning, grooming, border rearing and sniffing (see

Methods). Stops at the periphery of the open-field were differently

distributed in WT (n = 14) and b22/2 (n = 11) mice (Figure 6B).

The numbers of rearing, wall rearing, and sniffing were not

Figure 3. First-order matrix of transition. (A) Flow diagram: (A1) Transition matrix between the four states can be used to build a flow diagram,
where conditional probabilities of transition between states are indicated by number (percentage) and by the thickness of the connecting arrows.
Transitions from PI to CA and CI to PA are almost never observed (p,1/1000) and then are not represented in the flow diagram. (A2) Conditional
probability of transition from PA to CA depends on previous state. Comparison of P(X|YZ) and P(X|Y) for X = PA, Y = CA (red points) and Z = PA (left) or
CI (right) indicates no significant difference (NS). For X = CA, Y = PA (black points) and Z = PA (left) or PI (right) a significant difference appear. (A3)
First-order Markov description of the sequence with a distinction between Pap and PAc (see text). (B) First-order Markov description of ß22/2
sequence. Red connecting arrows indicate probabilities of transition that are statistically modified when compared with WT. (C) Comparison of the
distributions of time spent within PI, PAp and PAc states respectively (from left to right). Inset: Boxplot of the mean duration of the indicated state.
Number of stars indicates statistical level of significance (- p.0.05, * p,0.05, ** p,0.01, *** p,0.001).
doi:10.1371/journal.pcbi.1000229.g003

Symbolic Sequence Analysis of Mouse Behavior
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affected and were similar in both strains (D= 3.18, Wilcoxon test,

p = 0.32; D= 0.4, Wilcoxon test, p = 0.80; D= 6.18, Wilcoxon test,

p = 0.12, respectively)). Grooming patterns were increased

(D= 4.1, Wilcoxon test, p = 0.003), whereas scanning was

decreased (D= 6.9, Wilcoxon test, p = 0.0008) in mutant mice.

Scanning behavior being related to the ‘‘exploration’’ of, or the

information update about, the environment, differences observed

in scanning could therefore have a consequence on the sequence

of behaviors.

Alternative Scanning Choices in ß22/2 Mice
New information obtained by the splitting of PI into five

subtypes identified by the dominant behavioral acts, i.e. rearing,

scanning, etc., can challenge the description of the sequences in

two ways. First, the knowledge of the animal acts during a PI state

can modify the probabilities of consecutive states without

modifying the first-order Markov description. Second, new

information about PI can modify not only the conditional

probabilities but also the order of the Markov description, thus

requiring a more complex description of the process.

The conditional probability of transition from PA to CA was

modified by the knowledge of the behavioral act performed during

stops preceding PA (Figure 6B, left (top), ANOVA, F(6,91) = 13.4,

p = 8e-11). More specifically, P(CA|PA) = P(CA|PI-PA), when no

further indication is given on PI, but the probability of transition

was greatly enhanced when the animal performed scanning. That

is, P(CA|PA),P(CA|PIsc-PA) if PIsc was a scanning behavior

(D= 0.36, test p = 1.5 e-08). These results showed that after

scanning an animal tended to engage more frequently in a

transition to the center of the arena than after a stop paired with a

different activity. Probability to stop at the center of the arena was

however not modified by the activity of mice during a PI

(Figure 6B, left (bottom), ANOVA, F(7,104) = 0.91, p = 0.49). In

ß22/2 mice, the modification of probability after scanning

disappeared, that is, the first order model was not modified by

knowledge of the behavioral act occurring during a PI (Figure 6B,

right).

Providing new information about the PI state modified the

Markov order of the description. We therefore switched to

Variable Length Markov Chain modeling (see Methods).

Structural Description of the Decision Tree
If we consider two main populations of stops, i.e. scanning and

no-scanning, a tree representation of the influence of the past

behavior, i.e ‘‘the context’’, on a given decision can be built. For

this purpose, the sequence of symbols was fitted using a Variable

Length Markov Chain model (VLMC, see Methods). Animal

trajectories were described using six symbols CI, CA, PAp, PAc,

PInsc and PIsc, the two last states coding for stop at the periphery

without or with scanning, respectively. Sequences from different

animals were concatenated for VLMC analysis.

