A. Ahantarig, N. Chantawat, N. R. Waterfield, R. Ffrench-constant, and P. Kittayapong, PirAB toxin from Photorhabdus asymbiotica as a larvicide against dengue vectors, Appl Environ Microbiol, vol.75, pp.4627-4629, 2009.

J. Akorli, M. Gendrin, N. A. Pels, D. Yeboah-manu, G. K. Christophides et al., Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana, PloS one, p.157529, 2016.

T. G. Andreadis, Microsporidian parasites of mosquitoes, J Am Mosq Control Assoc, vol.23, pp.3-29, 2007.

L. M. Ang'ang'o, Molecular characterisation of microsporidia mb species and correlation with plasmodium presence in anopheles mosquitoes in Mwea and Mbita, 2018.

Y. I. Anglero-rodriguez, B. J. Blumberg, Y. Dong, S. L. Sandiford, A. Pike et al., A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection, Sci Rep, vol.6, 2016.

C. Astudillo-garcia, J. J. Bell, N. S. Webster, B. Glasl, J. Jompa et al., Evaluating the core microbiota in complex communities: A systematic investigation, Environ Microbiol, vol.19, pp.1450-1462, 2017.

F. Baldini, N. Segata, J. Pompon, P. Marcenac, W. R. Shaw et al., Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity, Nat Commun, vol.5, 2013.

D. R. Barnard, R. D. Xue, M. A. Rotstein, and J. J. Becnel, , 2007.

(. Microsporidiosis and . Microsporidia, Culicosporidae) alters blood-feeding responses and DEET repellency in Aedes aegypti (Diptera: Culicidae), J Med Entomol, vol.44, pp.1040-1046

N. Becker, D. Petric, M. Zgomba, C. Boase, M. Madon et al., Mosquitoes and their control, 2010.

J. J. Becnel and M. A. Johnson, Impact of Edhazardia aedi (Microsporidia: Culicosporidae) on a seminatural population of Aedes aegypti (Diptera: Culicidae), Biol Control, vol.18, pp.39-48, 1999.

J. C. Beier and C. Harris, Ascogregarina barretti (Sporozoa: diplocystidae) infections in natural populations of Aedes triseriatus (Diptera: Culicidae), J Parasitol, vol.69, pp.430-431, 1983.

J. C. Beier, D. D. Chadee, A. Charran, N. M. Comiskey, and D. M. Wesson, Country-wide prevalence of Ascogregarina culicis (apicomplexa: lecudinidae), a protozoan parasite of Aedes aegypti in Trinidad, West Indies, J Am Mosq Control Assoc, vol.11, pp.419-423, 1995.

E. Belda, B. Coulibaly, A. Fofana, A. H. Beavogui, S. F. Traore et al., Preferential suppression of Anopheles gambiae host sequences allows detection of the mosquito eukaryotic microbiome, Sci Rep, vol.7, p.3241, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01570222

J. B. Benoit, G. Lopez-martinez, K. R. Patrick, Z. P. Phillips, T. B. Krause et al., Drinking a hot blood meal elicits a protective heat shock response in mosquitoes, Proc Natl Acad Sci, vol.108, pp.8026-8029, 2011.

C. Berry, The bacterium, Lysinibacillus sphaericus, as an insect pathogen, J Invertebr Pathol, vol.109, pp.1-10, 2012.

C. Berticat, F. Rousset, M. Raymond, A. Berthomieu, and M. Weill, High Wolbachia density in insecticide-resistant mosquitoes, Proc Biol Sci, vol.269, pp.1413-1416, 2002.
URL : https://hal.archives-ouvertes.fr/halsde-00341215

A. Boissière, M. T. Tchioffo, D. Bachar, L. Abate, A. Marie et al., Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection, PLoS Pathog, vol.8, p.1002742, 2012.

B. G. Bolling, F. J. Olea-popelka, L. Eisen, C. G. Moore, and C. D. Blair, Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus, Virology, vol.427, pp.90-97, 2012.

B. G. Bolling, S. C. Weaver, R. B. Tesh, and N. Vasilakis, Insect-specific virus discovery: Significance for the Arbovirus community, Viruses, vol.7, pp.4911-4928, 2015.

M. K. Borucki, B. J. Kempf, B. J. Blitvich, C. D. Blair, and B. J. Beaty, La Crosse virus: Replication in vertebrate and invertebrate hosts, Microbes Infect, vol.4, pp.341-350, 2002.

