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Abstract 

We analysed the genomic architecture of neuroanatomical diversity using magnetic resonance imaging            

and single nucleotide polymorphism (SNP) data from >26,000 individuals from the UK Biobank project              

and 5 other projects that had previously participated in the ENIGMA consortium. Our results confirm the                

polygenic architecture of neuroanatomical diversity, with SNPs capturing from 40% to 54% of regional              

brain volume variance. Chromosomal length correlated with the amount of phenotypic variance captured,             

r~0.64 on average, suggesting that at a global scale causal variants are homogeneously distributed              

across the genome. At a local scale, SNPs within genes (~51%) captured ~1.5 times more genetic                

variance than the rest; and SNPs with low minor allele frequency (MAF) captured less variance than the                 

rest: the 40% of SNPs with MAF<5% captured <1/4th of the genetic variance. We also observed                

extensive pleiotropy across regions, with an average genetic correlation of rG~0.45. Genetic correlations             

were similar to phenotypic and environmental correlations, however, genetic correlations were often            

larger than phenotypic correlations for the left/right volumes of the same region. The heritability of               

differences in left/right volumes was generally not statistically significant, suggesting an important            

influence of environmental causes in the variability of brain asymmetry. Our code is available at               

https://github.com/neuroanatomy/genomic-architecture. 

 

Keywords: 

Neuroimaging, Genetics, Polygenic architecture, Subcortical structures, Heritability 
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Introduction 

 

Imaging genetics studies have traditionally emphasised the role of candidate genes and specific loci. The 

underlying hypothesis is that phenotypic diversity results from the action of a reduced number of genes, 

close to the Mendelian paradigm where a phenotype is determined by a single locus. However, the 

amount of neuroanatomical variance captured by candidate genes or genome-wide significant loci has 

remained extremely small. Genome-wide association studies (GWAS) aiming at identifying associated 

variants through international collaborative efforts such as ENIGMA and CHARGE have revealed only few 

statistically significant associated loci (Stein et al. 2012, Hibar et al. 2015, Satizabal et al. 2017), capturing 

<1% of phenotypic variance. This is in contrast with the large heritability of neuroanatomical diversity 

estimated by twin and extended pedigree studies (Blokland et al. 2012, Wen et al. 2016) which show that 

about 80% of neuroanatomical variability is captured by genetic factors. 

 

The genetic architecture of neuroanatomical diversity could result, alternatively, from the aggregated 

effect of thousands of different loci spread across the genome, a paradigm closer to the infinitesimal 

model proposed by Fisher (1918). Thanks to the development of methods to estimate heritability from 

whole-genome genotyping data (reviewed by Yang et al. 2017), several groups have estimated that 

genotyped variants, taken together, were able to capture up to 55% of the phenotypic variance, retrieving 

about two-thirds of the heritability estimated by family studies (Toro et al. 2015, Ge et al. 2015, 2016, 

Zhao et al. 2018, Elliott et al. 2018). These results are compatible with the hypothesis of a highly 

polygenic architecture, where phenotypes are influenced by large numbers of loci of effect sizes too small 

to reach genome-wide significance (usually p<5×10-8). While information about the function of a few 

candidate genes can have a strong explanatory power in the case of a few causal loci, a polygenic 

approach calls for alternative, system-wide, sources of biological insight. 

 

Our aim was to better understand the role of polygenic causes in the determination of neuroanatomical 

diversity. In a previous work, we used a sample of N = 2,011 subjects with whole-genome genotyping 
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data from the IMAGEN consortium combined with structural magnetic resonance imaging (MRI) data 

analysed according to the pipelines of the ENIGMA consortium, and showed that genomic complex trait 

analysis (GCTA) was able to capture a substantial proportion of the variability in regional brain volume – 

up to 55% (Toro et al. 2015). Due to sample size limitations, however, standard errors were high (about ± 

25%) and statistical power for post-hoc analyses was limited. The advent of collaborative efforts such as 

the ENIGMA consortium, and large scale projects such as UK Biobank, in particular, has allowed 

researchers to greatly increase the number of subjects used for heritability estimation (see for example, 

Elliott et al. 2018, Zhao et al. 2018). Here we replicate and follow up on our original results using a 

sample ten times larger, N = 26,818, which combines data from the UK Biobank project as well as 5 other 

projects that had previously participated in the ENIGMA consortium (IMAGEN, SHIP, TREND, Lothian, 

ADNI).  

 

We used the same regional brain volumes estimates than those used in the ENIGMA consortium studies                

by Stein et al. (2012) and Hibar et al. (2015): several subcortical structures, total brain volume and                 

intracranial volume. In addition, we also studied height and intelligence scores. Brain volume correlates              

with height and intelligence scores (Taki et al. 2012), which are both known to be heritable (Yang et al.                   

2010, Plomin and Deary 2015). We aimed thus at determining to which extent the heritability of regional                 

brain volumes was given by their relationship with height (i.e., affected by the same genetic factors that                 

determine body size), or if different genetic factors affected them specifically. Similarly for intelligence              

scores, we aimed at better understanding its relationship with brain volume. 

 

For all phenotypes, we estimated to what extent genome-wide SNPs were able to capture the               

inter-individual variability in regional brain volumes, that is, we estimated the proportion of phenotypic              

variance captured by SNPs across the genome (also called SNP heritability). Additionally, we used              

GWAS data to compute genome-wide polygenic scores, which provide a phenotypic prediction at the              

individual level. The analyses of the influence of the complete genome on our phenotypes were               

complemented with analyses on a series of genomic partitions: genic versus non-genic; preferential             
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expression in the central nervous system or by cell type; low, medium or high minor allele frequency. This                  

type of analysis can reveal whether specific genomic regions are enriched in the amount of variance they                 

capture. Finally, we looked at the pleiotropy across phenotypes. For this, we computed genetic              

correlations and phenotypic correlations for all pairs of phenotypes. For brain regions, we also compared               

the genetic and phenotypic correlations between the left and right parts of the same structure as a means                  

to estimate the role of genetics and environment in brain asymmetry. 

 

Our results confirm the observation that polygenic factors play an important role in the determination of 

neuroanatomical variability, and show different ways in which biological information can be obtained to 

better understand polygenic effects. 