The WT mice context tree (Figure 7A, left) showed seven

contexts. Five of them were first order (from top to bottom, CI,

CA, Pac, PInsc and PIsc, Figure 7A), indicating that the next

symbol (X) depends uniquely on the present state. More

interestingly, two contexts with second order also appeared. The

first corresponded to the previous demonstration that after

‘‘scanning’’ an animal tended to engage more frequently in a

transition to the center of the arena. The second indicated that, in

contrast, when mice did not perform scanning, they preferentially

made a stop in the periphery. This is schematized (Figure 7A,

right) by a ‘‘PI choice point’’, where the movements that follow

depend on what activity the mouse had performed during the

previous PI.

The context tree of b22/2 mice was made of eight contexts,

four of them (CI, Pap, PInSC, PIsc) being of first order. The

architecture of the tree was clearly modified when compared to

WT. Strikingly, dependence between movements during PI and

‘‘transition to center’’ completely disappeared. In contrast, the tree

highlighted different chains in the ß22/2 sequence of behavior,

with chains of second or third order that organized movements

and relations between PAc and CA (Figure 7B).

Discussion

In this paper we have investigated the processes underlying

ß22/2 mouse hyperactivity in an open field. These mice exhibit

an increase in the total distance traveled in the open field by about

40% when compared to WT. Consistent with this hyperactive

phenotype, ß22/2 mice spent more time in fast, and less time in

slow, movements. To analyze mouse trajectories we developed a

specific approach based on a dissection of mouse behavior in the

Figure 4. Simulation of the sequence. (A) Comparison between the
total time spent in PI, CI, PAp, CA and PAc states (from left to right)
during a 30 min session in the open-field, for WT (black circle) and ß22/
2 (red circle) and with the simulation obtained from WT first-order
transition matrix and residence time distributions (black triangles) and
with the simulation obtained from ß22/2 first-order transition matrix
and residence time distributions (red triangles). Note that distributions
of experimental and simulated data fit perfectly meaning that the
simulations reproduce the dynamics as regards the average time spent
in each state. (B) Simulated time spent in PI (left) and PAc (right)
obtained by combining transition matrices and distributions of state
durations (see text). WT/WT, ß2/WT, WT/ß2 and ß2/ß2 indicate that
sequences are simulated using WT or ß22/2 matrices of transition
(before /) and WT or ß22/2 state duration distributions (after /). (e.g.
WT/ß2 indicates simulation with WT matrix of transition and ß22/2
residence time distribution). ‘‘Matrix’’ and ‘‘Time’’ indicate that the
discrepancy originates from the effect of changing the transition matrix
and the residence time distribution, respectively.
doi:10.1371/journal.pcbi.1000229.g004

Symbolic Sequence Analysis of Mouse Behavior
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open field as a sequence of motor activities organized in patterns.

We have shown evidence for two main modifications of the

behavior in ß22/2 mice: (i) quantitatively, mutant mice show a

reduced number of stops and modification of specific transition

probabilities, and (ii) structurally, the organization of the sequence

of behavior was different between strains.

Streams of complex acts or movements exhibit some regularity

that is the basis of the subdivision of behaviors into units, or

species-specific movements. In rodents, a variety of complex

sequences of action have been identified [20]. In our analysis we

focused on two classifications, active versus inactive, and central

versus peripheral movement. Although simple, this classification

captures two essential and ethologically meaningful properties of

the displacement. The first is the alternation between progressions

and stops, observed in a number of locomotor behaviors, and

associated with prey search, vigilance or energy saving [21–23].

The second concerns the spatial distribution of movement.

