E. C. Arakel and B. Schwappach, Formation of COPI-coated vesicles at a glance, J. Cell Sci, vol.131, 2018.

S. Boulisfane-el-khalifi, S. Viel, A. Lahoche, M. Frémond, J. Lopez et al., COPA syndrome as a cause of lupus nephritis, Kidney Int. Rep, vol.4, pp.1187-1189, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02519584

F. Brandizzi and C. Barlowe, Organization of the ER-Golgi interface for membrane traffic control, Nat. Rev. Mol. Cell Biol, vol.14, pp.382-392, 2013.

C. Briand, M. Frémond, D. Bessis, A. Carbasse, G. I. Rice et al.,

, Ann. Rheum. Dis, vol.78, pp.431-433

D. L. Burdette, K. M. Monroe, K. Sotelo-troha, J. S. Iwig, B. Eckert et al., STING is a direct innate immune sensor of cyclic di-GMP, Nature, vol.478, pp.515-518, 2011.

S. Cerboni, N. Jeremiah, M. Gentili, U. Gehrmann, C. Conrad et al., Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes, J. Exp. Med, vol.214, pp.1769-1785, 2017.

S. L. Clarke, L. Robertson, G. I. Rice, L. Seabra, T. N. Hilliard et al., Type 1 interferonopathy presenting as juvenile idiopathic arthritis with interstitial lung disease: report of a new phenotype, Pediatr. Rheumatol. Online J, vol.18, p.37, 2020.

Y. J. Crow, B. E. Hayward, R. Parmar, P. Robins, A. Leitch et al., Mutations in the gene encoding the 39-59 DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus, Nat. Genet, vol.38, pp.917-920, 2006.

Y. J. Crow, A. Leitch, B. E. Hayward, A. Garner, R. Parmar et al., Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection, Nat. Genet, vol.38, pp.910-916, 2006.

A. A. De-jesus, Y. Hou, S. Brooks, L. Malle, A. Biancotto et al., Distinct interferon signatures and cytokine patterns define additional systemic autoinflammatory diseases, J. Clin. Invest, vol.130, pp.1669-1682, 2020.

A. Dhir, S. Dhir, L. S. Borowski, L. Jimenez, M. Teitell et al., Mitochondrial double-stranded RNA triggers antiviral signalling in humans, Nature, vol.560, pp.238-242, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01962442

N. Dobbs, N. Burnaevskiy, D. Chen, V. K. Gonugunta, N. M. Alto et al., STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease, Cell Host Microbe, vol.18, pp.157-168, 2015.

S. O. Dodonova, P. Aderhold, J. Kopp, I. Ganeva, S. Röhling et al., , 2017.

S. L. Ergun, D. Fernandez, T. M. Weiss, and L. Li, STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition, Cell, vol.178, pp.290-301, 2019.

M. Frémond, M. P. Rodero, N. Jeremiah, A. Belot, E. Jeziorski et al., Efficacy of the Janus kinase 1/2 inhibitor ruxolitinib in the treatment of vasculopathy associated with TMEM173-activating mutations in 3 children, J. Allergy Clin. Immunol, vol.138, pp.1752-1755, 2016.

M. Frémond, C. Uggenti, L. Van-eyck, I. Melki, V. Bondet et al., Brief Report: Blockade of TANK-Binding Kinase 1/IKK? Inhibits Mutant Stimulator of Interferon Genes (STING)-Mediated Inflammatory Responses in Human Peripheral Blood Mononuclear Cells, Arthritis Rheumatol, vol.69, pp.1495-1501, 2017.

M. Frémond, M. Legendre, M. Fayon, A. Clement, E. Filhol-blin et al., Use of ruxolitinib in COPA syndrome manifesting as life-threatening alveolar haemorrhage, Thorax, vol.75, pp.92-95, 2020.