J. Bozic, A. Capone, D. Pediconi, P. Mensah, A. Cappelli et al., Mosquitoes can harbour yeasts of clinical significance and contribute to their environmental dissemination, Environ Microbiol Rep, vol.9, pp.642-648, 2017.

A. Bravo, S. S. Gill, and M. Soberon, Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control, Toxicon, vol.49, pp.423-435, 2007.

T. Burki, Increase of West Nile virus cases in Europe, Lancet, vol.392, p.1000, 2018.

F. J. Burt, W. Chen, J. J. Miner, D. J. Lenschow, A. Merits et al., Chikungunya virus: An update on the biology and pathogenesis of this emerging pathogen, Lancet Infect Dis, vol.17, pp.107-117, 2017.

C. L. Campbell, D. L. Mummey, E. T. Schmidtmann, and W. C. Wilson, Culture-independent analysis of midgut microbiota in the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae), J Med Entomol, vol.41, pp.340-348, 2004.

E. P. Caragata, E. Rances, L. M. Hedges, A. W. Gofton, K. N. Johnson et al., Competition for amino acids between Wolbachia and the mosquito host, Aedes aegypti. Microb Ecol, vol.9, pp.205-218, 2013.

J. A. Chandler, R. M. Liu, and S. N. Bennett, RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi, Front Microbiol, vol.6, p.185, 2015.

J. Chao, G. A. Wistreich, and J. Moore, Failure to isolate microorganisms from within mosquito eggs, Ann Entomol Soc Am, vol.56, pp.559-561, 1963.

A. R. Chavshin, M. A. Oshaghi, H. Vatandoost, B. Yakhchali, F. Zarenejad et al., Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi, Wellcome Open Res, vol.8, p.90, 2015.

B. Chouaia, P. Rossi, S. Epis, M. Mosca, I. Ricci et al., Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts, BMC Microbiol, vol.12, pp.855-858, 2011.

A. N. Clements, The biology of mosquitoes: Development, nutrition, and reproduction, 1992.

N. Cleton, M. Koopmans, J. Reimerink, G. J. Godeke, and C. Reusken, Come fly with me: Review of clinically important arboviruses for global travelers, J Clin Virol, vol.55, pp.191-203, 2012.

K. L. Coon, K. J. Vogel, M. R. Brown, and M. R. Strand, Mosquitoes rely on their gut microbiota for development, Mol Ecol, vol.23, pp.2727-2739, 2014.

K. L. Coon, M. R. Brown, and M. R. Strand, Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae), Parasit Vectors, vol.9, p.375, 2016.

K. L. Coon, M. R. Brown, and M. R. Strand, Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats, Mol Ecol, vol.25, pp.5806-5826, 2016.

K. L. Coon, L. Valzania, D. A. Mckinney, K. J. Vogel, M. R. Brown et al., Bacteria-mediated hypoxia functions as a signal for mosquito development, Proc Natl Acad Sci, vol.114, pp.5362-5369, 2017.

M. A. Correa, B. Matusovsky, D. E. Brackney, B. Steven, E. Crotti et al., Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development, Appl Environ Microbiol, vol.9, pp.6963-6970, 2010.

O. S. Da-silva, G. R. Prado, J. L. Da-silva, C. E. Silva, M. Da-costa et al., Oral toxicity of Photorhabdus luminescens and Xenorhabdus nematophila (Enterobacteriaceae) against Aedes aegypti (Diptera: Culicidae), Parasitol Res, vol.112, pp.2891-2896, 2013.

J. M. Darbro, R. I. Graham, B. H. Kay, P. A. Ryan, and M. B. Thomas, Evaluation of entomopathogenic fungi as potentiel biological control agents of the dengue mosquito, Aedes aegypti (Diptera: Culicidae), Biocontrol Sci Technol, vol.21, pp.1027-1047, 2011.

M. R. David, L. M. Santos, A. C. Vicente, and R. Maciel-de-freitas, Effects of environment, dietary regime and ageing on the dengue vector microbiota: Evidence of a core microbiota throughout Aedes aegypti lifespan, Mem Inst Oswaldo Cruz, vol.111, pp.577-587, 2016.

L. M. Diaz-nieto, C. D'alessio, M. A. Perotti, and C. M. Beron, Culex pipiens development is greatly influenced by native bacteria and exogenous yeast, PloS One, vol.11, p.153133, 2016.