Traveling close to the wall is an important feature of the mice,

and it has been suggested that the wall confers security while the

center is anxiogenic. However, exploratory behaviors also drive

the mouse to explore all the open space. A more precise definition

of the different movements can be performed [15,24], but our

coarse-grained decomposition allowed us to focus on sequence

properties, and to obtain sufficient stationary data in 30 min

experiments, for a robust statistical description of simple

spontaneous decision making (engage in the center of the arena,

stop…).

Analysis of behavior in terms of sequences and Markov

processes has been already applied to different species [25].

Markov analysis assumes that the underlying process that

generates a sequence is homogeneous in time all along the

sequence. The time range over which an event influences the

future ones is supposed to be constant (i.e independent of the event

and the sequence preceding it). For this reason, fixed length

Markov chain analysis is a poor detector of sequence rules that

operate only after a particular portion of the sequence. By

contrast, VLMC allows identification of particular sequences or

contexts, such as those identified after scanning an environment.

Figure 5. Transformation of WT into ß22/2 profile. (A) Comparison between the number of PI, CI, PAP, CA and PAc states (from left to right)
simulated using WT first-order transition matrix and residence time distributions (black circles) and after a transformation consisting in removing a
fixed percentage of inactivity (red circles - see Method section and text for the principle of transformation). Note that distributions of experimental
and simulated data fit perfectly (see Figure 4A for comparison). (B) First-order Markov description of transformed WT sequence of behaviors. The
matrix is similar to those obtained in ß2 KO mice (see Figure 3B). (C) Comparison of the distributions of the time spent within PI, PAp and PAc states
respectively (from left to right) for WT (Black, experimental data), simulation (Red) and ß2 (Blue, experimental data). Inset: Boxplot of the mean
duration of the indicated state. Number of stars indicates the statistical level of significance (Wilcoxon test, - p.0.05, * p,0.05, ** p,0.01, ***
p,0.001).
doi:10.1371/journal.pcbi.1000229.g005
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Modification of this homogeneity in sequences is often seen as an

indicator of higher organization such as ‘‘hierarchical’’ or

‘‘grammatical’’ properties [26,27] or reflects specific ‘decisions’

[26]. The methodology applied in this paper is not intended to be

a blind modeling but rather a way of testing hypotheses, giving or

not significance to ‘a priori’ choices and categories. It offers the

possibility of including ethological knowledge and previously

established categories. It would then also be relevant and efficient

also in more naturalistic and complex settings. The VLMC

framework can be generalized so as to investigate whether the

grouping of categories in classes is relevant. It thus proves to be

useful to improve the parsimony of the description [28].

Hyperactivity in an open field can take different forms,

including faster locomotion, longer periods of travel, fewer pauses,

shorter pauses, etc. The question is then whether the reduction of

the number of stops is sufficient to explain the hyperactive profile.

Our experiments demonstrate that locomotion is not faster in

ß22/2 mice, and that the difference lies in the patterns and

organization of behaviors. Furthermore, a simulation approach

suggests that hyperactivity cannot be explained only by changes in

the matrix, or only by changes in the duration of the various states,

but by their joint effect. Hyperactivity would then emerge from

alterations of many different underlying processes. However, we

here propose that in ß22/2 mice hyperactivity is mainly due to

the ‘‘lack of stops’’. Most characteristics of the sequences of ß22/

2 mice can be explained by the fact that these mice do not

observe certain ‘‘stops’’ and that after a stop they organize their

behavior differently. The significance of such a modification and

the underlying changes it reflects is, however, not trivial.

