V. Ruiz-ranwez, D. M. Posadas, S. M. Estein, P. L. Abdian, F. A. Martin et al., The BtaF trimeric autotransporter of Brucella suis is involved in attachment to 603 various surfaces, resistance to serum and virulence, PLoS One, vol.602, p.79770, 2013.

P. Zhou, J. Liu, J. Merritt, and F. Qi, A YadA-like autotransporter, Hag1 in Veillonella 605 atypica is a multivalent hemagglutinin involved in adherence to oral streptococci, p.606, 2015.

, Porphyromonas gingivalis, and human oral buccal cells, Mol Oral Microbiol, vol.30, pp.269-607

T. , S. Khalil, H. , C. Leo, and J. , Bacterial autoaggregation, AIMS Microbiol, vol.609, pp.140-164, 2018.

C. Bongrand and E. G. Ruby, The impact of Vibrio fischeri strain variation on host 611 colonization, Curr Opin Microbiol, vol.50, pp.15-19, 2019.

D. Bonazzi, L. Schiavo, V. Machata, S. Djafer-cherif, I. Nivoit et al., , p.613

H. Tanimoto, J. Husson, N. Henry, H. Chaté, R. Voituriez et al., , p.614, 2018.

, Pili-Mediated Forces Fluidize Neisseria meningitidis Aggregates Promoting Vascular, p.615

, Colonization. Cell, vol.174, pp.143-155

P. Klemm, R. M. Vejborg, and O. Sherlock, Self-associating autotransporters, SAATs: 617 Functional and structural similarities, Int J Med Microbiol, vol.296, pp.187-195, 2006.

V. Ageorges, M. Schiavone, G. Jubelin, N. Caccia, P. Ruiz et al., , p.619

S. Leroy, J. Paxman, B. Heras, F. Chaucheyras-durand, A. E. Rossiter et al., , p.620

M. Desvaux, Differential homotypic and heterotypic interactions of antigen 43 621 (Ag43) variants in autotransporter-mediated bacterial autoaggregation, Sci Rep, vol.622, issue.9, p.11100, 2019.

T. J. Wells, O. Sherlock, L. Rivas, A. Mahajan, S. A. Beatson et al., , p.624

L. P. Allsopp, K. S. Gobius, D. L. Gally, and M. A. Schembri, EhaA is a novel 625 autotransporter protein of enterohemorrhagic Escherichia coli O157:H7 that contributes 626 to adhesion and biofilm formation, Environ Microbiol, vol.10, pp.589-604, 2008.

M. Totsika, T. J. Wells, C. Beloin, J. Valle, L. P. Allsopp et al., , p.628

M. A. , Molecular characterization of the EhaG and UpaG trimeric autotransporter 629 proteins from pathogenic Escherichia coli, Appl Environ Microbiol, vol.78, pp.2179-89, 2012.

J. Valle, A. N. Mabbett, G. C. Ulett, A. Toledo-arana, K. Wecker et al., , 2020.

G. Ma and C. Beloin, UpaG, a New Member of the Trimeric 632, 2008.

, Autotransporter Family of Adhesins in Uropathogenic Escherichia coli, J Bacteriol, vol.633, pp.4147-4161

A. W. Paton, P. Srimanote, M. C. Woodrow, and J. C. Paton, Characterization of Saa, a 635 novel autoagglutinating adhesin produced by locus of enterocyte effacement, p.636, 2001.

, Shiga-toxigenic Escherichia coli strains that are virulent for humans, Infect Immun, vol.637, pp.6999-7009

J. C. Leo, A. Lyskowski, K. Hattula, M. D. Hartmann, H. Schwarz et al., , p.639

A. N. Lupas and A. Goldman, The Structure of E. coli IgG-Binding Protein D Suggests 640 a General Model for Bending and Binding in Trimeric Autotransporter Adhesins, 2011.

, Structure, vol.19, pp.1021-1030

C. Beloin, K. Michaelis, K. Lindner, P. Landini, J. Hacker et al., , 2006.

, The transcriptional antiterminator RfaH represses biofilm formation in Escherichia 644 coli, J Bacteriol, vol.188, pp.1316-1347

C. Korea, R. Badouraly, M. Prevost, J. Ghigo, and C. Beloin, Escherichia coli, p.646, 2010.

, K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct 647 surface specificities, Environ Microbiol, vol.12, pp.1957-1977

H. Hasman, T. Chakraborty, and P. Klemm, Antigen-43-mediated autoaggregation of 649, 1999.

, Escherichia coli is blocked by fimbriation, J Bacteriol, vol.181, pp.4834-4875

M. A. Schembri, D. Dalsgaard, and P. Klemm, Capsule shields the function of short 651 bacterial adhesins, J Bacteriol, vol.186, pp.1249-57, 2004.