L. B. Dickson, D. Jiolle, G. Minard, I. Moltini-conclois, S. Volant et al., Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector, Sci Adv, vol.3, p.1700585, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01580399

S. L. Dobson, K. Bourtzis, H. R. Braig, B. F. Jones, W. Zhou et al., Wolbachia infections are distributed throughout insect somatic and germ line tissues, Insect Biochem Mol Biol, vol.29, pp.153-160, 1999.

Y. Dong, F. Manfredini, and G. Dimopoulos, Implication of the mosquito midgut microbiota in the defense against malaria parasites, PLoS Pathog, vol.5, p.1000423, 2009.

A. E. Douglas, The microbial dimension in insect nutritional ecology, Funct Ecol, vol.23, pp.38-47, 2009.

D. Duguma, M. W. Hall, P. Rugman-jones, R. Stouthamer, O. Terenius et al., Modelling parasitism and predation of mosquitoes by water mites, BMC Microbiol, vol.15, pp.540-555, 2006.

W. Fang, J. Vega-rodriguez, A. K. Ghosh, M. Jacobs-lorena, A. Kang et al., Development of transgenic fungi that kill human malaria parasites in mosquitoes, Science, vol.331, pp.1074-1077, 2011.

M. Farenhorst and B. G. Knols, Fungal entomopathogens for the control of adult mosquitoes: A look at the issues, Proc Neth Entomol Soc Meet, p.18, 2007.

G. Favia, I. Ricci, C. Damiani, N. Raddadi, E. Crotti et al., Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector, Proc Natl Acad Sci, vol.104, pp.9047-9051, 2007.

W. A. Foster, Mosquito sugar feeding and reproductive energetics, Annu Rev Entomol, vol.40, pp.443-474, 1995.

M. A. Fouda, M. I. Hassan, A. G. Al-daly, and K. M. Hammad, Effect of midgut bacteria of Culex pipiens L. on digestion and reproduction, J Egypt Soc Parasitol, vol.31, pp.767-780, 2001.

P. Gaibani and G. Rossini, An overview of Usutu virus, Microbes Infect, vol.19, pp.382-387, 2017.

O. Gaio-ade, D. S. Gusmao, A. V. Santos, M. A. Berbert-molina, P. F. Pimenta et al., Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (L.), Parasit Vectors, issue.4, p.105, 2011.

J. J. Garcia, T. Fukuda, and J. J. Becnel, Seasonality, prevalence and pathogenicity of the gregarine Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) in mosquitoes from Florida, J Am Mosq Control Assoc, vol.10, pp.413-418, 1994.

I. Geetha, A. M. Manonmani, and K. P. Paily, Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain, Appl Microbiol Biotechnol, vol.86, pp.1737-1744, 2010.

M. Gendrin and G. K. Christophides, The Anopheles mosquito microbiota and their impact on pathogen transmission, In: Anopheles mosquitoes, New insights into malaria vectors, pp.525-548, 2013.

M. Gendrin, F. H. Rodgers, R. S. Yerbanga, J. B. Ouedraogo, M. G. Basanez et al., Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria, Nat Commun, vol.6, p.5921, 2015.

G. Gimonneau, M. T. Tchioffo, L. Abate, A. Boissière, P. H. Awono-ambene et al., Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages, Infect Genet Evol, vol.28, pp.715-724, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01546167

R. L. Glaser, M. A. Meola, S. Goenaga, J. L. Kenney, N. K. Duggal et al., The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection, PloS One, vol.5, pp.5801-5812, 2010.

F. M. Gomes, B. L. Hixson, M. D. Tyner, J. L. Ramirez, G. E. Canepa et al., Effect of naturally occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission, Proc Natl Acad Sci, vol.114, pp.12566-12571, 2017.

J. M. Gonzalez, . Jr, B. J. Brown, and B. C. Carlton, Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus, Proc Natl Acad Sci, vol.79, pp.6951-6955, 1982.

D. S. Gusmao, A. V. Santos, D. C. Marini, S. Russo-ede, A. M. Peixoto et al., First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae): New perspectives for an insect-bacteria association, Mem Inst Oswaldo Cruz, vol.102, pp.919-924, 2007.

D. S. Gusmao, A. V. Santos, D. C. Marini, M. Bacci, . Jr et al., Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut, Acta Trop, vol.115, pp.275-281, 2010.

M. G. Guzman and E. Harris, Dengue. Lancet, vol.385, pp.453-465, 2015.

A. D. Haddow, H. Guzman, V. L. Popov, T. G. Wood, S. G. Widen et al., First isolation of Aedes flavivirus in the western hemisphere and evidence of vertical transmission in the mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae), Virology, vol.440, pp.134-139, 2013.