Open-field behavior, also called exploratory behavior or

locomotor behavior in a novel environment has been initially

used as an indicator of anxiety/emotionality [10,11]. It is also used

Figure 6. Ethological analysis of inactivity state. (A) Ethogram quantifying activity of the mice during the inactivity state. Comparison of the
percentage of rearing, scanning, grooming, wall rearing and sniffing in PI behaviors (see Methods) during a 30 min session in the open-field, in WT
(empty circles) and in ß22/2 mice (filled black circles). Number of stars indicates the statistical level of significance (- p.0.05, * p,0.05, ** p,0.01,
*** p,0.001). (B) Modification of the probability of the next state depending on activity during a PI. (Left) Modification of P(PA|CA) (indicated by first
left point and dashed lines) knowing preceding state i.e Undifferentiated PI, Rearing, Scanning, Grooming, Wall rearing, Sniffing (from left to right), for
WT (n = 14, above, white circle) and ß22/2 mice (n = 11, black circle, below). Note that probability of CA is only modified when the mouse performs a
scanning (***, p,0.001). (Right) Same presentation for P(CI|CA). Note that this probability is not modified by previous states P(CI|CA) = P(CI|PA-
CA) = P(CI|PI-PA-CA), nor by activity performed during a PI (Rearing, Scanning, Grooming, Wall rearing, Sniffing, (from left to right)).
doi:10.1371/journal.pcbi.1000229.g006
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to study exploration and how animal react to novelty, an approach

with known limitations [10,13], the most important difficulty being

that the various open-field measurements do not represent a single

dimension of behavior (i.e, emotionality or exploration). This

limitation reinforces the interest of using sequence analysis, which

does not make any assumptions about any underlying process, but

focuses on the organization of behavior (see also [29]). Most

important features of an animal’s displacement organization can

be summarized as follows (Figure 8): At the periphery, after a

‘‘stop’’, the probability that WT mice engage movement in the

center of the arena is 36%. This probability is (i) increased by

‘‘scanning’’ (up to 61%) and (ii) decreased by a recent excursion to

the center (down to 24%). In ß22/2 mice this probability is

different in baseline (48%), the increase caused by scanning

disappears and the decrease by recent incursion is similar. These

results point to information gathering as a key element underlying

differences between WT and ß2 in the organization of sequence of

behavior in an open field.

The ability to adapt to an unfamiliar or uncertain environment

is fundamental, and an essential point in adaptation would be that

animals actively look for a modification in the environment.

Displacement of an animal in a novel environment is character-

ized by intermittent locomotion, scanning, and pauses that can be

used to gather information about environment but also to reduce

unwanted detection by an organism’s predators [22]. Organiza-

tion of locomotor behavior in an open environment is compatible

with optimization theory insofar as it minimizes risk while

maximizing gain, i.e. collect information about environment

[30]. Fear and anxiety tend to reduce center movement, while

exploratory motivation tends to increase these movements [24].

Accordingly, increased probability of center engagement after

scanning may be viewed as caused by a reduction of anxiety

(Figure 8). Yet, WT and ß22/2 mice have similar levels of

anxiety [4,31], furthermore the parallel evolution of CA R CI

probability of transition suggest that reduction of anxiety with time

is similar in both strain. The observation that the structure of the

displacement is modified in ß22/2 mice and that this

modification targets ‘‘scanning’’ as a key feature in the

organization of behavior suggests instead a modification of

information gathering and of the risk/gain optimization. The

notion that exploratory behaviors in novel environments may

serve to optimize safety and that this behavior is modified in ß22/

Figure 7. Architecture of sequences using Variable Length Markov chain formalism. Sequences are described using 6 states CI, PAp, CA,
Pac, defined as previously, and PInsc and PIsc that correspond to PI without or with scanning. Context tree is drawn in landscape mode with the root
(X) placed on the left and past dependencies on the right. Probability distribution over the next symbols appears after each context in red
(percentages). For example for WT, (0,0,80,0,16,4) indicates that P(X|CI) = 0; 0; 80; 0; 16 and 4% for X = CI , PAp, CA, PAr, Pinsc and PIsc respectively.
Each horizontal line indicates a step in the past. {} indicates a choice between different symbols (A) Fitted context tree (Left) for concatenated
sequence of n = 14 WT animals. and schematic representation (Right) of the ‘‘choice point’’, to enter or not in the center after a PI (B) Fitted context
tree (Left) for concatenated sequence of n = 11 ß22/2 animals and schematic representation of chaining (Right).
doi:10.1371/journal.pcbi.1000229.g007
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2 mice also parallels previous observations suggesting that WT

mice react to novelty by increasing exploratory activity, whereas

ß22/2 mice do not adapt their behavior to a change in the

environment [4].