M. Gentili, X. Lahaye, F. Nadalin, G. P. Nader, E. Lombardi et al., The N-Terminal Domain of cGAS Determines Preferential Association with Centromeric DNA and Innate Immune Activation in the Nucleus, Cell Rep, vol.26, pp.2377-2393, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02104986

V. K. Gonugunta, T. Sakai, V. Pokatayev, K. Yang, J. Wu et al., Trafficking-Mediated STING Degradation Requires Sorting to Acidified Endolysosomes and Can Be Targeted to Enhance Antitumor Response, Cell Rep, vol.21, pp.3234-3242, 2017.

R. Guerois, J. E. Nielsen, and L. Serrano, Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations, J. Mol. Biol, vol.320, issue.02, pp.442-446, 2002.

X. Gui, H. Yang, T. Li, X. Tan, P. Shi et al., Autophagy induction via STING trafficking is a primordial function of the cGAS pathway, Nature, vol.567, pp.262-266, 2019.

A. Härtlova, S. F. Erttmann, F. A. Raffi, A. M. Schmalz, U. Resch et al., DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity, Immunity, vol.42, pp.332-343, 2015.

G. Hartmann, Nucleic Acid Immunity, Adv. Immunol, vol.133, pp.121-169, 2017.

J. Hertzog, R. E. Rigby, S. Roll, C. Cursi, L. Chauveau et al., 2020. Varicella-Zoster Virus ORF9 Is an Antagonist of the DNA Sensor cGAS, 2020.

B. O. Jensson, S. Hansdottir, G. A. Arnadottir, G. Sulem, R. P. Kristjansson et al., COPA syndrome in an Icelandic family caused by a recurrent missense mutation in COPA, BMC Med. Genet, vol.18, p.129, 2017.

N. Jeremiah, M. B.-neven, I. Gentili, S. Callebaut, M. Maschalidi et al., Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations, J. Clin. Invest, vol.124, pp.5516-5520, 2014.

K. J. Karczewski, L. C. Francioli, G. Tiao, B. B. Cummings, J. Alföldi et al., The Genome Aggregation Database Consortium. 2019. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes, vol.13, 2019.

J. Kim, R. Gupta, L. P. Blanco, S. Yang, A. Shteinfer-kuzmine et al., VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupuslike disease, Science, vol.366, pp.1531-1536, 2019.

S. Krutzke, C. Rietschel, and G. Horneff, Baricitinib in therapy of COPA syndrome in a 15-year-old girl, Eur. J. Rheumatol. 1-4:1-4, 2019.

X. Lahaye, M. Gentili, A. Silvin, C. Conrad, L. Picard et al., NONO Detects the Nuclear HIV Capsid to Promote cGAS-Mediated Innate Immune Activation, Cell, vol.175, pp.488-501, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02087780

G. Lavieu, L. Orci, L. Shi, M. Geiling, M. Ravazzola et al., Induction of cortical endoplasmic reticulum by dimerization of a coatomer-binding peptide anchored to endoplasmic reticulum membranes, Proc. Natl. Acad. Sci. USA, vol.107, pp.6876-6881, 2010.

G. Lavieu, H. Zheng, and J. E. Rothman, Stapled Golgi cisternae remain in place as cargo passes through the stack. eLife. 2. e00558, 2013.

F. Letourneur, E. C. Gaynor, S. Hennecke, C. Démollière, R. Duden et al., Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum, Cell, vol.79, pp.90011-90017, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00313999

Y. Liu, A. A. Jesus, B. Marrero, D. Yang, S. E. Ramsey et al., Activated STING in a vascular and pulmonary syndrome, N. Engl. J. Med, vol.371, pp.507-518, 2014.

S. Liu, X. Cai, J. Wu, Q. Cong, X. Chen et al., Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation, Science, vol.347, 2015.

W. Ma and J. Goldberg, Rules for the recognition of dilysine retrieval motifs by coatomer, EMBO J, vol.32, pp.926-937, 2013.