 

 

Material and Methods 

 

Data sharing 

 

We obtained whole-genome genotyping from N = 26,818 subjects from 6 different projects: UK Biobank,               

IMAGEN, ADNI, Lothian Birth Cohort 1936, SHIP and TREND. Extensive efforts have been made to               

homogenise the neuroanatomical measurements across sites, which were described in the ENIGMA 1             

and 2 reports (Stein et al. 2012, Hibar et al. 2015), and the UK Biobank neuroimaging analysis group                  

(Alfaro-Almagro et al. 2018). The UK Biobank project (https://imaging.ukbiobank.ac.uk) is a large,            

long-term biobank study in the United Kingdom aiming at investigating the contributions of genetic              

predisposition and environmental exposure to the development of disease. The study is following about              

500,000 volunteers enrolled at ages from 40 to 69 years old, 54% females. IMAGEN              

(https://imagen-europe.com) is a project to identify and characterise specific genetically-influenced          

alterations in reinforcer sensitivity and executive control which manifest in adolescence and carry the risk               

for overt psychopathology later in life. It includes general population 13 to 17 year old adolescents (49%                 
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of females) from Germany, France, Ireland, and the United Kingdom. ADNI, the Alzheimer’s Disease              

Neuroimaging Initiative (http://adni.loni.usc.edu), is a longitudinal multicenter study designed to develop           

clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer’s              

disease in the United States of America. The dataset combines data from the initial five-year study                

(ADNI-1), and the follow-ups ADNI-GO, ADNI-2, and ADNI-3. It includes subjects 54 to 90 years old, 42%                 

female. The Lothian Birth Cohort 1936 (https://www.lothianbirthcohort.ed.ac.uk) is a follow-up of the            

Scottish Mental Surveys of 1947, which tested the intelligence of almost every child born in 1936 and                 

attending school in Scotland in the month of June 1947. It includes subjects 71 to 73 years old, 47%                   

female. The SHIP and TREND cohorts contain data from the Study of Health in Pomerania (SHIP,                

http://www2.medizin.uni-greifswald.de/cm/fv/ship.html), a population-based epidemiological study     

consisting of two independent cohorts SHIP and SHIP-TREND. These projects investigate common risk             

factors, subclinical disorders and diseases in a population of northeast Germany. The dataset included              

data from subjects 21 to 90 years old, 44% female for TREND, 48% female for SHIP. All data sharing was                    

approved by our local ethical board as well as by those of the participating projects wherever required.                 

The list of projects and their respective number of subjects is described in Table 1. 

 

Regional brain volumes 

 

The measurements of regional brain volume coming from projects that had previously participated in              

ENIGMA (IMAGEN, Lothian Birth Cohort 1936 , TREND, SHIP and ADNI) were the same that had been                 

used in Stein et al. (2012) and Hibar et al. (2015). For the UK Biobank subjects, the estimation of the                    

volumes was performed using FreeSurfer 6.0 (https://surfer.nmr.mgh.harvard.edu). For comparison, we          

also included the estimates obtained using FSL FIRST (https://fsl.fmrib.ox.ac.uk/fsl) that were made            

available by UK Biobank (the processing pipeline is described in          

https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf). In addition to the subjects excluded in the quality          

control made by the UK Biobank, we excluded 52 additional subjects showing an extreme relationship 
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Project Total sample 

size 

Percentage 

of females 

Mean age 

(standard 

deviation) 

Sample size 

included 

Total 

number of 

variants 

Number of 

variants 

included 

IMAGEN 2,011 49% 14.6 (0.4) 1,736 573,299 267,151 

Lothian Birth 

Cohort 1936 

1,005 47% 72.7 (0.7) 544 529,015 256,417 

TREND 858 44% 50.0 (13.5) 813 2,389,858 597,902 

SHIP 963 48% 56.5 (12.6) 941 863,230 271,635 

ADNI 1,189 42% 74.2 (7.1) 986 331,088 227,005 

UK Biobank* 20,792 54% 62.6 (7.5) 19,270 734,447 490,061 

 

Table 1.  Sample sizes and number of variants per project. *The UK Biobank dataset was split in two parts: N = 

14,144 subjects were used for heritability analyses (13,086 included), and N = 6,678 subjects were used for 

validation of genome-wide polygenic scores (6,184 included). 

 

between total brain volume and intracranial volume. For this, we used a kernel density estimator to fit a                  

probability density function to the intracranial versus brain volume data, and tagged as outliers all subjects                

with a local density inferior to 1% of the maximum density for UK Biobank, and 2% for other datasets. 

 

The regions included in our analyses were: nucleus accumbens (labelled as Acc), amygdala (Amy),              

putamen (Pu), pallidum (Pa), caudate nucleus (Ca), hippocampus (Hip) and thalamus (Th); along with              

brain volume (BV) and intracranial volume (ICV). In addition to these regions, we investigated height and                

intelligence scores (IS), available from the UK Biobank and IMAGEN projects. It is important to note that                 

the fluid intelligence score in UK Biobank (a 2 minute test aiming at evaluating the capacity to solve                  
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problems that require logic and reasoning ability, independent of acquired knowledge; see            

https://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100027), is not the same as the intelligence score used          

by the IMAGEN project, which was obtained using the WISC test. 

 

Genotype filtering 

 

All genetic analyses were performed for each project independently. Genotyping data was converted to              

the hg19 reference wherever required using UCSC LiftOver (http://genome.ucsc.edu/cgi-bin/hgLiftOver).         

We used genotyped autosomal SNPs (single nucleotide polymorphisms) which passed UK Biobank            

quality control for all batches (http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_geno 

typing_QC_documentation-web.pdf). Additionally, we removed SNPs in 24 regions with long range           

linkage disequilibrium (LD, see Price et al. 2008). SNPs were then filtered to exclude those with minor                 

allele frequency (MAF) <0.1%, missing rate >1%, or Hardy-Weinberg disequilibrium with a p<10-6.             

Individuals were removed when >10% of their SNPs were missing. We finally pruned SNPs which were in                 

linkage disequilibrium with a variance inflation factor >10, which corresponds to a multiple for the             R2    

regression over linked SNPs <0.9. The filtering was made using PLINK v1.90b3.46 (Purcell et al. 2007). 

 

Genetic relationship matrices (GRM) 

 

GRMs were computed based on autosomal chromosomes using GCTA v1.91.3 (Yang, Lee, et al. 2011).               