R. Halbach, S. Junglen, and R. P. Van-rij, Mosquito-specific and mosquito-borne viruses: Evolution, infection, and host defense, Curr Opin Insect Sci, vol.22, pp.16-27, 2017.

T. S. Haselkorn, T. A. Markow, and N. A. Moran, Multiple introductions of the Spiroplasma bacterial endosymbiont into Drosophila, Mol Ecol, vol.18, pp.1294-1305, 2009.

S. Hegde, K. Khanipov, L. Albayrak, G. Golovko, M. Pimenova et al., Microbiome interaction networks and community structure from laboratory-reared and fieldcollected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquito vectors. Front Microbiol, vol.9, p.2160, 2018.

K. Hermanns, F. Zirkel, A. Kopp, M. Marklewitz, I. B. Rwego et al., Discovery of a novel alphavirus related to Eilat virus, J Gen Virol, vol.98, pp.43-49, 2017.

J. K. Herren, J. C. Paredes, F. Schupfer, and B. Lemaitre, Vertical transmission of a Drosophila endosymbiont via cooption of the yolk transport and internalization machinery, MBio, vol.4, issue.2, pp.532-544, 2013.

G. L. Hughes, B. L. Dodson, R. M. Johnson, C. C. Murdock, H. Tsujimoto et al., Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes, Proc Natl Acad Sci, vol.111, pp.12498-12503, 2014.

J. D. Joyce, J. R. Nogueira, A. A. Bales, K. E. Pittman, and J. R. Anderson, Interactions between La Crosse virus and bacteria isolated from the digestive tract of Aedes albopictus (Diptera: Culicidae), J Med Entomol, vol.48, pp.389-394, 2011.

N. Jupatanakul, S. Sim, and G. Dimopoulos, The insect microbiome modulates vector competence for arboviruses, Viruses, vol.6, pp.4294-4313, 2014.

H. Kajimura and N. Hijii, Dynamics of the fungal symbionts in the gallery system and the mycangia of the ambrosia beetle, Xylosandrus mutilatus (Blandford) (Coleoptera, Scolytidae) in relation to its life-history, Ecol Res, vol.7, pp.107-117, 1992.

H. K. Kaya and R. Gaugler, Entomopathogenic nematodes, Annu Rev Entomol, vol.38, pp.181-206, 1993.

J. L. Kenney, O. D. Solberg, S. A. Langevin, and A. C. Brault, Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses, J Gen Virol, vol.95, pp.2796-2808, 2014.

J. C. Koella and P. Agnew, Blood-feeding success of the mosquito Aedes aegypti depends on the transmission route of its parasite Edhazardia aedis, Oikos, vol.78, pp.311-316, 1997.

S. Kumar, A. Molina-cruz, L. Gupta, J. Rodrigues, and C. Barillas-mury, A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae, Science, vol.327, pp.1644-1648, 2010.

R. Kuwata, H. Isawa, K. Hoshino, T. Sasaki, M. Kobayashi et al., Analysis of mosquito-borne flavivirus superinfection in Culex tritaeniorhynchus (Diptera: Culicidae) cells persistently infected with Culex Flavivirus (Flaviviridae), J Med Entomol, vol.52, pp.222-229, 2015.

L. Lantova and P. Volf, Mosquito and sand fly gregarines of the genus Ascogregarina and Psychodiella (Apicomplexa: Eugregarinorida, Aseptatorina)-overview of their taxonomy, life cycle, host specificity and pathogenicity, Infect Genet Evol, vol.28, pp.616-627, 2014.

J. M. Lindh, A. K. Borg-karlson, and I. Faye, Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water, Acta Trop, vol.107, pp.242-250, 2008.

H. Liu, M. H. Li, Y. G. Zhai, W. S. Meng, X. H. Sun et al., Banna virus, vol.16, pp.514-517, 1987.

L. M. Lorenz and J. C. Koella, The microsporidian parasite Vavraia culicis as a potential late life-acting control agent of malaria, Evol Appl, vol.4, pp.783-790, 2011.

S. Majambere, S. W. Lindsay, C. Green, B. Kandeh, and U. Fillinger, Microbial larvicides for malaria control in the Gambia, Malar J, vol.6, p.76, 2007.

