Y. Wang, . Gilbreath-tm-3rd, P. Kukutla, G. Yan, and J. Xu, Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya, PLoS One, vol.6, issue.9, p.24767, 2011.

J. A. Chandler, R. M. Liu, and S. N. Bennett, RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi, Front Microbiol, vol.6, p.185, 2015.

M. T. Tchioffo, A. Boissiere, L. Abate, S. E. Nsango, A. N. Bayibeki et al., Dynamics of bacterial community composition in the malaria mosquito's epithelia, Front Microbiol, vol.6, p.1500, 2015.

L. Gonzalez-ceron, F. Santillan, M. H. Rodriguez, D. Mendez, and J. E. Hernandez-avila, Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development, J Med Entomol, vol.40, issue.3, pp.371-375, 2003.

Y. Dong, F. Manfredini, and G. Dimopoulos, Implication of the mosquito midgut microbiota in the defense against malaria parasites, PLoS Pathog, vol.5, issue.5, p.1000423, 2009.

S. Yoshida, D. Ioka, H. Matsuoka, H. Endo, and A. Ishii, Bacteria expressing singlechain immunotoxin inhibit malaria parasite development in mosquitoes, Mol Biochem Parasitol, vol.113, issue.1, pp.89-96, 2001.

M. A. Riehle, C. K. Moreira, D. Lampe, C. Lauzon, and M. Jacobs-lorena, Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut, Int J Parasitol, vol.37, issue.6, pp.595-603, 2007.

S. Wang, A. Dos-santos, W. Huang, K. C. Liu, M. A. Oshaghi et al., Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria, Science, vol.357, issue.6358, pp.1399-402, 2017.

J. M. Lindh, A. K. Borg-karlson, and F. I. , Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water, Acta Trop, vol.107, issue.3, pp.242-50, 2008.

K. L. Coon, K. J. Vogel, M. R. Brown, and M. R. Strand, Mosquitoes rely on their gut microbiota for development, Mol Ecol, vol.23, issue.11, pp.2727-2766, 2014.

G. Favia, I. Ricci, C. Damiani, N. Raddadi, E. Crotti et al., Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector, Proc Natl Acad Sci, vol.104, issue.21, pp.9047-51, 2007.

C. B. Pumpuni, M. S. Beier, J. P. Nataro, L. D. Guers, and J. R. Davis, Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by Gram-negative bacteria, Exp Parasitol, vol.77, issue.2, pp.195-204, 1993.

C. M. Cirimotich, Y. Dong, A. M. Clayton, S. L. Sandiford, J. A. Souza-neto et al., Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae, Science, vol.332, issue.6031, pp.855-863, 2011.

H. Bando, K. Okado, W. M. Guelbeogo, A. Badolo, H. Aonuma et al., Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity, Sci Rep, vol.3, p.1641, 2013.

S. Meister, B. Agianian, F. Turlure, A. Relogio, I. Morlais et al., Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites, PLoS Pathog, vol.5, issue.8, p.1000542, 2009.
URL : https://hal.archives-ouvertes.fr/ird-02896972

A. C. Bahia, Y. Dong, B. J. Blumberg, G. Mlambo, A. Tripathi et al., Exploring Anopheles gut bacteria for Plasmodium blocking activity, Environ Microbiol, vol.16, issue.9, pp.2980-94, 2014.

M. Gendrin, F. H. Rodgers, R. S. Yerbanga, J. B. Ouedraogo, M. G. Basanez et al., Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria, Nat Commun, vol.6, p.5921, 2015.

Y. Dong, S. Das, C. Cirimotich, J. A. Souza-neto, K. J. Mclean et al., Engineered Anopheles immunity to Plasmodium infection, PLoS Pathog, vol.7, issue.12, p.1002458, 2011.

Y. Wang, Y. Wang, J. Zhang, W. Xu, J. Zhang et al., Ability of TEP1 in intestinal flora to modulate natural resistance of Anopheles dirus, Exp Parasitol, vol.134, issue.4, pp.460-465, 2013.