We included only one of each pair of subjects with an estimated relatedness >0.025 (approximately               

corresponding to cousins two to three times removed). GRMs were computed per chromosome and then               

merged for the whole genome. 
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Population structure 

 

Genetic variance estimates based on genomic estimates of relatedness are sensitive to cryptic             

relatedness and population structure. These factors can influence the phenotypic similarity beyond the             

estimated degree of genetic relatedness (Yang, Manolio, et al. 2011, Browning and Browning 2011). In               

addition to the exclusion of subjects with a degree of genetic relatedness greater than 0.025, we used the                  

first 10 principal components of the GRM as covariates in our statistical analyses. 

 

Genetic variance 

 

We estimated the amount of phenotypic variance captured by SNPs using a linear mixed model with age,                 

sex, imaging centre, and the first 10 principal components of the GRM as fixed effect covariates, and a                  

random effect with a covariance matrix corresponding to the GRM (GCTA GREML method, Yang et al.                

2011). We estimated SNP heritability as the ratio of the genetic variance to the phenotypic variance, with                 

genetic variance being the variance of the random component, and the phenotypic variance being the               

sum of random component and residual component with fixed effects removed. We used GCTA v1.91.3               

(Yang, Lee, et al. 2011) for those computations and did not constrain genetic variance estimates to lie in                  

the range 0% to 100%, in order to obtain unbiased estimates (option --reml-no-constrain). 

 

Genetic correlation 

 

Genetic correlation was estimated using GCTA REML bivariate analysis (Lee, Yang, et al. 2012) in               

constrained mode (option --reml-bivar). Both phenotypic and genetic correlation were adjusted for age,             

sex, imaging centre, and the first 10 principal components of the GRM. We compared genetic and                

phenotypic correlations using the delta method to estimate standard errors (R package msm             

https://cran.r-project.org/web/packages/msm/). We report estimates with their standard errors (s.e.). 
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Genetic variance partitioning 

 

In its simplest form, GCTA allows to estimate the amount of variance captured by the matrix of genetic                  

relationships, assuming that each SNP captures the same amount of variance. Through genomic             

partitions we can create different genetic relationship matrices based on non-overlapping regions of the              

genome. The SNPs on each of these partitions can capture then a different amount of variance (although,                 

as before, SNPs within a given partition are supposed to capture all the same amount of variance). We                  

grouped SNPs in the following partitions: 

 

1. Partition based on genic status. Using 66,632 gene boundaries from the UCSC Genome Browser              

hg19 assembly, we made a first set with all SNPs within these boundaries, two further sets that                 

included also SNPs 0 to 20 kbp and 20kbp to 50 kbp upstream and downstream of each gene,                  

and a last set including the SNPs not located in regions less than 50 kbp upstream or                 

downstream of genes. Both exonic and intronic regions were included in the genic regions. These               

partitions do not correspond exactly to those used by Toro et al. (2015) which were: one with                 

strict genic/non-genic boundaries (0 kbp), another with genic ± 20 kbp versus the rest, and finally                

genic ± 50 kbp versus the rest. 

2. Partition based on preferential central nervous system (CNS) expression (Raychaudhuri et al.            

2010, Lee, DeCandia, et al. 2012) using ± 50 kbp as gene boundaries, and based on markers of                  

brain cell types as defined by two recent scRNA-Seq studies (Skene et al. 2018, 2018, Li et al.                  

2018) using ± 20 kbp as gene boundaries. 

3. Partition based on allele frequency. A partition based on MAF with 4 groups: from 0.1 to 5%, from                  

5 to 20%, from 20 to 35% and from 35 to 50%. In Toro et al (2015), only the last 3 partitions were                       

included, covering the range from 5 to 50% of MAF. 

 

 

 

10 

Page 11 of 55 Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://www.zotero.org/google-docs/?FleU2N
https://www.zotero.org/google-docs/?FleU2N
https://www.zotero.org/google-docs/?ZqyR7l
https://www.zotero.org/google-docs/?ZqyR7l


For Peer Review

 

Genetic variance partition enrichment 

 

Once the variance captured by each partition was computed, we were able to estimate the significance of                 

the difference in variance captured by an individual partition against a model where each SNP captures                

exactly the same amount of variance (a null hypothesis of no enrichment). In this latter case, the amount                  

of variance captured by each partition should be directly proportional to the number of SNPs it contains. 

 

We tested whether any of the partitions captured more variance than what could be expected given its                 

number of SNPs. A Z-score was computed by comparing the SNP-set genetic estimated variance of              V Gi   

partition  to the SNP-set genetic variance  expected under no enrichment:i f i · V Gtot  

 

 ,                                                                                                                 (Eq. 1)Z =
V −f ·VGi i Gtot

√V ar(V −f ·V )Gi i tot
 

 

where  is the fraction of the SNPs included in partition .  We estimated the variance of the observedf i i  

enrichment as: 

 

.                             (Eq. 2)ar(V ) ar(V ) f ar(V ) ov(V , )V Gi
− f i · V Gtot

= V Gi
+  i

2 · V Gtot
− 2 · f i · C Gi

V Gtot
 

 

Here, represents the genetic variance of partition and . We preferred the analytic V Gi
       i   V Gtot

= ∑
 

i
V Gi

     

estimation over the estimation by permutations, because the permutation methods presented some            

limitations due to the difficulty of preserving the SNP structure of the partitions and due to the                 

computational resources needed for the permutations (Fig. S1, S2). 
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Meta-analytical combination of the estimates of each project 

 

The independent estimates obtained from each of the projects were combined into a single one using an                 

inverse variance weighting method. We validated the meta-analytical approach by comparing the            

distribution of genetic variance estimates from simulated heritable phenotypes with their theoretical            

normal distribution in sub-samples of ADNI and UK Biobank datasets. 

 

Accounting for measurement error 

 

The estimation of regional brain volumes, height and intelligence scores is submitted to measurement              

errors. In particular, small, poorly defined brain regions are more difficult to measure accurately than               

larger ones. Measurement errors enter as environmental variance in the decomposition of phenotypic             

variance into genetic and environmental variance, and hence decrease the heritability estimates (            /VV G P

). Heritability estimates unbiased for measurement errors can be obtained with repeated measurements             

(Ponzi et al. 2018), however, the datasets we used to measure brain volumes provide only one MRI per                  

subject. We used datasets from CoRR, the Consortium for Reliability and Reproducibility (Zuo et al.               