K. J. Mackenzie, P. Carroll, C. Martin, O. Murina, A. Fluteau et al., cGAS surveillance of micronuclei links genome instability to innate immunity, Nature, vol.548, pp.461-465, 2017.

I. Melki, Y. Rose, C. Uggenti, L. Van-eyck, M. Frémond et al., Diseaseassociated mutations identify a novel region in human STING necessary for the control of type I interferon signaling, J. Allergy Clin. Immunol, vol.140, pp.543-552, 2017.

M. E. Meuwissen, R. Schot, S. Buta, G. Oudesluijs, S. Tinschert et al., Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome, J. Exp. Med, vol.213, pp.1163-1174, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-02070980

S. Meyer, M. Woodward, C. Hertel, P. Vlaicu, Y. Haque et al., AIRE-Deficient Patients Harbor Unique High-Affinity Disease-Ameliorating Autoantibodies, Cell, vol.166, pp.582-595, 2016.

K. Mukai, H. Konno, T. Akiba, T. Uemura, S. Waguri et al., Activation of STING requires palmitoylation at the Golgi, Nat. Commun, vol.7, p.11932, 2016.

R. Noorelahi, G. Perez, and H. J. Otero, Imaging findings of Copa syndrome in a 12-year-old boy, Pediatr. Radiol, vol.48, pp.279-282, 2018.

E. Ogawa, K. Mukai, K. Saito, H. Arai, and T. Taguchi, The binding of TBK1 to STING requires exocytic membrane traffic from the ER, Biochem. Biophys. Res. Commun, vol.503, pp.138-145, 2018.

S. Ouyang, X. Song, Y. Wang, H. Ru, N. Shaw et al., Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding, Immunity, vol.36, pp.1073-1086, 2012.

S. Park, J. Yang, A. B. Schmider, R. J. Soberman, and V. W. Hsu, Coordinated regulation of bidirectional COPI transport at the Golgi by CDC42, Nature, vol.521, pp.529-532, 2015.

A. Patwardhan and C. H. Spencer, An unprecedented COPA gene mutation in two patients in the same family: comparative clinical analysis of newly reported patients with other known COPA gene mutations, Pediatr. Rheumatol. Online J, vol.17, p.59, 2019.

P. A. Pellett, F. Dietrich, J. Bewersdorf, J. E. Rothman, and G. Lavieu, Inter-Golgi transport mediated by COPI-containing vesicles carrying small cargoes. eLife. 2. e01296, 2013.

V. Popoff, F. Adolf, B. Brügger, and F. Wieland, COPI budding within the Golgi stack, Cold Spring Harb. Perspect. Biol. 3. a005231, 2011.

M. Razi, E. Y. Chan, and S. A. Tooze, Early endosomes and endosomal coatomer are required for autophagy, J. Cell Biol, vol.185, pp.305-321, 2009.

G. I. Rice, P. R. Kasher, G. M. Forte, N. M. Mannion, S. M. Greenwood et al., Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature, Nat. Genet, vol.44, pp.1243-1248, 2012.

G. I. Rice, G. M. Forte, M. Szynkiewicz, D. S. Chase, A. Aeby et al., Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNA-SEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study, Lancet Neurol, vol.12, pp.1159-1169, 2013.

G. I. Rice, Y. Del-toro-duany, E. M. Jenkinson, G. M. Forte, B. H. Anderson et al., Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling, Nat. Genet, vol.46, pp.503-509, 2014.

G. I. Rice, I. Melki, M. Frémond, T. A. Briggs, M. P. Rodero et al., Assessment of type I interferon signaling in pediatric inflammatory disease, J. Clin. Immunol, vol.37, pp.123-132, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01908851

G. I. Rice, S. Park, F. Gavazzi, L. A. Adang, L. A. Ayuk et al., Genetic and phenotypic spectrum associated with IFIH1 gain-of-function, Hum. Mutat, vol.41, pp.837-849, 2020.