N. J. Dennison, R. G. Saraiva, C. M. Cirimotich, G. Mlambo, E. F. Mongodin et al., Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal interactions that impact vector competence, Malar J, vol.15, issue.1, p.425, 2016.

A. C. Bahia, J. H. Oliveira, M. S. Kubota, H. R. Araujo, J. B. Lima et al., The role of reactive oxygen species in Anopheles aquasalis response to Plasmodium vivax infection, PLoS One, vol.8, issue.2, p.57014, 2013.

J. L. Ramirez, S. M. Short, A. C. Bahia, R. G. Saraiva, Y. Dong et al., Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities, PLoS Pathog, vol.10, issue.10, p.1004398, 2014.

M. Valzano, V. Cecarini, A. Cappelli, A. Capone, J. Bozic et al., A yeast strain associated to Anopheles mosquitoes produces a toxin able to kill malaria parasites, Malar J, vol.15, p.21, 2016.

F. H. Rodgers, M. Gendrin, C. Wyer, and G. K. Christophides, Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes, PLoS Pathog, vol.13, issue.5, p.1006391, 2017.

M. Huber, E. Cabib, and L. H. Miller, Malaria parasite chitinase and penetration of the mosquito peritrophic membrane, Proc Natl Acad Sci USA, vol.88, issue.7, pp.2807-2817, 1991.

Y. L. Tsai, R. E. Hayward, R. C. Langer, D. A. Fidock, and J. M. Vinetz, Disruption of Plasmodium falciparum chitinase markedly impairs parasite invasion of mosquito midgut, Infect Immun, vol.69, issue.6, pp.4048-54, 2001.

P. Kukutla, B. G. Lindberg, D. Pei, M. Rayl, W. Yu et al., Insights from the genome annotation of Elizabethkingia anophelis from the malaria vector Anopheles gambiae, PLoS One, vol.9, issue.5, p.97715, 2014.

E. P. Caragata, E. Rances, L. M. Hedges, A. W. Gofton, K. N. Johnson et al., Dietary cholesterol modulates pathogen blocking by Wolbachia, PLoS Pathog, vol.9, issue.6, p.1003459, 2013.

C. Lavazec, C. Boudin, R. Lacroix, S. Bonnet, A. Diop et al., Carboxypeptidases B of Anopheles gambiae as targets for a Plasmodium falciparum transmission-blocking vaccine, Infect Immun, vol.75, issue.4, pp.1635-1677, 2007.

M. Gendrin, F. Turlure, F. H. Rodgers, A. Cohuet, I. Morlais et al., The peptidoglycan recognition proteins PGRPLA and PGRPLB regulate Anopheles immunity to bacteria and affect infection by Plasmodium, J Innate Immun, vol.9, pp.333-375, 2017.
URL : https://hal.archives-ouvertes.fr/ird-02896672

;. Vectorbase and . Rodgers, RNA-Seq Experiment -Antibiotic treatment of midgut microbiota during blood feeding, 2017.

S. Kumar, A. Molina-cruz, L. Gupta, J. Rodrigues, and C. Barillas-mury, A peroxidase/ dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae, Science, vol.327, issue.5973, pp.1644-1652, 2010.

J. Jadin, Role of bacteria in the digestive tube of insects, vectors of plasmodidae and trypanosomidae, Ann Soc Belges Med Trop Parasitol Mycol, vol.47, issue.4, pp.331-373, 1967.

D. L. Smith, K. E. Battle, S. I. Hay, C. M. Barker, T. W. Scott et al., Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens, PLoS Pathog, vol.8, issue.4, p.1002588, 2012.

A. Pike, Y. Dong, N. B. Dizaji, A. Gacita, E. F. Mongodin et al., Changes in the microbiota cause genetically modified Anopheles to spread in a population, Science, vol.357, issue.6358, pp.1396-1405, 2017.