2014), which includes multiple MRIs per individual to estimate intraclass correlation coefficients (ICC)             

(Fisher 1970) for each regional volume. We segmented the volumes as we did in the UK Biobank dataset,                  

using FreeSurfer 6.0. ICCs were computed on the volumes of 836 subjects with two MRI sessions after                 

covarying for age, sex and scanning site. For intelligence, we estimated ICC from 1,301 subjects in UK                 

Biobank who took the fluid intelligence test 3 times. The ICC for height was considered to be equal to 1                    

(no measurement error). Adjusted phenotypic variance and covariance estimates were obtained by            

multiplying the raw estimates by their corresponding ICC  (see Supplemental Materials). 
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Genome-wide polygenic scores 

 

We used the SNP effects estimated in the association analysis of 13,086 UK Biobank subjects to estimate                 

the phenotypes of 6,184 additional unrelated subjects with MRI data from the latest release of the UK                 

Biobank project. The scores were estimated from the filtered SNPs (not LD pruned). SNPs under various                

association p-value thresholds were selected and the ones in LD with a more significantly associated               

SNP were clumped. The p-value threshold that produced the best fit with the target dataset was selected.                 

We used the software PRSice associated with PLINK for the computation of genome-wide polygenic              

scores (Euesden, Lewis, and O’Reilly 2015). Each phenotype was regressed on age, sex, scanning              

centre, and the 10 first principal components of the GRM. The analyses were performed on the residuals                 

of this linear regression. We then estimated the proportion of variance captured by genome-wide              

polygenic scores in each phenotype using the coefficient of determination . For comparison, we also          R2      

computed the predicted height of the 6,184 subjects using SNP effects from an independent group of                

277,756 unrelated (with a pairwise estimated relatedness <0.025 in the GRM) UK Biobank subjects.  

 

 

Results 

 

Genome-wide variants capture a large proportion of the diversity of regional brain volumes, height and 

intelligence scores 

 

The heritability estimates for intracranial volume, total brain volume, as well as the volume of subcortical                

structures were substantial and statistically significant (Fig. 1, Table S1.1). Estimates for intracranial             

volume and total brain volume were large: VG/VP(ICV) = 53 ± 4.5% (all our variance estimates are                 

reported as estimation ± s.e.), VG/VP (BV) = 52 ± 4.5%. Similarly, the genetic variance estimates for                 

subcortical structures were all above 40%: accumbens (VG/VP = 40 ± 4.5%), amygdala (VG/VP = 45 ±                 
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4.5%), putamen (VG/VP = 48 ± 4.5%), palladium (VG/VP = 40 ± 4.5%), caudate (VG/VP = 52 ± 4.5%),                   

thalamus (VG/VP = 54 ± 4.5%), hippocampus (VG/VP = 53 ± 4.5%). All estimates were highly statistically                 

significant with p<10-11 in all cases (log-likelihood ratio statistics from 49 to 242 in UK Biobank alone) (Fig.                  

1, Table S1.2). The VG/VP estimate for caudate nucleus (VG/VP = 52 ± 4.4%) was statistically significant                 

and very different from what was observed in the IMAGEN cohort (VG/VP = 4 ± 24%) which, as mentioned                   

in Toro et al. (2015), may reflect an age bias specific to IMAGEN (where individuals were on average 14                   

years old). 

 

The heritability estimate (VG/VP) for height (which combines only UK Biobank and IMAGEN) was large:               

VG/VP = 71 ± 3.1% and close to those obtained from twin studies (Polderman et al. 2015) and from                   

previous SNP heritability estimates (VG/VP = 68.5 ± 0.4% in Ge et al. 2017). The fluid intelligence score in                   

UK Biobank had the lowest heritability among all 11 studied phenotypes, VG/VP = 35 ± 4.8%. This estimate                  

is similar to the one obtained by Davies et al. (2011) on 30,801 UK Biobank subjects (VG/VP = 31% ±                    

1.8%). The verbal and performance intelligence scores (VIQ and PIQ) in IMAGEN, although not based on                

the same test as fluid intelligence (FI) in UK Biobank, aim at capturing a similar phenotype. The estimate                  

for fluid intelligence in UK Biobank seem smaller than those for verbal and performance intelligence               

quotients in IMAGEN (~56 ± 26%), however, they were not statistically significantly different. 

 

Our estimates were obtained using a meta-analytic approach to combine the results of the different               

projects using inverse variance weighting. In all cases, the meta-analytic estimates closely corresponded             

with the values obtained for the UK Biobank project (Table S1.2), because of its large sample size which                  

accounted for ~94% of the weighted estimates. Standard errors agreed well with the theoretical values  
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Figure 1. a.  Proportion of variance captured by common genotyped variants (VG/VP) for brain regions, height and 

intelligence score. Meta-analytic estimates were obtained using inverse variance weighting of the estimates of the 

different projects studied. b. VG/VP estimates for each project.  The estimates were obtained using GCTA, without 

constraining the results to lie in the 0% to 100% range. The diamond shows the meta-analytic estimation. Age, sex, 

center, and the first 10 principal components were included as covariates. The error bars show the standard errors of 

the VG/VP estimates. 
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proposed by Visscher et al. (2014), and implemented in the GREML statistical power calculator              

(http://cnsgenomics.com/shiny/gctaPower): they were from 1.01 to 1.05 times higher than the           

theoretical values when taking into account the variance of the genetic relationships, except for ADNI               

where they were 1.21 times higher). As expected, the standard errors decreased with sample size,               

from about 76% for ~550 individuals, 43% for ~1,000 individuals, 24% for ~1,750 individuals              

(IMAGEN), down to 4% for UK Biobank with more than 13,000 individuals. Our result from simulated                

phenotypes showed that the estimates of VG/VP obtained with sub-samples of N = 800, N = 400, N =                   

200 and even N = 100 subjects from the UK Biobank project were unbiased relative to the expected                  

normal distribution. The simulations based on the ADNI project, however, showed a significant bias              

towards positive values when the sub-samples included N = 100 to N = 400 subjects, probably due to                  

the heterogeneity of the population (Figures S12-13 and Table S6-7). 

 

Similarly to what we had observed previously (Toro et al. 2015), the genetic variance estimates were                

not significantly affected by population structure: the non-inclusion of the 10 first PCs did not impact the                 

estimates of variance, which changed on average by less than 4% (Fig. S3). 

