E. Neiderlaender, Causes of death in Europe, 2006.

C. Garibaldi, Recent advances in radiation oncology, Ecancermedicalscience, vol.11, pp.1-19, 2017.

Y. Prezado, Proton minibeam radiation therapy spares normal rat brain: Long-term clinical, radiological and histopathological analysis, Sci. Rep, vol.7, pp.1-7, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01704960

M. Mohiuddin, High-dose spatially-fractionated radiation (GRID): A new paradigm in the management of advanced cancers, Int. J. Radiat. Oncol. Biol. Phys, vol.45, pp.721-727, 1999.

D. N. Slatkin, Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler, Proc. Natl Acad Sci, vol.92, pp.8783-8787, 1995.

F. A. Dilmanian, Interlaced X-ray microplanar beams: a radiosurgery approach with clinical potential, Proc. Natl. Acad. Sci. USA, vol.103, pp.9709-9714, 2006.

P. Deman, Monochromatic minibeams radiotherapy: From healthy tissue-sparing effect studies toward first experimental glioma bearing rats therapy, Int. J. Radiat. Oncol. Biol. Phys, vol.82, pp.693-700, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00850697

Y. Prezado, Tolerance to dose escalation in minibeam radiation therapy applied to normal rat brain: Long-term clinical, radiological and histopathological analysis, Radiat. Res, vol.184, pp.314-321, 2015.

Y. Prezado and G. R. Fois, Proton-minibeam radiation therapy: A proof of concept, Med. Phys, vol.40, p.31712, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01959767

S. Girdhani, R. Sachs, and L. Hlatky, Biological effects of proton radiation: What we know and don't know, Radiat. Res, vol.179, pp.257-272, 2013.

Y. Prezado, Proton minibeam radiation therapy widens the therapeutic index for high-grade gliomas, Sci. Rep, vol.8, p.16479, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01953164

Y. Prezado, Tumor control in RG2 glioma-bearing rats: A comparison between proton minibeam therapy and standard proton therapy, Int. J. Radiat. Oncol. Biol. Phys, vol.104, pp.266-271, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02144330

C. V. Vorhees and M. T. Williams, Morris water maze: procedures for assessing spatial and related forms of learning and memory, Nat. Protoc, vol.1, pp.848-858, 2006.

D. S. Olton, Mazes, maps, and memory, Am. Psychol, vol.34, issue.7, pp.583-596, 1979.

J. Ledoux, Emotion circuits in the brain, Annu. Rev. Neurosci, vol.23, pp.155-184, 2000.

M. Rivalan, S. H. Ahmed, and F. Dellu-hagedorn, Risk-prone individuals prefer the wrong options on a rat version of the Iowa Gambling task, Biol. Psychiatry, vol.66, pp.743-749, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01153589

N. Adjeroud, Reduced impact of emotion on choice behavior in presymptomatic BACHD rats, a transgenic rodent model for Huntington Disease, Neurobiol. Learn. Mem, vol.125, pp.249-257, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01240368

S. Höhn, Behavioral and in vivo electrophysiological evidence for presymptomatic alteration of prefrontostriatal processing in the transgenic rat model for huntington disease, J. Neurosci, vol.31, pp.8986-8997, 2011.

J. Love, JASP: Graphical statistical software for common statistical designs, J. Stat. Softw, vol.88, 2019.

P. Sampedro-piquero and A. Begega, Environmental enrichment as a positive behavioral intervention across the lifespan, Curr. Neuropharmacol, vol.15, pp.459-470, 2011.

, Scientific RepoRtS |, vol.10, p.13511, 2020.

C. Belka, W. Budach, R. D. Kortmann, and M. Bamberg, Radiation induced CNS toxicity-molecular and cellular mechanisms, Br. J. Cancer, vol.85, pp.1233-1239, 2001.

P. J. Tofilon and J. R. Fike, The radioresponse of the central nervous system: A dynamic process, Radiat. Res, vol.153, pp.357-370, 2000.

O. K. Abayomi, Pathogenesis of irradiation-induced cognitive dysfunction, Acta Oncol. (Madr), vol.35, pp.659-663, 1996.

J. M. Butler, S. R. Rapp, and E. G. Shaw, Managing the cognitive effects of brain tumor radiation therapy, Curr. Treat Opt. Oncol, vol.7, pp.517-523, 2006.

E. G. Shaw, Phase II study of donepezil in irradiated brain tumor patients: Effect on cognitive function, mood, and quality of life, J. Clin. Oncol, vol.24, pp.1415-1420, 2006.

L. Douw, Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: Long-term follow-up, Lancet Neurol, vol.8, pp.810-818, 2009.

K. Y. Hsiao, Cognitive function before and after intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma: A prospective study, Int. J. Radiat. Oncol. Biol. Phys, vol.77, pp.722-726, 2010.

D. D. Correa, Cognitive functions in primary CNS lymphoma after single or combined modality regimens, Neuro. Oncol, vol.14, pp.101-108, 2012.

I. Robinson, K. M. Fairhall, J. H. Hendry, and S. M. Shalet, Differential radiosensitivity of hypothalamo-pituitary function in the young adult rat, J. Endocrinol, vol.169, pp.519-526, 2001.