It has been proposed that the alteration of behavioral adaptation in

ß22/2 mice, coupled with unimpaired memory and anxiety, may

model cognitive impairment observed in human disorders [4] such as

attention-deficit hyperactivity disorder (ADHD) [32], or even in

autism [5]. This proposition relies upon the idea that behavioral

flexibility is controlled by an adequate hierarchization of motivations,

a process known to mobilize prefrontal and cingulate cortex. ADHD

symptoms such as inattention lack of inhibitory control, and

hyperactivity and prefrontal involvement indeed resemble ß22/2

behavioral deficits, and fit well with nAChR localization and

function. Yet, the possible contribution of prefrontal cortex and

higher-level top-down processes in open-field behaviors is at this stage

not clear. More complex environments and tasks, together with

relevant methods of analyses, are needed to explore this problem.

Further experiments are also needed to clearly identify the brain loci

and the nicotinic receptor subunits that are involved in the

modification of the behavioral patterns observed in ß22/2 mice.

This fine-tuned analysis of the way wild-type and mutant animals

organize their spontaneous activity may ultimately help to understand

the contribution of nAChRs to higher brain functions in humans, and

the abnormalities that accompany many neuro-pathologies.

Methods

Data Acquisition
Exploratory activity was recorded in a 1-m diameter circular

open-field. Experiments were performed out of the sight of the

experimenter and a video camera, connected to a Videotrack

system (View-point, Lyon, France), recorded the trajectory of the

mouse for 30 minutes. To characterize stopping behavior

ethologically, home-made softwares (Labview, National instru-

ment) were used to acquire film with a higher resolution.

Symbolic Representation of the Animal Trajectory in an
Open-Field

Initially introduced in a purely mathematical context, symbolic

dynamics has also been developed as an efficient tool for data

analysis [33]. It provides a framework to investigate generic

features of a dynamical system from the knowledge of experimen-

tal trajectories, in particular when only short series are available,

when individual variability is important, or when only a few

features within the recording are relevant. The core idea is to

encode continuous-valued trajectories into behaviorally relevant

symbol sequences associated with a finite partition of the state

space. Velocity and position of the mice were used to define a

partition in four states (or symbols), by combining two binary ones

(see below):

1. An organism’s locomotor behavior consists of an alternation

between progression and stopping. These alternations have

been shown to be ethologically meaningful [14,21]. In order to

capture this property, we partitioned instantaneous velocity

values by a threshold into two states A and I corresponding

respectively to active priods and inactive or stopping periods

(see Figure 1B).

2. Mice in a circular arena travel in both the center and along the

perimeter of the open-field. Traveling close to the wall is an

important feature of the mice behavior, and it has been

suggested that the wall confers security while the center is

anxiogenic. However, exploratory behaviors also drive the

mouse to explore all the open space. Spatial distribution of

mouse position is then expected to be non homogeneous. To

account for the spatial organization of the open-field behavior,

the arena is then divided into two regions, a central zone C

(Centre) and an annulus P (periphery).

When combined, these symbols give four codewords or states

{PA, PI, CA, CI} that correspond to Activity or Inactivity in the

Periphery or in the Center of the arena. Animal trajectories in the

open-field are then represented by a sequence of codewords

(Figure 1C). The choice of a specific threshold value to partition

symbols and the range of validity of these values have been

discussed and analyzed in a previous paper (see Supporting

Information [6]).

Symbol Definition: Activity/Inactivity
The 2-D paths were smoothed using triangular filter. The

instantaneous velocity can be then meaningfully computed from

these smoothed data, simply implementing its definition (first time-

Figure 8. Summarizing context dependent modification of probabilities. Schematic representation of the modulation of the probability to
engage a movement in the center of the arena after a stop at the periphery for WT mice (black) and ß22/2 mice (red). Baseline probability (filled
circles and dashed lines) is increased (upward arrow) or decreased (downward arrow) by scanning or recent center excursion respectively. Range
between the two baselines (dashed horizontal line) marked baseline difference between WT and ß22/2. Fear and stress (downward left array) are
supposed to decrease center excursion while exploration increases (up-ward left array) it.
doi:10.1371/journal.pcbi.1000229.g008
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derivative of the position).

