K. L. Coon, K. J. Vogel, M. R. Brown, and M. R. Strand, Mosquitoes rely on their gut microbiota for development, Mol Ecol, vol.23, issue.11, pp.2727-2739, 2014.

M. A. Correa, B. Matusovsky, D. E. Brackney, and B. Steven, Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development, Nat Commun, vol.9, issue.1, p.4464, 2018.

L. B. Dickson, D. Jiolle, G. Minard, I. Moltini-conclois, S. Volant et al., Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector, Sci Adv, vol.3, issue.8, p.1700585, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01580399

K. L. Coon, M. R. Brown, and M. R. Strand, Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae), Parasit Vectors, vol.9, p.375, 2016.

C. M. Cirimotich, Y. Dong, A. M. Clayton, S. L. Sandiford, J. A. Souza-neto et al., Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae, Science, vol.332, pp.855-58, 2011.

A. Pike, Y. Dong, N. B. Dizaji, A. Gacita, E. F. Mongodin et al., Changes in the microbiota cause genetically modified Anopheles to spread in a population, Science, vol.357, issue.6358, pp.1396-1399, 2017.

J. Osei-poku, C. M. Mbogo, W. J. Palmer, and F. M. Jiggins, Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya, Mol Ecol, vol.21, pp.5138-5150, 2012.

J. L. Ramirez, J. Souza-neto, R. T. Cosme, J. Rovira, A. Ortiz et al., Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence, PLoS Negl Trop Dis, vol.6, issue.3, p.1561, 2012.

M. Gendrin and G. K. Christophides, The Anopheles mosquito microbiota and their impact on pathogen transmission, Manguin S (ed) Anopheles mosquitoes -New insights into malaria vectors. IntechOpen, 2013.

S. S. Charan, K. D. Pawar, C. V. Gavhale, C. V. Tikhe, N. S. Charan et al., Comparative analysis of midgut bacterial communities in three aedine mosquito species from dengue-endemic and non-endemic areas of Rajasthan, India. Med Vet Entomol, vol.30, pp.264-277, 2016.

K. N. Jannat and B. D. Roitberg, Effects of larval density and feeding rates on larval life history traits in Anopheles gambiae s.s. (Diptera: Culicidae), J Vector Ecol, vol.38, issue.1, pp.120-126, 2013.

C. Christiansen-jucht, P. E. Parham, A. Saddler, J. C. Koella, and M. G. Basáñez, Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s, Parasit Vectors, vol.7, p.489, 2014.

I. Linenberg, G. K. Christophides, and M. Gendrin, Larval diet affects mosquito development and permissiveness to Plasmodium infection, Sci Rep, vol.6, p.38230, 2016.

L. Valzania, V. G. Martinson, R. E. Harrison, B. M. Boyd, K. L. Coon et al., Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae, PLoS Negl Trop Dis, vol.12, issue.7, p.6638, 2018.

A. B. Hall, S. Basu, X. Jiang, Y. Qi, V. A. Timoshevskiy et al., A male-determining factor in the mosquito Aedes aegypti, Science, vol.348, pp.1268-1270, 2015.

A. N. Clements, B. W. Alto, M. H. Reiskind, and L. P. Lounibos, Size alters susceptibility of vectors to dengue virus infection and dissemination, Am J Trop Med Hyg, vol.1, issue.5, pp.688-695, 1992.

K. J. Vogel, L. Valzania, K. L. Coon, M. R. Brown, and M. R. Strand, Transcriptome sequencing reveals large-scale changes in sxenic Aedes aegypti larvae, PLoS Negl Trop Dis, vol.11, issue.1, p.5273, 2017.

S. E. Timmermann and H. Briegel, Larval growth and biosynthesis of reserves in mosquitoes, J Insect Physiol, vol.45, issue.5, pp.461-470, 1999.