 

Finally, our heritability estimates for the UK Biobank and ADNI projects were comparable to those of                

previous studies of these projects by Elliott et al. (2018) and Zhao et al. (2018) (see Fig. S6 and                   

Supplemental Materials). 

 

Genetic partitions show significant enrichment of the proportion of variance captured by specific gene 

sets 

 

Partition per chromosome (autosomes): We observed a strong correlation between VG/VP estimates 

and chromosome size, which was significant for all phenotypes except the pallidum (Fig. 2). The 
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correlation coefficients ranged from 0.30 ± 0.21 to 0.80 ± 0.13, r = 0.63 on average, capturing 41% of 

the variance (estimated as ).R2  

 

Partition between genic and non-genic regions: The genic SNP set (± 0 kbp) contained 51% of all 

genotyped SNPs and captured on average 69% of the variance attributable to SNPs of most of the 

studied phenotypes, significantly more than what we would expect from its length (FDR<5%). The only 

exceptions were fluid intelligence and nucleus accumbens, for which it explained respectively 59 ± 9% 

and 55 ± 6% of the total genetic variance (Fig. 3, Table S4). Height was the only phenotype for which 

we observed an enrichment of VG/VP captured by one of the non-genic SNP sets: the set of SNPs 

within 0 ± 20 kbp of the genic set. This set contained 15% of all SNPs but explained 27% of the 

variance of the height phenotype attributable to SNPs (FDR corrected p<0.01). In total, the variants 

located between 0 and 50 kbp away from genes captured 36 ± 4% of the genetic variance of height 

(FDR corrected p<0.05). 

 

Partition by involvement in preferential CNS expression and in brain cell types: No statistically              

significant enrichment was observed for CNS expression nor brain cell type partitions. 

 

Partition by allele frequency: SNPs within the low MAF partition (MAF<5%) captured less genetic              

variance per SNP than those with medium and high MAF (the 3 partitions with MAF>5%) (Fig. 3), as                  

previously described by Speed et al. (2017). Our four MAF-based partitions included the following              

average proportions of total SNPs: (1) MAF from 0.1% to 5%: comprising 40% of SNPs, (2) 5% to 20%:                   

with 30% of SNPs, (3) 20% to 35%: with 12% of SNPs, and (4) 35% to 50%: with 9% of SNPs.                     

Although the partition of SNPs with low MAF contained 40% of the SNPs, it captured on average only                  

about 16% of the total genetic variance. This is less than expected in the GCTA model where each                  

SNP captures the same amount of phenotypic variance, but slightly more than expected in a neutral  

 

17 

Page 18 of 55Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 2. Scatter plots of the number of SNPs per chromosome versus VG/VP estimates computed for each                 

chromosome. VG/VP estimates were obtained by partitioning SNPs across chromosomes and computed using             

the GCTA REML unconstrained method for total subcortical volumes. Age, sex, center, and the top 10 principal                 

components were included as covariates. The error bars show the standard errors of the VG/VP estimates. 
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theory of evolution, where the captured variance is proportional to the size of the MAF bin (Yang et al. 

2017, Visscher et al. 2012). 

 

Genetic factors influencing volume are shared among brain regions 

 

We observed extensive pleiotropy across brain regions, with an average genetic correlation of rG~0.45              

(Fig. 4). Genetic correlations, which represent the correlation between genetic effects of two phenotypes,              

were computed for each pair of brain regions, ICV, Height and IS, using data from the UK Biobank                  

project. Figure 4 shows the genetic correlation matrix together with the phenotypic correlation matrix (see               

also Table S5). 

 

Genetic correlations were in general similar to phenotypic and environmental correlations, however,            

genetic correlations were often larger than phenotypic correlations for the left/right volumes of the same               

region. The concordance between phenotypic and genetic correlation was high ( = 0.80, Fig 5c),          R2      

consistent with the report by Sodini et al. (2018) for other traits, and the correlation matrices were similar                  

(Fig. S7). Phenotypic correlations can be decomposed as a sum of genetic and environmental              

correlations. The concordance between genetic and environmental correlations was also strong ( =           R2   

0.47, Fig. S8). 

 

Environmental factors are important in shaping brain asymmetry 

 

For all brain regions, with the exception of the nucleus accumbens, the differences between their left and                 

right volumes appeared to be of environmental origin. When considering total volumes (left plus right), the                

differences between genetic and phenotypic correlations were not different from zero (Z-test FDR > 50%,               

Table S5). However, the situation was different when considering the regional volume asymmetries (left              

minus right). In that case, the genetic correlations of the asymmetries were not statistically different from  
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Figure 3. Variance enrichment for partitions based on closeness to genic regions. Meta-analytic estimates were               

obtained using inverse variance weighting of the estimates of the different projects studied. Top: VG/VGtot estimates                

computed for four sets of SNPs based on their distance to gene boundaries: all SNPs within the boundaries of the                    

66,632 gene boundaries from the UCSC Genome Browser hg19 assembly, two further sets that included also                

SNPs 0 to 20 kbp and 20kbp to 50 kbp upstream and downstream of each gene, and a remaining set containing                     

SNPs located farther than 50kb from one of the gene boundaries. VG/VGtot estimates were computed using the                 

GCTA REML unconstrained method for height, intelligence, and brain, intracranial and total subcortical volumes.              

The error bars represent the standard errors. Bottom: Enrichment of variance captured by each partition. The                

y-axis shows the ratio of the fraction of genetic variance explained by each partition divided by the fraction of SNPs                    

contained in each partition. If all SNPs explained a similar amount of variance, this ratio should be close to 1                    

(dashed line). A Z-test was used to compare the ratios to 1 and p-values were FDR adjusted (*p<0.05, **p<0.01,                   

***p <0.001). 
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Figure 4. Variance enrichment for partitions based on minor allele frequency (MAF). Meta-analytic estimates              

were obtained using inverse variance weighting of the estimates of the different projects studied. Top: VG/VGtot                

estimates computed for four sets of SNPs based on their MAF: from 0.1 to 5%, from 5 to 20%, from 20 to 35%                       

and from 35 to 50%. VG/VG tot estimates were computed using the GCTA REML unconstrained method for height,                  

intelligence, and brain, intracranial and total subcortical volumes. The error bars represent the standard errors.               