V tð Þ
?

����
����~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx=dtð Þ2z dy=dtð Þ2

h ir

Instantaneous velocity range was partitioned in two sub-ranges

delineated by the threshold h1. A second threshold h2 has to be

involved in order to faithfully assess activity, according to the

following rule:

If V tð Þ
?

����
����wh1 and As such that V sð Þ

?
����

����wh2 and V tð Þ
?

����
����wh1

on s,t½ � ifð svtÞ or t,s½ � if twsð Þ, then Qv tð Þ~ A:

allowing to encode the continuous trajectory into a binary

sequence wv(t). In other words, it means that crossing the low

threshold h1 can be considered as the starting point of a significant

active phase if and only if the velocity reaches the high threshold

h2. This high threshold determines qualitatively the active type of

the period whereas the low threshold determines quantitatively its

duration. This dual criterion avoids spurious alternation of active

and inactive phases of arbitrary small duration. Indeed, since the

acceleration of the mouse is bounded above by some value amax,

the duration of an active phase is at least (h2-h1)/amax hence the

choice of the thresholds implicitly fixed a lowest bound on the time

scales. In fact, a lowest bound on the time scale was also prescribed

explicitly: an additional temporal smoothing achieving a stronger

masking of fast velocity fluctuations is performed by fixing a

minimal duration above or below the low threshold to record it as

an actual crossing.

The two-threshold criterion masks the presence of weak peaks

in the velocity that do not overwhelm significantly h1 (even if they

last long) while the explicit constraint on duration masks the

narrow peaks (fast fluctuations) even if they reach high velocity

values. The combination of these two criteria moreover ensures

that the resulting binary sequence is not very sensitive to the

precise value of h1 (this feature has also been checked directly).

Symbol Definition: Spatial Location, Center/Periphery
The area of the arena was divided in two regions, with a central

zone C (Center) with Rc,1 and an annulus P (periphery). Then,

depending on the continuous radial position R(t) = (x2+y2 )1/2,

defined in such a way that it ranges from 0 to 1 depending on

whether the mouse was close to the border of the arena (R = 1) or

at its center (R = 0), the trajectory of the mouse is transformed into

binary sequence wp(t) by:

If R tð ÞwRc then Qp tð Þ~P

else Qp tð Þ~C

In this study Rc = 0.65.

Ethological Classification
In order to be able to differentiate patterns of inactivity, video of

the animal displacement was recorded (25 frames/second) and

used to detect the position of the animal. To classify the stops

without bias, only parts of the movie considered as PI in the

behavioral sequence were watched without looking either at the

duration of the stops, or at the following sequence. We used five

classes of behavior for this classification, rearing, grooming, border

rearing, sniffing and scanning [20]. Such an ethological classifi-

cation has been chosen for its clarity as regarded the aims of the

different behaviors. Grooming is defined by a well-characterized

sequence beginning with movements of paw cleaning and

proceeding through face washing and body cleaning. Rearing

and border rearing were easy to distinguish, the animal raises upon

its back paw. Difference in between rearing and border rearing is

whether front paw touch the border of the open-field or not.

Sniffing is defined by an activity in which the mouse sniffs the

ground, this behavior is usually used to identify object or food or to

make spatial landmark. Scanning contains any information

gathering about the environment, beginning with rearing but the

animal then engages large head movement that can be

accompanied by sniffing.

Matrix of Transition and Flow Diagram
Henceforth, we shall call ‘‘symbol’’ each of the 4 codewords PA,

PI, CA, CI since the binary symbols will never be considered in

isolation in what follows.