A. Schunior, An animal model to study toxicity of central nervous system therapy for childhood acute lymphoblastic leukemia: Effects on growth and craniofacial proportion an animal model to study toxicity of central nervous system therapy for childhood acute lymphobl, Cancer Res, vol.2, pp.6455-6460, 1990.

T. Sathyapalan and S. Dixit, Radiotherapy-induced hypopituitarism: A review, Expert Rev. Anticancer Ther, vol.12, pp.669-683, 2012.

V. Viswanathan, K. R. Pradhan, and E. A. Eugster, Pituitary hormone dysfunction after proton beam radiation therapy in children with brain tumors, Endocr Pr, vol.17, pp.891-896, 2011.

A. Semmler, An efficient method for fractionated whole rodent brain radiation, Neurol. Res, vol.35, pp.355-359, 2013.

M. S. Dulcich and R. E. Hartman, Pomegranate supplementation improves affective and motor behavior in mice after radiation exposure. Evid.-Based Complement, Alternat. Med, 2013.

S. J. Wong-goodrich, Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation, Can. Res, vol.70, issue.22, pp.9329-9338, 2013.

K. Roughton, M. Kalm, and K. Blomgren, Sex-dependent differences in behavior and hippocampal neurogenesis after irradiation to the young mouse brain, Eur. J. Neurosci, vol.36, issue.6, pp.2763-2772, 2012.

W. A. Tome, Hippocampal-dependent neurocognitive impairment following cranial irradiation observed in pre-clinical models: Current knowledge and possible future directions, Br. J. Radiol, 2015.

Y. Zou, Extracellular superoxide dismutase is important for hippocampal neurogenesis and preservation of cognitive functions after irradiation, Proc. Natl. Acad. Sci, vol.109, pp.21522-21527, 2012.

W. R. Brown, Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: A potential rat model of vascular dementia, J. Neurol. Sci, vol.257, pp.67-71, 2007.

N. Rao and A. A. , Therapeutic doses of cranial irradiation induce hippocampus-dependent cognitive deficits in young mice, J. Neurooncol, vol.105, pp.191-198, 2011.

V. K. Parihar, Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction, Antioxid. Redox Signal, vol.22, pp.78-91, 2015.

M. M. Acharya, Transplantation of human fetal-derived neural stem cells improves cognitive function following cranial irradiation, Cell Transplant, vol.23, pp.1255-1266, 2014.

W. A. Tome, A mouse model replicating hippocampal sparing cranial irradiation in humans: A tool for identifying new strategies to limit neurocognitive decline, Sci. Rep, vol.5, pp.1-11, 2015.

Y. Xie, Curcumin ameliorates cognitive deficits heavy ion irradiation-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways, Pharmacol. Biochem. Behav, vol.126, pp.181-186, 2014.

A. B. Shukitt-hale, Spatial learning and memory deficits induced by exposure to iron-56-particle radiation, Radiat. Res, vol.154, pp.28-33, 2000.

R. Rola, Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice, Exp. Neurol, vol.188, pp.316-330, 2004.

H. Hodges, Late behavioural and neuropathological effects of local brain irradiation in the rat, Behav. Brain Res, vol.91, pp.99-114, 1998.

A. M. Peiffer, Radiation induced cognitive impairment and altered diffusion tensor imaging in a juvenile rat model of cranial radiotherapy, Int. J. Radiat. Biol, vol.90, pp.799-806, 2014.

C. A. Denny, Drew, 4-6 week old adult-born hippocampal neurons influence novelty-evoked exploration and contextual fear conditioning, Hippocampus, vol.22, pp.1188-1201, 2012.

J. D. Cherry, J. P. Williams, M. K. O'banion, and J. A. Olschowka, Thermal injury lowers the threshold for radiation-induced neuroinflammation and cognitive dysfunction, Radiat. Res, vol.180, pp.398-406, 2013.

M. E. Forbes, M. Paitsel, J. D. Bourland, and D. R. Riddle, Systemic effects of fractionated, whole-brain irradiation in young adult and aging rats, Radiat Res, vol.180, pp.1-14, 2013.

R. Trivedi, Radiation-induced early changes in the brain and behavior: Serial diffusion tensor imaging and behavioral evaluation after graded doses of radiation, J. Neurosci. Res, vol.90, 2009.

F. A. Chaillan, Neonatal y-ray irradiation impairs learning and memory of an olfactory associative task in adult rats, Eur. J. Neurosci, vol.9, pp.884-894, 1997.

C. V. Buhusi and W. H. Meck, What makes us tick? Functional and neural mechanisms of interval timing, Nat. Rev. Neurosci, vol.6, pp.755-765, 2005.

W. H. Meck, Selective adjustment of the speed of internal clock and memory processes, J. Exp. Psychol. Anim. Behav. Process, vol.9, pp.171-201, 1983.

, Scientific RepoRtS |, vol.10, p.13511, 2020.

M. L. and G. J. , carried out the histology analysis

M. J. and C. L. , did the regular follow up of the animals; Y.P. conceived the project, supervised the study and participated in the writing of the manuscript. All the authors have read and approved the manuscript