M. V. Mancini, C. Damiani, A. Accoti, M. Tallarita, E. Nunzi et al., , 2018.

, Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing, BMC Microbiol, vol.18, p.126

S. Manguin, M. J. Bangs, J. Pothikasikorn, and T. Chareonviriyaphap, Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes, Infect Genet Evol, vol.10, pp.159-177, 2010.

M. Marklewitz and S. Junglen, Evolutionary and ecological insights into the emergence of arthropod-borne viruses, Acta Trop, vol.190, pp.52-58, 2018.

E. M. Mccray, . Jr, R. W. Fay, and H. F. Schoof, The bionomics of Lankesteria culicis and Aedes aegypti, J Invertebr Pathol, vol.16, pp.42-53, 1970.

C. M. Mcmillen and A. L. Hartman, Rift Valley fever in animals and humans: Current perspectives, Antiviral Res, vol.156, pp.29-37, 2018.

S. Meister, B. Agianian, F. Turlure, A. Relogio, I. Morlais et al., Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites, PLoS Pathog, vol.5, p.1000542, 2009.
URL : https://hal.archives-ouvertes.fr/ird-02896972

G. Minard, F. H. Tran, F. N. Raharimalala, E. Hellard, P. Ravelonandro et al., , 2013.

, Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar, FEMS Microbiol Ecol, vol.83, pp.63-73

R. M. Moll, W. S. Romoser, M. C. Modrzakowski, A. C. Moncayo, and K. Lerdthusnee, Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis, J Med Entomol, vol.38, pp.29-32, 2001.

T. P. Monath and P. F. Vasconcelos, Yellow fever, J Clin Virol, vol.64, pp.160-173, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02709204

N. A. Moran and T. Jarvik, Lateral transfer of genes from fungi underlies carotenoid production in aphids, Science, vol.328, pp.624-627, 2010.

D. T. Mourya, D. K. Singh, P. Yadav, M. D. Gokhale, P. V. Barde et al., Role of gregarine parasite Ascogregarina culicis (Apicomplexa: Lecudinidae) in the maintenance of Chikungunya virus in vector mosquito, J Eukaryot Microbiol, vol.50, pp.379-382, 2003.

L. Mousson, K. Zouache, C. Arias-goeta, V. Raquin, P. Mavingui et al., The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus, PLoS Negl Trop Dis, vol.6, p.1989, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01680937

L. E. Munstermann and D. M. Wesson, First record of Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) in North American Aedes albopictus, J Am Mosqu Control Assoc, vol.6, pp.235-243, 1990.

D. Musso and D. J. Gubler, Zika Virus, Clin Microbiol Rev, vol.29, pp.487-524, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02263641

E. J. Muturi, J. J. Bara, A. P. Rooney, and A. K. Hansen, Midgut fungal and bacterial microbiota of Aedes triseriatus and Aedes japonicus shift in response to La Crosse virus infection, Mol Ecol, vol.25, pp.4075-4090, 2016.

R. Nartey, E. Owusu-dabo, T. Kruppa, S. Baffour-awuah, A. Annan et al., Use of Bacillus thuringiensis var israelensis as a viable option in an Integrated Malaria Vector Control Programme in the Kumasi Metropolis, Ghana, Parasit Vectors, 6, Proc Natl Acad Sci, vol.109, pp.14622-14627, 2012.

J. L. Nation, Insect physiology and biochemistry, 2016.

J. H. Oliveira, R. L. Goncalves, F. A. Lara, F. A. Dias, A. C. Gandara et al., Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota, PLoS Pathog, vol.7, p.1001320, 2011.

J. Osei-poku, C. M. Mbogo, W. J. Palmer, and F. M. Jiggins, Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya, Mol Ecol, vol.21, pp.5138-5150, 2012.

X. Pan, G. Zhou, J. Wu, G. Bian, P. Lu et al., Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti, Proc Natl Acad Sci, vol.109, pp.23-31, 2012.

Y. Park and Y. Kim, Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae, J Insect Physiol, vol.46, pp.1469-1476, 2000.

C. D. Patil, S. V. Patil, B. K. Salunke, and R. B. Salunkhe, Prodigiosin produced by Serratia marcescens NMCC46 as a mosquito larvicidal agent against Aedes aegypti and Anopheles stephensi, Parasitol Res, vol.109, pp.1179-1187, 2011.

J. Patterson, M. Sammon, and M. Garg, Dengue, Zika and Chikungunya: Emerging arboviruses in the new world, West J Emerg Med, vol.17, pp.671-679, 2016.