A. Boissiere, M. T. Tchioffo, D. Bachar, L. Abate, M. A. Nsango et al., Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection, PLoS Pathog, vol.8, issue.5, p.1002742, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01546176

G. Gimonneau, M. T. Tchioffo, L. Abate, A. Boissiere, P. H. Awono-ambene et al., Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages, Infect Genet Evol, vol.28, pp.715-739, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01546167

S. Stathopoulos, D. E. Neafsey, M. K. Lawniczak, M. A. Muskavitch, and G. K. Christophides, Genetic dissection of Anopheles gambiae gut epithelial responses to Serratia marcescens, PLoS Pathog, vol.10, issue.3, p.1003897, 2014.

J. Akorli, M. Gendrin, N. A. Pels, D. Yeboah-manu, G. K. Christophides et al., Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana, PLoS One, vol.11, issue.6, p.157529, 2016.

M. Buck, L. K. Nilsson, C. Brunius, R. K. Dabire, R. Hopkins et al., Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes, Sci Rep, vol.6, p.22806, 2016.

E. Novakova, D. C. Woodhams, S. M. Rodriguez-ruano, R. M. Brucker, J. W. Leff et al., Mosquito microbiome dynamics, a background for prevalence and seasonality of West Nile Virus, Front Microbiol, vol.8, p.526, 2017.

O. Terenius, C. D. De-oliveira, W. D. Pinheiro, W. P. Tadei, A. A. James et al., 16S rRNA gene sequences from bacteria associated with adult Anopheles darlingi (Diptera: Culicidae) mosquitoes, J Med Entomol, vol.45, issue.1, pp.172-177, 2008.

A. Rani, A. Sharma, R. Rajagopal, T. Adak, and R. K. Bhatnagar, Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi -an Asian malarial vector, BMC Microbiol, vol.9, p.96, 2009.

D. Djadid, N. Jazayeri, H. Raz, A. Favia, G. Ricci et al., Identification of the midgut microbiota of An. stephensi and An. maculipennis for their application as a paratransgenic tool against malaria, PLoS One, vol.6, issue.12, p.28484, 2011.

J. Osei-poku, C. M. Mbogo, W. J. Palmer, and F. M. Jiggins, Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya, Mol Ecol, vol.21, issue.20, pp.5138-50, 2012.

S. Manguin, C. T. Ngo, K. T. Tainchum, W. Juntarajumnong, T. Chareonviriyaphap et al., Bacterial biodiversity in midguts of Anopheles mosquitoes, malaria vectors in southeast Asia, vol.18, 2013.

M. Gendrin and G. K. Christophides, The Anopheles mosquito microbiota and their impact on pathogen transmission, Manguin S, Anopheles mosquitoes -New insights into malaria vectors, 2013.

I. Linenberg, G. K. Christophides, and M. Gendrin, Larval diet affects mosquito development and permissiveness to Plasmodium infection, Sci Rep, vol.6, p.38230, 2016.

S. C. Straif, C. N. Mbogo, A. M. Toure, E. D. Walker, M. Kaufman et al., Midgut bacteria in Anopheles gambiae and An. funestus (Diptera: Culicidae) from Kenya and Mali, J Med Entomol, vol.35, issue.3, pp.222-228, 1998.

L. Zhuang, Z. Zhang, A. X. Fan, H. Ma, M. Anderson et al., An efficient strategy of screening for pathogens in wild-caught ticks and mosquitoes by reusing small RNA deep sequencing data, PLoS One, vol.9, issue.3, p.90831, 2014.

J. R. Fauver, N. D. Grubaugh, B. J. Krajacich, J. Weger-lucarelli, S. M. Lakin et al., West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses, Virology, vol.498, pp.288-99, 2016.