One way to analyze a sequence consists in analyzing the

probability of transition from one state to another. From the initial

time series written with an alphabet of x symbol, a x*x matrix

T = (tij) can be calculated, where tij is the number of times a given

symbol i is followed by another symbol j in the sequence. T is

called a transition frequency matrix. A conditional transition

matrix can be obtained by dividing each row of the transition

frequency matrix by its sum. Conditional probabilities for each

state are then estimated by unbiased estimator p(A|B) = n(BA)/

n(B) where (n(BA) designates the number of 2 symbol sub-

sequences where B is followed by A. Transition frequency matrices

and conditional transition matrices are a concise way of expressing

the statistical relationship between consecutive states. They give

preliminary clues to the organization of the sequence of states.

This is generally summarized in a flow diagram, giving a simple

graphical representation of these matrices. Nodes in the diagram

represent states, while arrows of variable thickness represent the

frequencies with which the different transitions occur. This

representation provides a suitable overview of the organization

of the sequence of behaviors (see Figure 3).

Markov Chain
The matrix of transition describes the statistics of transitions from

one state to the other but it does not provide any information about

the dynamic nature of the relationship between successive states.

Obtaining information about the dynamics in short and long terms

from the sole knowledge of the transition matrix is possible only if the

dynamics is Markovian: A process is a first-order Markov chain if the

transition probability from state A to the next state B depends only on

the present state A and not on the previous ones. A first-order Markov

model is then a mathematical model fully prescribed by the transition

matrix that describes, in probabilistic terms, the dynamic behavior of

the system, namely the probability of transitions over any duration

between any two states. In such a model, the present state contains all

the information that could influence the choice of the next state, that

is captured in the transition matrix. A classical way to demonstrate

that a process is Markovian is to show that the sequence cannot be

described by a zero order process, i.e. that P(B|A)? P(B) and that

P(C|B) = P(C|AB), but see [25] for a more detailed review of all these

methods.

The residence times, defined as the time spent in a given state,

were studied separately. We described the dynamics of transition

between states using an alternate renewal process. That is the

sequence is described by the convolution of a Markov chain

describing the transitions between the states associating a unit time
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step to each transition, with the above residence-time distributions,

describing the actual duration of each step. Thus, there is no

repetition of states in the sequence and the transition matrix has

vanishing diagonal elements

Modeling Strategy
The most interesting part of the Markov formalism is that the

knowledge about the transition probability, i.e. the elementary

properties of the system, is sufficient to describe the whole dynamics

of the system, either in the short or long term. In practice, this means

that as soon as a first-order Markov process has been demonstrated,

modifications induced by drugs, genetic mutation or other

manipulation of the system can be localized in the transition

probabilities and/or in the time distribution of state duration

(provided the investigated perturbation does not affect the first-order

nature of the dynamics) and the same modeling strategy can be used.

Modeling procedure is as follows. We used (i) the conditional

probabilities from a given state to specify the next one, and (ii) the

residence time distributions to determine durations of the successive

states. This whole procedure is reiterated until the total duration

reaches half an hour of experiment. These synthetic data can then

be compared with those obtained experimentally. In a second time,

specific modification of transition probabilities or residence time

distributions are used to access impact of such a modification.

A specific model, consisting in ‘‘stop reduction’’ has been

particularly used. In this model, sequences of symbols are

generated using WT matrices and distribution. In a second step

a fixed percentage of stops (35% of both PI and CI) are removed in

such a way that PA-PI-PA becomes PA-PA, that is a unique PA

event but with a longer duration (and similarly for CA-CI-CA).

The total length of the sequences is adjusted in a way that it

represents a half-an-hour experiment.

Variable Length Markov Chain Analysis
When the dynamics is not accounted for by a first-order Markov

chain, but displays larger dependence on the past states, ‘‘variable

length Markov chains’’ (VLMC) provide an efficient modeling

[19]. In this class of models, dynamics is still prescribed by the

expression of conditional probabilities of the future states. But

now, each history from t = 2‘ up to time t is truncated into finite

sequence from t-s to t, with s$0, having actually an influence onto

the states at time t+1. For all B, P(B at t+1 | past up to t) = P(B at

t+1 | C(past, t)). The length of the truncated sequence C (past, t),

called a context, depends on the history instead of being uniformly

equal to the length of the longest one. The gain in reducing the

dimension of the parameter space is obvious when the dynamic

memory is heterogeneous (context-dependent).