Bottom: Enrichment of variance captured by each partition. The y-axis shows the ratio of the fraction of genetic                  

variance explained by each partition divided by the fraction of SNPs contained in each partition. If all SNPs                  

explained a similar amount of variance, this ratio should be close to 1 (dashed line). A Z-test was used to compare                     

the ratios to 1 and p-values were FDR adjusted (*p <0.05, **p <0.01, ***p<0.001). 
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rG = 1, and were in all cases statistically significantly larger than the phenotypic correlations (Z-test                

FDR<5%, Fig. S9 and Table S5), which suggests an important role of the environment in shaping                

hemispheric asymmetry. To further test this hypothesis, we measured the VG/VP of the differences              

between left and right volumes of each structure. Only the heritability of the volume asymmetry of the                 

nucleus accumbens was significantly different from zero (VG/VP = 16 ± 4.5%). Except for this structure, the                 

differences in volumes between right and left hemispheres of all the other brain regions seemed to be                 

only of environmental origin. 

 

Genetic factors influencing brain volume are shared with height and intelligence scores, but less between               

height and intelligence scores 

 

The genetic correlation between height and brain volume (rG:BV.height = 0.164 ± 0.053) was smaller than the                 

genetic correlation between brain volume and intelligence (rG:BV.IS = 0.343 ± 0.080). However, the              

difference was not statistically significant: rG:BV.IS - rG:BV.height = 0.179 ± 0.095, 95% CI: -0.008, 0.365                

(computed using the formula xxxvii in Pearson and Filon 1898). The phenotypic and genetic correlations               

between intelligence scores and height were, however, the smallest we observed across all phenotypes:              

rP = 0.101 ± 0.009 and rG = 0.048 ± 0.073. This is different to what we had previously observed in the                      

IMAGEN cohort (Toro et al. 2015), where the correlation between brain volume and intelligence scores               

was higher than the correlation between brain volume and height. 

 

Heritability and genetic correlation estimates remain statistically significant after accounting for 

measurement errors 

 

The estimates of heritability, phenotypic and environmental correlation can be biased by noise in the               

volume measurements, which could in particular explain the differences between genetic and phenotypic             

correlations of left and right volumes. We investigated this hypothesis by removing the effects of               

measurement errors estimated from the Consortium for Reliability and Reproducibility (Zuo et al. 2014) 
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Figure 5. Phenotypic and genetic correlations. Significant phenotypic (a) and genetic (b) correlations were              

observed for most phenotypes. Correlation estimates are shown in the lower triangular part of the matrices,                

statistical significance in the upper triangular part. Circle radius represents correlation strength, stars indicate              

statistical significance of the correlation being non null (*P<0.05, **P<0.01, ***P<0.001). The scatter plot (c) of                

phenotypic versus genetic correlations. 
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for FreeSurfer segmentations, and from the repeated measures of intelligence score in UK Biobank. 

Intraclass correlation coefficient (ICC) for intelligence scores was estimated at 63% whereas the lowest 

ICCs for subcortical structures were found for accumbens (83%), pallidum (87%) and amygdala (89%). 

After correction for measurement error, height remained the most heritable phenotype although it was the 

only one that we did not correct. Disattenuated estimates of VG/VP for intelligence became 54 ± 7.8%, 

which is similar to the disattenuated heritabilities of brain volumes (between 46 ± 5.3% for pallidum and 

61 ± 5.0% for thalamus) (Fig. S10). Genetic correlations between left and right hemispheres of subcortical 

structures remained statistically significantly greater than the adjusted phenotypic correlations except for 

pallidum and accumbens (Table S5 and Fig. S11). Estimates of VG/VP  for the differences between left 

and right volumes remained low and not significantly different from 0 for all subcortical structures 

(between 5.4 ± 14% for pallidum and 16 ± 11% for thalamus) except for accumbens (34 ± 9.8%). 

 

Genome-wide polygenic scores captured a statistically significant but small proportion of phenotypic 

variance 

 

Genome-wide polygenic scores based on a GWAS of 13,086 subjects captured a statistically significant              

although very small proportion of brain region volume variance. The genome-wide polygenic scores were              

computed for ~6,000 additional participants from the UK Biobank who were not used in the GWAS. The                 

predictions captured an amount of phenotypic variance ranging from 0.5% (p < 10-22) for the amygdala to                 

2.2% (p < 10-31) for brain volume (Fig. S15, Fig. S16, and Supplemental Table S8). For height, a                  

genome-wide polygenic score obtained based on GWAS summary statistics from the 13,086 UK Biobank              

subjects with MRI captured ~3% of the variance. To evaluate the impact of the number of samples used                  

in the GWAS on the amount of variance captured by the genome-wide polygenic scores, we also                

computed the genome-wide polygenic scores for height using the GWAS summary statistics from ~277k              

unrelated UK Biobank subjects not included in the validation dataset. This allowed us to capture ~27% of                 

the variance of height (an >8-times increase) (Fig. S17). 
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Discussion 

 

Our results suggest that neuroanatomical diversity is the product of a highly polygenic architecture, with               

SNPs capturing from 40% to 54% of regional brain volume variance, confirming our original findings (Toro                

et al., 2015) as well as those of others (Elliott et al. 2018, Zhao et al. 2018). At a global scale, causal                      

variants were distributed across the genome: for different brain regions, chromosomes containing a larger              

number of SNPs captured a proportionally larger amount of variance than smaller chromosomes, with a               

correlation of r~0.64 on average. At a local scale, however, SNPs within genes (~51%) captured ~1.5                

times more genetic variance than the rest; and SNPs with low minor allele frequency (MAF) captured                

significantly less variance than those with higher MAF. 

 

When partitioning genetic variance into MAF bins, the lowest MAF partition, going from 0.1% to 5% (10%                 

of the total MAF range) contained ~40% of all SNPs, but captured only ~16% of the total genetic variance:                   

SNPs with low MAF captured significantly less variance than those with higher MAF. However, they               

captured more variance than expected under a neutral evolution model, where a MAF bin is expected to                 

capture an amount of variance proportional to its size (10% size but 16% of the variance). This result                  

suggests a negative selection model, where loci of large effect are being removed from the population.                