E. Belda, B. Coulibaly, A. Fofana, A. H. Beavogui, S. F. Traore et al., Preferential suppression of Anopheles gambiae host sequences allows detection of the mosquito eukaryotic microbiome, Sci Rep, vol.7, issue.1, p.3241, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01570222

E. Da-s-pereira, M. I. Sarquis, R. L. Ferreira-keppler, N. Hamada, and Y. B. Alencar, Filamentous fungi associated with mosquito larvae (Diptera: Culicidae) in municipalities of the Brazilian Amazon, Neotrop Entomol, vol.38, issue.3, pp.352-361, 2009.

I. Ricci, C. Damiani, P. Scuppa, M. Mosca, E. Crotti et al., The yeast Wickerhamomyces anomalus (Pichia anomala) inhabits the midgut and reproductive system of the Asian malaria vector Anopheles stephensi, Environ Microbiol, vol.13, issue.4, pp.911-932, 2011.

J. Bozic, A. Capone, D. Pediconi, P. Mensah, A. Cappelli et al., Mosquitoes can harbour yeasts of clinical significance and contribute to their environmental dissemination, Environ Microbiol Rep, vol.9, issue.5, pp.642-650, 2017.

I. Bargielowski and J. C. Koella, A possible mechanism for the suppression of Plasmodium berghei development in the mosquito Anopheles gambiae by the microsporidian Vavraia culicis, PLoS One, vol.4, issue.3, p.4676, 2009.

Y. I. Anglero-rodriguez, B. J. Blumberg, Y. Dong, S. L. Sandiford, A. Pike et al., A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection, Sci Rep, vol.6, p.34084, 2016.

M. Vayssier-taussat, A. E. Citti, C. Cosson, J. F. Jacques, M. A. Lebrun et al., Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics, Front Cell Infect Microbiol, vol.4, p.29, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01153583

N. M. Abraham, L. Liu, B. L. Jutras, A. K. Yadav, S. Narasimhan et al., Pathogen-mediated manipulation of arthropod microbiota to promote infection, Proc Natl Acad Sci, vol.114, issue.5, pp.781-90, 2017.

G. Bian, D. Joshi, Y. Dong, P. Lu, G. Zhou et al., Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection, Science, vol.340, issue.6133, pp.748-51, 2013.

F. Baldini, N. Segata, J. Pompon, P. Marcenac, W. R. Shaw et al., Evidence of natural Wolbachia infections in field populations of Anopheles gambiae, Nat Commun, vol.5, p.3985, 2014.

G. Minard, F. H. Tran, A. Dubost, V. Tran-van, P. Mavingui et al., Pyrosequencing 16S rRNA genes of bacteria associated with wild tiger mosquito Aedes albopictus: a pilot study, Front Cell Infect Microbiol, vol.4, p.59, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02487453

N. Segata, F. Baldini, J. Pompon, W. S. Garrett, D. T. Truong et al., The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender-and swarm-enriched microbial biomarkers, Sci Rep, vol.6, p.24207, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02003250

G. L. Hughes, B. L. Dodson, R. M. Johnson, C. C. Murdock, H. Tsujimoto et al., Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes, Proc Natl Acad Sci, vol.111, issue.34, pp.12498-503, 2014.

P. Rossi, I. Ricci, A. Cappelli, C. Damiani, U. Ulissi et al., Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors, Parasit Vectors, vol.8, p.278, 2015.

P. Sharma, S. Sharma, R. K. Maurya, D. De, T. Thomas et al., Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies, Parasit Vectors, vol.7, p.235, 2014.

C. B. Pumpuni, J. Demaio, M. Kent, J. R. Davis, and J. C. Beier, Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development, Am J Trop Med Hyg, vol.54, issue.2, pp.214-222, 1996.

B. H. Noden, J. A. Vaughan, C. B. Pumpuni, and J. C. Beier, Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii, Parasitol Int, vol.60, issue.4, pp.440-446, 2011.

M. T. Tchioffo, A. Boissiere, T. S. Churcher, L. Abate, G. Gimonneau et al., Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria, PLoS One, vol.8, issue.12, p.81663, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01546172