C. Hughes, R. N. Andersen, and P. E. Kolenbrander, Characterization of Veillonella 653 atypica PK1910 adhesin-mediated coaggregation with oral Streptococcus spp, vol.60, pp.1178-86, 1992.

I. Mashima and F. Nakazawa, Interaction between Streptococcus spp. and Veillonella 656 tobetsuensis in the early stages of oral biofilm formation, J Bacteriol, 2015.

I. Mashima and F. Nakazawa, The influence of oral Veillonella species on biofilms 659 formed by Streptococcus species, Anaerobe, vol.28, pp.54-61, 2014.

S. Periasamy and P. E. Kolenbrander, Central role of the early colonizer Veillonella sp. 661 in establishing multispecies biofilm communities with initial, middle, and late 662 on September 4, 2020 at INSTITUT PASTEUR-Bibliotheque, vol.192, pp.2965-2972, 2010.

C. Hughes, P. E. Kolenbrander, R. N. Andersen, and L. V. Moore, Coaggregation 664 properties of human oral Veillonella spp.: relationship to colonization site and oral 665 ecology, Appl Environ Microbiol, vol.54, pp.1957-63, 1988.

T. J. Wells, M. Totsika, and M. A. Schembri, Autotransporters of Escherichia coli: A 667 sequence-based characterization, Microbiology, vol.156, pp.2459-2469, 2010.

S. El-gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani et al., , p.669

L. J. Richardson, G. A. Salazar, A. Smart, E. Sonnhammer, L. Hirsh et al.,

D. , T. Sce, and R. D. Finn, The Pfam protein families database in 2019, Nucleic, vol.671, 2019.

, Acids Res, vol.47

S. Mesnage, T. Fontaine, T. Mignot, M. Delepierre, M. Mock et al., Bacterial 673 SLH domain proteins are non-covalently anchored to the cell surface via a conserved 674 mechanism involving wall polysaccharide pyruvylation, EMBO J, vol.19, pp.4473-4484, 2000.

J. S. Park, W. C. Lee, K. J. Yeo, K. Ryu, M. Kumarasiri et al., , p.676

J. H. Song, S. Kim, . Il, J. C. Lee, C. Cheong et al., Mechanism of 677 anchoring of OmpA protein to the cell wall peptidoglycan of the gram-negative 678 bacterial outer membrane, FASEB J, vol.26, pp.219-228, 2012.

G. Minazzato, M. Gasparrini, A. Amici, M. Cianci, F. Mazzola et al., , p.680

N. Raffaelli, Functional characterization of COG1713 (YqeK) as a novel 681 diadenosine tetraphosphate hydrolase family, J Bacteriol JB, pp.53-73, 2020.

R. D. Monds, P. D. Newell, J. C. Wagner, J. A. Schwartzman, W. Lu et al., , p.683

. Ga, Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation 684 by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways, J 685 Bacteriol, vol.192, pp.3011-3023, 2010.

J. Gundlach, H. Rath, C. Herzberg, U. Mäder, and J. Stülke, , p.687, 2016.

, Signaling in Bacillus subtilis: Accumulation of Cyclic di-AMP Inhibits Biofilm 688 Formation, Front Microbiol, vol.7, p.804

X. Peng, Y. Zhang, G. Bai, X. Zhou, and H. Wu, Cyclic di-AMP mediates biofilm 690 formation, Mol Microbiol, vol.99, pp.945-959, 2016.

L. Townsley, S. M. Yannarell, T. N. Huynh, J. J. Woodward, and E. A. Shank, Cyclic di, 2018.

, AMP Acts as an Extracellular Signal That Impacts Bacillus subtilis Biofilm Formation 693 on September 4, 2020 at INSTITUT PASTEUR-Bibliotheque

A. Reinders and C. Lori, Cyclic di-GMP: second messenger extraordinaire, 2017.

, Nat Rev Microbiol, vol.15, pp.271-284

P. V. Krasteva and H. Sondermann, Versatile modes of cellular regulation via cyclic 697 dinucleotides, Nat Chem Biol, vol.13, pp.350-359, 2017.

F. Yan, Y. Yu, L. Wang, Y. Luo, J. Guo et al., The comER Gene Plays an 699, 2016.

, Biofilm Formation and Sporulation in both Bacillus subtilis and, p.700

, Bacillus cereus. Front Microbiol, vol.7, p.1025

S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman et al., Canu: 702 scalable and accurate long-read assembly via adaptive k-mer weighting and repeat 703 separation, Genome Res, vol.27, pp.722-736, 2017.