M. P. Rodero, J. Decalf, V. Bondet, D. Hunt, G. I. Rice et al., Detection of interferon alpha protein reveals differential levels and cellular sources in disease, J. Exp. Med, vol.214, pp.1547-1555, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01534181

G. A. Sanchez, A. Reinhardt, S. Ramsey, H. Wittkowski, P. J. Hashkes et al., JAK1/ 2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies, J. Clin. Invest, vol.128, pp.3041-3052, 2018.

G. Shang, C. Zhang, Z. J. Chen, X. Bai, and X. Zhang, Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP, Nature, vol.567, pp.389-393, 2019.

S. Srikanth, J. S. Woo, B. Wu, Y. M. El-sherbiny, J. Leung et al., The Ca 2+ sensor STIM1 regulates the type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum, Nat. Immunol, vol.20, pp.152-162, 2019.

H. Sui, M. Zhou, H. Imamichi, X. Jiao, B. T. Sherman et al., STING is an essential mediator of the Ku70-mediated production of IFN-?1 in response to exogenous DNA, Sci. Signal, vol.10, 2017.

L. Sun, J. Wu, F. Du, X. Chen, and Z. J. Chen, Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway, Science, vol.339, pp.786-791, 2013.

E. Sztul, J. E. P.-w.-chen, J. Casanova, J. B. Cherfils, D. G. Dacks et al., ARF GTPases and their GEFs and GAPs: concepts and challenges, Mol. Biol. Cell, vol.30, pp.1249-1271, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02363294

X. Tang, H. Xu, C. Zhou, Y. Peng, H. Liu et al., 2020. STING-Associated Vasculopathy with Onset in Infancy in Three Children with New Clinical Aspect and Unsatisfactory Therapeutic Responses to Tofacitinib, J. Clin. Immunol, vol.40, pp.114-122

A. M. Taveira-dasilva, T. C. Markello, D. E. Kleiner, A. M. Jones, C. Groden et al., Expanding the phenotype of COPA syndrome: a kindred with typical and atypical features, J. Med. Genet, vol.56, pp.778-782, 2019.

J. L. Tsui, O. A. Estrada, Z. Deng, K. M. Wang, C. S. Law et al., Analysis of pulmonary features and treatment approaches in the COPA syndrome, ERJ Open Res, vol.4, pp.17-2018, 2018.

C. Uggenti, A. Lepelley, and Y. J. Crow, Self-Awareness: Nucleic Acid-Driven Inflammation and the Type I Interferonopathies, Annu. Rev. Immunol, vol.37, pp.247-267, 2019.

T. J. Vece, L. B. Watkin, S. Nicholas, D. Canter, M. C. Braun et al., Copa syndrome: a novel autosomal dominant immune dysregulatory disease, J. Clin. Immunol, vol.36, pp.377-387, 2016.

S. Volpi, J. Tsui, M. Mariani, C. Pastorino, R. Caorsi et al., Type I interferon pathway activation in COPA syndrome, Clin. Immunol, vol.187, pp.33-36, 2018.

S. Volpi, A. Insalaco, R. Caorsi, E. Santori, V. Messia et al., Efficacy and adverse events during janus kinase inhibitor treatment of SAVI syndrome, J. Clin. Immunol, vol.39, pp.476-485, 2019.

M. G. Waters, T. Serafini, and J. E. Rothman, Coatomer': a cytosolic protein complex containing subunits of non-clathrin-coated Golgi transport vesicles, Nature, vol.349, pp.248-251, 1991.

L. B. Watkin, B. Jessen, W. Wiszniewski, T. J. Vece, M. Jan et al., COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis, Nat. Genet, vol.47, pp.654-660, 2015.

X. Zhang, D. Bogunovic, B. Payelle-brogard, V. Francois-newton, S. D. Speer et al., Human intracellular ISG15 prevents interferon-?/? over-amplification and autoinflammation, Nature, vol.517, pp.89-93, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02070691