This apparent contradiction between high effect size and low captured variance for low MAF variants can                

be explained by the fact that the relationship between captured heritability and the allele effect for a           h2      b    

given SNP is dependent of its allele frequency : (Schoech et al. 2017, Zeng et al.        p   b  p (1 )h2 = 2 2 − p         

2018). Given this heterogeneity in effect sizes, using more flexible models that do not make strong                

assumptions on the relationships between effect size, LD, and MAF, such as GREML-LDMS (Yang et al.                

2015), should improve the accuracy of the heritability estimates. Our study of rare variants is limited                

because of the use of datasets based on SNP arrays. The availability of whole-genome sequencing data                

for large cohorts is starting to allow the study of more refined partitions of rare variants and is showing                   
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that rare causal variants might be a main source of the variance remaining to be explained (Wainschtein                 

et al. 2019). 

 

In addition to showing the heritability of regional volume diversity, our analyses also show an extensive                

pleiotropy across brain regions. The computation of genetic covariance for pairs of brain regions allowed               

us to estimate their genetic correlation. We observed an average genetic correlation of rG~0.45.              

Interestingly, we observed that although genetic correlations were similar to phenotypic correlations            

across brain regions, if we compared the left and right aspects of the same brain region, their genetic                  

correlations were close to 1 and systematically larger than phenotypic correlations. This could be an               

indication that the observed phenotypic asymmetries in regional brain volume are of environmental origin.              

To confirm this result, we used an alternative way of analysing the genetic/environmental nature of               

regional asymmetry, by looking at the heritability of the differences in left/right volumes. These              

heritabilities were generally not statistically significantly >0, which again supports the idea of the              

environmental nature of regional brain asymmetries. 

 

 

The analysis of genetic correlations also allows us to explore the link between neuroanatomical diversity               

and other anatomical parametres or even cognitive functions. Brain volume is correlated with body size,               

and in the recent years the polygenic architecture of height has been well described (Yengo et al. 2018).                  

It could be argued that neuroanatomical diversity is simply determined by the same genetic factors that                

produce body size variability in general. The genetic correlation between brain volume and height was,               

however, relatively small (rG~0.16), suggesting little overlap between their genetic causes (in Toro et al.               

2015 we did not find a significant genetic correlation, most likely due to lack of statistical power). By                  

contrast, the genetic correlation between brain volume and intelligence scores was of medium strength              

(rG~0.34), suggesting a larger overlap. The difference between these two genetic correlations was not              

significant and the question deserves further study. The genetic correlation between height and             
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intelligence scores was the smallest of all those we studied, rG<0.05, suggesting that their relationship               

with brain volume may be due to different genetic factors. 

 

One important source of bias in our estimates of heritability and genetic correlation could be related to                 

measurement error. In MRI data, for example, some brain regions are more clearly delimited than others,                

which makes them easier to segment accurately. Furthermore, there is an important variability in volume               

across brain regions. Segmentation errors would then be comparatively more important for small, poorly              

delimited regions such as the amygdala, than for large regions like the thalamus. We sought to take into                  

account errors in automatic segmentation of brain regions by analysing data from the CoRR project (Zuo                

et al. 2014), where the same subjects were scanned several times. For intelligence scores, we used the                 

subset of UK Biobank where subjects passed the fluid intelligence test on multiple occasions. Our results                

remained for the most part unchanged after adjusting the estimates for phenotypic measurement errors. A               

limitation of this approach, however, is that we used MRI scans from a different project (although the                 

processing pipeline was the same). Ideally, one would have preferred to have repeated scans for as                

subset of UK Biobank subjects, because segmentation quality depends on MRI quality which varies              

between datasets. The availability of repeated measurements in the same datasets from which genetic              

variance is estimated may allow to more precisely distinguish between the different sources of phenotypic               

variations. 

 

Another possible source of bias could be the multi-centric nature of our data. The results presented here                 

come from six different projects. Rather than combining our genetic raw data into a single dataset, we                 

chose to estimate the part of phenotypic variance captured by SNPs independently in each dataset and                

then combine estimates in a meta-analysis. While our chosen solution helps to handle heterogeneity, it               

trades on statistical power. The reason for this is that the standard error of the GCTA GREML heritability                  

estimate is approximately inversely proportional to the number of subjects (Visscher et al. 2014) (Fig.               

S14). In the present analysis, the UK Biobank project accounted for ~94% of the estimates, largely driving                 

the results. Indeed, the inclusion of the other projects reduced the standard error of the estimates based                 
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on the UK Biobank project only by a factor of ~1.03. If the raw genotyping data had been combined in a                     

single mega-analysis instead of in a meta-analysis, the decrease in standard error would have been               

~1.36 smaller than what we reported. The meta-analytical approach may however prove interesting in the               

future when large imaging genetics datasets other than UK Biobank will be available or in cases where                 

raw genotyping data cannot be easily shared. 

 

Our analyses are also limited in their ability to provide information at the individual level. With the advent                  

of large GWAS studies, genome-wide polygenic scores (GPS) have become increasingly used to predict              

phenotypes from whole-genome genotyping data. GPSs are based on effect sizes estimated through             

GWAS in a large population. These estimates can then be used to predict the phenotype in an                 

independent sample. We aimed at evaluating to which extent GWAS of the N~13k UK Biobank subjects                

used for our heritability analyses allowed us to predict the phenotypes of additional N~6k subjects. GPSs                

captured a very small, although statistically significant, proportion of the variance. For brain volume, for               

example, GPS captured ~2.5% of the variance. This is the expected result in the presence of a strongly                  

polygenic phenotype (Wray et al. 2013). It is also expected that prediction accuracy will improve as the                 

number of subjects used for effect size estimation increases (the UK Biobank project alone should               

provide data for N~100k in the years to come). We aimed at testing the potential increase in predictive                  

power by computing a GPS for height. When effect sizes were estimated from N~13k subjects, GPS                

captured ~3% of height variance, however, when effect sizes were estimated from N~277k subjects, the               

amount of variance explained increased to ~27%. We expect that effect sizes for regional brain volume                

estimated from N~100k will allow us to compute GPSs capturing ~12% of the variance (based on Wray et                  

al. 2013 and Daetwyler, Villanueva, and Woolliams 2008). 