E. G. Platzer, Mermithid nematodes, J Am Mosq Control Assoc, vol.23, pp.58-64, 2007.

L. Ponnusamy, K. Boroczky, D. M. Wesson, C. Schal, and C. S. Apperson, Bacteria stimulate hatching of yellow fever mosquito eggs, PloS one, vol.6, p.24409, 2011.

D. A. Popko, J. A. Henke, B. A. Mullens, and W. E. Walton, Evaluation of two entomopathogenic fungi for control of Culex quinquefasciatus (Diptera: Culicidae) in underground storm drains in the Coachella Valley, J Med Entomol, vol.55, pp.654-665, 2018.

C. B. Pumpuni, M. S. Beier, J. P. Nataro, L. D. Guers, and J. R. Davis, Plasmodium falciparum: Inhibition of sporogonic development in Anopheles stephensi by Gram-negative bacteria, Exp Parasitol, vol.77, pp.195-199, 1993.

J. L. Ramirez, J. Souza-neto, R. Torres-cosme, J. Rovira, A. Ortiz et al., Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence, PLoS Negl Trop Dis, vol.6, p.1561, 2012.

J. L. Ramirez, S. M. Short, A. C. Bahia, R. G. Saraiva, Y. Dong et al., , 2014.

, Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities, PLoS Pathog, vol.10, 1004398.

J. L. Ramirez, A. B. Barletta, and C. V. Barillas-mury, Molecular mechanisms mediating immune priming in Anopheles gambiae mosquitoes, In: Arthropod vector: Controller of disease transmission, vol.1, pp.91-100, 2017.

C. M. Ranger, P. H. Biedermann, V. Phuntumart, G. U. Beligala, S. Ghosh et al., Symbiont selection via alcohol benefits fungus farming by ambrosia beetles, Proc Natl Acad Sci, vol.115, pp.4447-4452, 2018.

A. Rani, A. Sharma, R. Rajagopal, T. Adak, and R. K. Bhatnagar, Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and cultureindependent methods in lab-reared and field-collected Anopheles stephensi -an Asian malarial vector, BMC Microbiol, vol.9, p.96, 2009.

W. K. Reeves, Oviposition by Aedes aegypti (Diptera: Culicidae) in relation to conspecific larvae infected with internal symbiotes, J Vector Ecol, vol.29, pp.159-163, 2004.

F. Reyes-villanueva, J. J. Becnel, and J. F. Butler, Susceptibility of Aedes aegypti and Aedes albopictus larvae to Ascogregarina culicis and Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) from Florida, J Invertebr Pathol, vol.84, pp.47-53, 2003.

G. Rezza, R. Chen, and S. C. Weaver, O'nyong-nyong fever: A neglected mosquito-borne viral disease, Pathog Glob Health, vol.111, pp.271-275, 2017.

F. H. Rodgers, M. Gendrin, C. A. Wyer, and G. K. Christophides, Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes, PLoS Pathog, p.1006391, 2017.

H. Romo, J. L. Kenney, B. J. Blitvich, A. C. Brault, O. Romoli et al., Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus, The tripartite interactions between the mosquito, its microbiota and Plasmodium. Parasit Vectors, vol.7, p.11, 0200.

M. J. Roossinck, D. P. Martin, and P. Roumagnac, Plant virus metagenomics: Advances in virus discovery, Phytopathology, vol.105, pp.716-727, 2015.

P. Rossi, I. Ricci, A. Cappelli, C. Damiani, U. Ulissi et al., Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors, Parasit Vectors, vol.8, p.278, 2015.

C. M. Roundy, S. R. Azar, S. L. Rossi, S. C. Weaver, and N. Vasilakis, Insect-specific viruses: A historical overview and recent developments, Adv Virus Res, vol.98, pp.119-146, 2017.

L. E. Rozemoon, The relation of bacteria and bacterial filtrates to the development of mosquito larvae, Am J Hyg, vol.21, pp.167-179, 1935.

T. Ruang-areerate and P. Kittayapong, Wolbachia transinfection in Aedes aegypti: A potential gene driver of dengue vectors, Proc Natl Acad Sci, vol.103, pp.12534-12539, 2006.

R. Saiyasombat, B. G. Bolling, A. C. Brault, L. C. Bartholomay, and B. J. Blitvich, Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae), J Med Entomol, vol.48, pp.1031-1038, 2011.