. Walker, . Bj, T. Abeel, T. Shea, M. Priest et al., , p.705

Q. Wortman, J. Young, S. K. Earl, and A. M. , Pilon: An Integrated Tool for 706, 2014.

, Comprehensive Microbial Variant Detection and Genome Assembly Improvement

, PLoS One, vol.9, p.112963

T. Cokelaer, D. Desvillechabrol, R. Legendre, M. Cardon, T. Cokelaer et al., , p.709

R. Legendre and M. Cardon, Sequana": a Set of Snakemake NGS pipelines, J Open, p.710, 2017.

, Source Softw, vol.2, p.352

D. Desvillechabrol, C. Bouchier, S. Kennedy, and T. Cokelaer, Sequana Coverage: 712 Detection and Characterization of Genomic Variations using Running Median, p.713, 2018.

, Mixture Models

F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, , 2015.

, BUSCO: assessing genome assembly and annotation completeness with single-copy 716 orthologs, Bioinformatics, vol.31, pp.3210-3212

T. Seemann, Prokka: rapid prokaryotic genome annotation, Bioinformatics, vol.718, pp.2068-2069, 2014.

L. S. Johnson, S. R. Eddy, and E. Portugaly, Hidden Markov model speed heuristic and 720 iterative HMM search procedure, BMC Bioinformatics, vol.11, p.431, 2010.

A. Lupas, M. Dyke, . Van, and J. Stock, Predicting Coiled Coils from Protein Sequences, 1991.

, Science, issue.80

S. S. Abby, B. Néron, H. Ménager, M. Touchon, and E. Rocha, MacSyFinder: A 724 Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas, 2014.

, Systems. PLoS One, vol.9, p.110726

I. Letunic and P. Bork, Interactive Tree Of Life (iTOL) v4: recent updates and new 727 developments, Nucleic Acids Res, vol.47, pp.256-259, 2019.

R. P. Fagan and N. F. Fairweather, Clostridium difficile Has Two Parallel and Essential 729, 2011.

, Sec Secretion Systems, J Biol Chem, vol.286, pp.27483-27493

J. Ghigo, Natural conjugative plasmids induce bacterial biofilm development, Nature, vol.731, pp.442-445, 2001.

C. Beloin, J. Valle, P. Latour-lambert, P. Faure, M. Kzreminski et al., Global impact of mature 734 biofilm lifestyle on Escherichia coli K-12 gene expression, Mol Microbiol, vol.51, pp.659-674, 2003.

O. A. Soutourina, M. Monot, P. Boudry, L. Saujet, C. Pichon et al., , p.736

K. Severinov, L. Bouguenec, C. Coppée, J. Y. Dupuy, B. Martin-verstraete et al., , 2013.

, Genome-Wide Identification of Regulatory RNAs in the Human Pathogen Clostridium 738 difficile, PLoS Genet, vol.9

J. Liu, Z. Xie, J. Merritt, and F. Qi, Establishment of a tractable genetic transformation 740 system in Veillonella spp, Appl Environ Microbiol, vol.78, pp.3488-91, 2012.

M. J. Sullivan, N. K. Petty, and S. A. Beatson, Easyfig: a genome comparison visualizer, 2011.

, Bioinformatics, vol.27, pp.1009-1010

, Figure 1: Random transposon mutagenesis in Veillonella parvula SKV38 led to 757 identification of mutants with reduced biofilm formation. A. 96-well polystyrene plate 758 biofilm assay after CV staining of nine transposon mutants identified by random mutagenesis 759 grown 24h in BHILC. Mean of WT is adjusted to 100 %. Min-max boxplot of 6-15 biological 760 replicates for each strain are represented

, Mann-Whitney test. B. Schematic representation of the 762 transposon insertion point identified (red arrow) for the 8 transposon mutants. Blue bar 763 represents the size of the gene in nucleotides, * p-value<0.05, ** p-value <0.005

, VtaA is an adhesin involved in auto-aggregation and biofilm formation. A. 96-766 well plate biofilm assay after 24h growth in BHILC. Mean of WT is adjusted to 100 %. Min-767 max boxplot of 6 biological replicates for each strain, Figure, vol.2, p.768

C. B. Mann-whitney-test-between-strains, Aggregation curve in spectrophotometry cuvette 769 of WT and ?vtaA (B) and of an inducible vtaA with 0, 0.025 or 0.1 µg/mL of the inducer aTc 770 (C). 100 % represent lack of aggregation, 0 % complete sedimentation of the culture. Median 771 of 6 biological replicates, error bars represent 95% confidence interval, p.774