A VLMC is thus characterized by: (i) a set of finite-length

context, and (ii) a family of transition probabilities associated to

each context. The context defines the finite portion of the past that

is relevant to predict the next symbol (whatever it is). Given a

context, its associated transition probabilities define the distribu-

tion of occurrence of the next symbol.

VLMC analyses were performed on concatenated chains

obtained from different animals of the same group. The R-

package VLMC was used to fit data. Fittings were performed in

two steps. First a large Markov chain is generated containing the

context states of the time series. In our analysis only nodes that

appear n = 5 times per animals (that is 70 for 14 WT and 55 for 11

b22/2) were taken into account to generate the initial tree. The

obtained results are almost insensitive to the value of this

parameter n. In the second step, many states of the Markov

chains were collapsed by pruning the corresponding context tree.

The pruning requires definition of a cutoff value. A large cutoff

yields a smaller estimated context tree. In our analysis cutoff value

corresponding to 1% was used in order to extract strong and

significant contexts.

Statistical Analysis
All data were analyzed using R, a language and environment for

statistical computing. Data are plotted as mean695% confidence

intervals. Boxplot is also used when information about distribution

is important (see Figure 2A and 2B, for example). Boxplot

summarizes data using the smallest observation, lower quartile

(base of rectangle), median (line in rectangle), upper quartile

(summit of rectangle), and largest observation. Data points

considered outliers are marked by isolated points (circle).

Total number (n) of observations in each group and statistics

used are indicated in figure captions. Classically comparisons

between two means are performed using two-sample t.test. When

there is doubt about the normality of the data distribution, non-

parametric Wilcoxon rank-sum test is preferred. For variable

Markov chain model fitting, VLMC package is used.

Supporting Information

Figure S1 Comparison of simulations using Markov, semi-

Markov and non-stationnary models (see Text S1) (A,B) Simulation

of the time spent in PI, CI, PAc, CA and PAp states (from left to

right) using different models. No clear cuts were observed when

comparing (A) Markov (circle) and semi-Markov models (triangle)

and (B) Markov (circle) and non-stationary Markov models (triangle)

(C,D) Simulated time spent in PI (left) and PAc (right) obtained by

combining transition matrices and distributions of state durations.

WT/WT, ß2/WT, WT/ß2 and ß2/ß2 indicate that sequences are

simulated using WT or ß22/2 matrices of transition (before /) and

WT or ß22/2 state duration distributions (after /). (e.g., WT/ß2

indicates simulation with WT matrix of transition and ß22/2

residence time distribution). "Matrix" and "Time" indicate that the

discrepancy originates from the effect of changing the transition

matrix and the residence time distribution, respectively. (C)

Comparison between Markov (circle) and semi-Markov models

(triangle). (D) Comparison between Markov (circle) and non-

stationary Markov models (triangle).

Found at: doi:10.1371/journal.pcbi.1000229.s001 (1.27 MB

DOC)

Figure S2 Simulation of the sequence. (A) Comparison between

the number of PI, CI, PAP, CA and PAc states (from left to right) in

WT (black circle), ß22/2 (red circles), simulation obtained from WT

first-order transition matrix and residence time distributions (black

triangle) and simulation obtained from ß22/2 first-order transition

matrix and residence time distributions (red triangles). Note that

distributions of experimental and simulated data fit perfectly. (B)

Typical recurrence plot of an experimental sequence (left) and a

simulated sequence, in WT (B1) and in ß22/2 mice (B2).

Found at: doi:10.1371/journal.pcbi.1000229.s002 (7.35 MB

DOC)

Text S1 Supplementary material file and legends for Figure S1

and Figure S2

Found at: doi:10.1371/journal.pcbi.1000229.s003 (0.04 MB

DOC)
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