E. Schnepf, N. Crickmore, J. Van-rie, D. Lereclus, J. Baum et al., Bacillus thuringiensis and its pesticidal crystal proteins, Microbiol Mol Biol Rev, vol.62, pp.775-806, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02696151

E. J. Scholte, B. N. Njiru, R. C. Smallegange, W. Takken, and B. G. Knols, Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae mopathogenic fungi for mosquito control: A review, J Insect Sci, vol.4, p.19, 2003.

E. J. Scholte, B. G. Knols, R. A. Samson, and W. Tzakken, Entomologic fungi for mosquito control. A review, J Insect Sci, vol.4, p.19, 2004.

E. J. Scholte, W. Takken, and B. G. Knols, Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae, Acta Trop, vol.102, pp.151-158, 2007.

N. Segata, F. Baldini, J. Pompon, W. S. Garrett, D. T. Truong et al., The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender-and swarmenriched microbial biomarkers, Sci Rep, vol.6, p.24207, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02003250

J. L. Shane, C. L. Grogan, C. Cwalina, and D. J. Lampe, Blood meal-induced inhibition of vector-borne disease by transgenic microbiota, Nat Commun, vol.9, p.4127, 2018.

L. L. Shapiro, S. A. Whitehead, and M. B. Thomas, Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria, PLoS Biol, vol.15, p.2003489, 2017.

P. Sharma, S. Sharma, R. K. Maurya, T. Das-de, T. Thomas et al., Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies, Parasit Vectors, vol.7, p.235, 2014.

W. R. Shaw, P. Marcenac, L. M. Childs, C. O. Buckee, F. Baldini et al., Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development, PLoS Negl Trop Dis, vol.7, p.5677, 2016.

J. P. Siegel, R. J. Novak, and J. V. Maddox, Effects of Ascogregarina barretti (Eugregarinida: Lecudinidae) infection on Aedes triseriatus (Diptera: Culicidae) in Illinois, J Med Entomol, vol.29, pp.968-973, 1992.

T. W. Simmons and M. L. Hutchinson, A critical review of all known published records for water mite (Acari: Hydrachnidiae) and mosquito (Diptera: Culicidae) parasitic associations from 1975 to present, J Med Entomol, vol.53, pp.737-752, 2016.

B. P. Smith and S. B. Mciver, The impact of Arrenurus danbyensis Mullen, 1984.

, Arrenuridae) on a population of Coquillettidia perturbans (Walker) (Diptera: Culicidae), Can J Zool, vol.62, pp.1121-1134

A. Soltani, H. Vatandoost, M. A. Oshaghi, A. A. Enayati, and A. R. Chavshin, The role of midgut symbiotic bacteria in resistance of Anopheles stephensi (Diptera: Culicidae) to organophosphate insecticides, Pathog Glob Health, vol.111, pp.289-296, 2017.

B. Stecher and W. D. Hardt, Mechanisms controlling pathogen colonization of the gut, Curr Opin Microbiol, vol.14, pp.82-91, 2011.

A. Steyn, F. Roets, and A. Botha, Yeasts associated with Culex pipiens and Culex theileri mosquito larvae and the effect of selected yeast strains on the ontogeny of Culex pipiens, Microb Ecol, vol.71, pp.747-760, 2016.

V. Stollar and V. L. Thomas, An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells, Virology, vol.64, pp.367-377, 1975.

M. R. Strand, Composition and functional roles of the gut microbiota in mosquitoes, Curr Opin Insect Sci, vol.28, pp.59-65, 2018.

I. Sulaiman, Infectivity and pathogenicity of Ascogregarina culicis (Eugregarinida: Lecudinidae) to Aedes aegypti (Diptera: Culicidae), J Med Entomol, vol.29, pp.1-4, 1992.

R. K. Suryawanshi, C. D. Patil, H. P. Borase, C. P. Narkhede, B. K. Salunke et al., Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action, Pestic Biochem Physiol, vol.123, pp.49-55, 2015.

M. T. Tchioffo, A. Boissière, L. Abate, S. E. Nsango, A. N. Bayibeki et al., An epidemiologically successful Escherichia coli sequence type modulates Plasmodium falciparum infection in the mosquito midgut, Infect Genet Evol, vol.43, pp.22-30, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02003695

O. Terenius, J. M. Lindh, K. Eriksson-gonzales, L. Bussiere, A. T. Laugen et al., , 2012.

, Midgut bacterial dynamics in Aedes aegypti, FEMS Microbiol Ecol, vol.80, pp.556-565

P. Thongsripong, J. A. Chandler, A. B. Green, P. Kittayapong, B. A. Wilcox et al., Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases, Ecol Evol, vol.8, pp.1352-1368, 2018.