*. , pTet-vtaA without aTc and pTet-vtaA with different aTc concentrations. D. 96-well 776 plate biofilm assay after 24h growth of an inducible vtaA in BHILC with different 777 concentrations of aTc. WT without aTc is adjusted to 100 %. Median of 6 biological replicates, 778 each replicate corresponds to the mean of two technical replicates, error bars represent 95% 779 confidence interval. * p-value<0.05, ** p-value <0.005, Mann-Whitney test. E. Biofilm 780 formation in continuous flow microfermentor on glass spatula during 48h in BHILC. WT was 781 adjusted to 100 %. Min-max boxplot of 4 biological replicates for each strain

, Genetic 786 organization of the V. parvula SKV38 autotransporter adhesin gene cluster and the 787 corresponding adhesin domain organization. B. Domain organization of the six remaining V. 788 parvula SKV38 autotransporter adhesins encoded by genes, Veillonella parvula autotransporters domain organization. A, vol.3

, All V. parvula trimeric ATs 792 display an additional C-terminal domain (a SLH or a coiled coil domain) following the YadA 793 anchor domain as compared to classical trimeric autotransporters

, Oblique lines between genes represent tblastx identities (program parameters: maximum 798 e-value of 10 12 , minimum length of 30, minimum identity of 30). The V. parvula SKV38 strain 799, Synteny of the adhesin gene cluster in a selection of Veillonella species, vol.4

, Figure 5: A cluster of eight trimeric autotransporters is involved in surface binding

, Bonferroni 806 correction: significance is achieved if p-value < 0.007. B. and C. 96-well plate biofilm assay 807 after 24 h growth in BHILC. Mean of WT is adjusted to 100 %. Min-max boxplot of 6 biological 808 replicates for each strain, each replicate is the mean of two technical replicates. In B. we applied 809 a Mann-Whitney; * p-value<0.05, ** p-value <0.005. In C. we applied Bonferroni correction 810 for multiple testing: tests were called significant only if p-value<0.01: * p-value<0.01, ** p-811 value <0.001, *** p-value <0.0001. D. Biofilm formation in continuous flow microfermentor 812 on glass spatula during 48h in BHILC. WT was adjusted to 100 %. Min-max boxplot of 4 813 biological replicates for each strain. * p-value<0.05, Mann-Whitney test. A picture of spatula 814 before resuspension is shown for each mutant below the boxplot. E. Initial adhesion on glass 815 spatula. Percentage of CFU that adhered to the spatula controlled by the number of CFU of the 816 inoculation solution. Min-max boxplot of 6-9 replicates per strain is represented, Aggregation curve in spectrophotometry cuvette. 100 % represent lack of aggregation, 0 % 804 complete sedimentation of the culture. Median of 6 biological replicates, error bars represent 805 95% confidence interval. * Mann-Whitney test

, The presence of the cluster was investigated using MacSyFinder (62) and the 821 results were plotted onto a schematic reference tree of 187 cultivable bacteria among the 390 822 of the analyzed databank. The cell wall status of each phylum is indicated as: (-) diderm with 823 LPS, (+) monoderm, (atyp.) diderm without LPS, (?) unclear. For the Firmicutes, the diderm 824 lineages are, Figure 6: Occurrence and synteny of HD Phosphatase (YqeK) in diderm and monoderm 820 bacteria. A

, Figure 7: FNLLGLLA_01127 represses biofilm formation in microfermentor. A. 96-well 828 plate biofilm assay after 24 h growth in BHLC corrected by OD600 after 24 h growth in plate

, Mean of WT is adjusted to 100 %. Min-max boxplot of 6 biological replicates for each strain, 830 each replicate is the mean of two technical replicates. * p-value < 0.05, Mann-Whitney test

, Median of 6 biological replicates, error bars represent 833 95% confidence interval. * Mann-Whitney test, corrected for multiple testing with Bonferroni 834 correction: significance is achieved if p-value<0.007. C. Biofilm formation in continuous flow 835 microfermentor on glass spatula during 48h in BHILC. Mean of WT is adjusted to 100 %. Min-836 max boxplot of 4 biological replicates for each strain, p.837

M. Test, Mean of WT+pEmpty is adjusted to 100 %. Min-max boxplot 840 of 4 biological replicates for each strain. * p-value < 0.05, Mann-Whitney test. A picture of a 841 spatula before resuspension is shown for each strain below the boxplot. E. Scanning electronic 842 microscopy of ?1127 biofilm grown under continuous flow of BHILC in microfermentor on a 843 plastic microscopy slide. Magnification 2K and 5K. F. Initial adhesion on glass spatula. 844 Percentage of CFU that adhered to the spatula in 30 min controlled by the number of CFU of 845, A picture of a spatula before resuspension is shown for each strain below 838 the histogram. D. Biofilm formation in continuous flow microfermentor on glass spatula during 839 48h in BHILC+chloramphenicol