M. Tseng, Ascogregarine parasites as possibe biocontrol agents of mosquitoes, J Am Mosq Control Assoc, vol.23, pp.30-34, 2007.

C. A. Valero-jimenez, A. J. Debets, J. A. Van-kan, S. E. Schoustra, W. Takken et al., Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes, Proc Natl Acad Sci, vol.13, pp.457-465, 2014.

M. Valzano, V. Cecarini, A. Cappelli, A. Capone, J. Bozic et al., A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites, Lancet Infect Dis, vol.15, pp.89-94, 2013.

N. Vasilakis and R. B. Tesh, Insect-specific viruses and their potential impact on arbovirus transmission, Curr Opin Virol, vol.15, pp.69-74, 2015.

F. E. Vega, N. V. Meyling, J. J. Luangsa-ard, and M. Blackwell, Fungal entomopathogens, In: Insect Pathology, p.2, 2012.

N. O. Verhulst, R. Andriessen, U. Groenhagen, G. Bukovinszkine-kiss, S. Schulz et al., Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria, PloS One, vol.5, p.15829, 2010.

L. E. Villegas, T. B. Campolina, N. R. Barnabe, A. S. Orfano, B. A. Chaves et al., Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis, PloS One, p.190352, 2018.

K. J. Vogel, L. Valzania, K. L. Coon, M. R. Brown, M. R. Strand et al., Effects of Ascogregarina barretti (Eugregarinida: Lecudinidae) infection on emergence success, development time, and size of Aedes triseriatus (Diptera: Culicidae) in microcosms and tires, PLoS Negl Trop Dis, vol.11, pp.303-309, 1987.

Y. Wang, T. M. Gilbreath, P. Kukutla, G. Yan, and J. Xu, Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya, PloS One, vol.6, p.24767, 2011.

S. Wang, A. K. Ghosh, N. Bongio, K. A. Stebbings, D. J. Lampe et al., Fighting malaria with engineered symbiotic bacteria from vector mosquitoes, Proc Natl Acad Sci, vol.109, pp.12734-12739, 2012.

Y. Wang, Y. Wang, J. Zhang, W. Xu, J. Zhang et al., Ability of TEP1 in intestinal flora to modulate natural resistance of Anopheles dirus, Exp Parasitol, vol.134, pp.460-465, 2013.

S. Wang, A. L. Dos-santos, W. Huang, K. C. Liu, M. A. Oshaghi et al., Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria, Science, vol.357, pp.1399-1402, 2017.

G. Wei, Y. Lai, G. Wang, H. Chen, F. Li et al., Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality, Proc Natl Acad Sci, vol.114, pp.5994-5999, 2017.

J. H. Werren, L. Baldo, and M. E. Clark, Wolbachia: Master manipulators of invertebrate biology, Nat Rev Microbiol, vol.6, pp.741-751, 2008.

A. E. Whitfield, B. W. Falk, and D. Rotenberg, Insect vectormediated transmission of plant viruses, Virology, pp.278-289, 2015.

R. S. Wotton, D. T. Chaloner, C. A. Yardley, and R. W. Merritt, Growth of Anopheles mosquito larvae on dietary microbiota in aquatic surface microlayers, Med Vet Entomol, vol.11, pp.65-70, 1997.

M. Yiallouros, V. Storch, I. Thiery, and N. Becker, Efficacy of Clostridium bifermentans serovar Malaysia on target and nontarget organisms, J Am Mosq Control Assoc, vol.10, pp.51-55, 1994.

S. I. Yun and Y. M. Lee, Japanese encephalitis: The virus and vaccines, Hum Vaccin Immunother, vol.10, pp.263-279, 2014.

K. Zouache, D. Voronin, V. Tran-van, L. Mousson, A. B. Failloux et al., Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus, PloS One, vol.4, p.6388, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01681435

K. Zouache, F. N. Raharimalala, V. Raquin, V. Tran-van, L. H. Raveloson et al., Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar, FEMS Microbiol Ecol, vol.75, pp.377-389, 2011.
URL : https://hal.archives-ouvertes.fr/halsde-00724643

K. Zouache, R. J. Michelland, A. B. Failloux, G. L. Grundmann, and P. Mavingui, Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector, Mol Ecol, vol.21, pp.2297-2309, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01681000

K. Heu and M. Et-gendrin, Le microbiote de moustique et son influence sur la transmission vectorielle, Biologie Aujourd'hui, vol.212, pp.119-136, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02919246