 

The detection of candidate genes of large effect is an appealing tool for gaining mechanistic insight on                 

normal and pathological phenotypes. However, this approach is ill adapted to strongly polygenic             

architectures, where not only a few large-effect alleles are involved, but potentially hundreds of thousands               

of alleles of almost infinitesimal effect (Wray et al. 2018). Neuroimaging endophenotypes such as those               

28 

Page 29 of 55 Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://www.zotero.org/google-docs/?AYFvdW
https://www.zotero.org/google-docs/?0C6uLS
https://www.zotero.org/google-docs/?wdpDZg


For Peer Review

 

obtained using structural and functional MRI could provide an alternative source of mechanistic insight.              

The brain imaging literature is rich in examples of associations between different brain regions and               

networks with normal and pathological cognitive phenotypes. The automatic mining of these associations             

could provide a layer of annotation for brain regions and networks similar to those available today for                 

genome annotation. Further investigation of the genomic architecture of neuroimaging endophenotypes           

should prove an important tool to better understand the biological basis of brain diversity and evolution in                 

humans, as well as the biological basis of the susceptibility to psychiatric disorders. 
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Supplementary Material 
 

1. Comparison of methods for the estimation of enrichment in genetic variance partitioning. 

 
We can estimate the significance of the difference in variance captured by an individual partition against a                 
model where each SNP captures exactly the same amount of variance. In this latter case, the amount of                  
variance captured by each partition should be directly proportional to the number of SNPs it contains. 
 
We first aimed to assess the statistical significance of the partition enrichment using a permutation test as                 
in Toro et al. (2015) and a derivation of statistical significance obtained from the covariance matrix of                 
variance estimates reported by GCTA. 
 
In the permutation test, SNPs were randomly selected to build the partitions, keeping the same number of                 
SNPs as in the original partition. For each set of random partitions, the same linear mixed-effects model                 
as before was fitted (including age, sex, centre and 10 PCs). We tested whether any of these partitions                  
captured more variance than what could be expected given its number of SNPs. Briefly, a Z-score was                 
computed by comparing the SNP-set genetic estimated variance of partition i to the SNP-set genetic        V Gi         
variance  expected under no enrichment:f i · V Gtot  
 

                                                                                                                 (Eq. 1)Z =
V −f ·VGi i Gtot

√V ar(V −f ·V )Gi i tot
 

 
where  is the fraction of the SNPs included in partition i.  The p-value of enrichment was computed byf i  
comparing the observed Z score to those obtained from 1,000 permutations. 
 
One limitation of this approach is that it does not preserve the local LD relationships among SNPs. We                  
observed that the standard errors of the genetic variance estimates reported by the permutation approach               
were systematically larger than those computed from the covariance matrix of variance estimates. To              
better preserve the original LD, we tried an alternative permutation method in which we permuted blocks                
of contiguous SNPs. For the partitioning based on genic status, the standard errors of the simulated                
partitions estimates were compatible with the standard error of the original partitions (Fig. S1). However,               
this alternative permutation method did not reduce the gap with the theoretical values for the partitioning                
by MAF since they depend only on the frequency of the individual SNPs, and not on their contiguity over                   
the genome (Fig. S2). Because of this, and because the permutation approach was much more               
demanding in terms of computation, we decided to use only the theoretical derivation of enrichment test:                
We evaluated whether was statistically significantly positive with a one-sided Z-test,   V Gi − f i · V Gtot          
considering that in the null hypothesis of no enrichment, each genomic partition should carry an amount                
of variance proportional to its number of SNPs. We estimated the variance of the observed enrichment                
using this equation: 
 

.                             (Eq. 2)ar(V ) ar(V ) f ar(V ) ov(V , )V Gi
− f i · V Gtot

= V Gi
+  i

2 · V Gtot
− 2 · f i · C Gi

V Gtot
 

 

Here,  represents the genetic variance of partition i and .V Gi
V Gtot

= ∑
 

i
V Gi
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Figure S1. Simulation of partitioning the genetic variance between genic, near genic and non genic regions. Upper                 
panel: Density of standard errors reported by GCTA in permutation vs standard error reported by GCTA in the                  
original partition. SNPs. Lower panel: Density of genic region enrichment for permutations in the null hypothesis of                 
no enrichment computed as the difference between and . The observed value is the reported        V Gi   (V )  E Gi

= V Gtot
· f i        

value for the real partition. Permutations were made for UK biobank dataset with 1000 iterations. permutations:                
permutations by SNPs. permutations_bins: permutations by blocks of contiguous SNPs. 
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Figure S2. Simulation of partitioning the genetic variance in function of MAF (0.05-0.20, 0.20-0.35, 0.35-0.5). Upper                
panel: Density of standard errors reported by GCTA in permutation vs standard error reported by GCTA in the                  
original partition. SNPs. Lower panel: Density of low MAF enrichment for permutations in the null hypothesis of no                  
enrichment computed as the difference between and . The observed value is the reported       V Gi   (V )  E Gi

= V Gtot
· f i        

value for the real partition. Permutations were made for UK biobank dataset with 1000 iterations. permutations:                
permutations by SNPs. permutations_bins: permutations by blocks of contiguous SNPs. 

Page 39 of 55 Cerebral Cortex

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2. Genetic variance estimates in UK Biobank with different set of covariates 

 
We compared the estimations of genetic variance for volumes measured using Freesurfer and FIRST in               
the UK Biobank project obtained by including or not the 10 first principal components of the genetic                 
relationship matrix, and by including or not brain volume (BV) as a covariate in the linear model. The                  
results with an without the top 10 PCs are included in supplemental table S2. 
 
We observed that VG/VP estimates diminished when no covariate was included, meaning that covariates              
globally capture more environmental variability. The inclusion of brain volume as a covariate did not seem                
to have a large impact on the estimations. 
 

 
Figure S3. Fraction of phenotypic variance (VP) accounted for by genetic variance(VG), computed from all               
genotyped SNPs for the UK Biobank dataset. VG/VP estimates were computed using GCTA REML unconstrained               
method, for total volumes estimated using either FIRST (A) or FreeSurfer (B). The bar plots also include estimates of                   
VG/VP for height and fluid intelligence. The colors represent results obtained with four different sets of covariates (BV                 
denotes the brain volume, PCs the top 10 principal components).  
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3. Correlation among the phenotypes studied, and comparison between volume measurement           
tools. 
 
We computed the raw correlation matrix of all the phenotypes studied. Figure S3 shows regional volumes                
computed using Freesurfer, with left and right volumes of each region plot separately. Figure S4 shows                
the correlation of the volume measurements obtained with Freesurfer and FIRST, with left and right               
volumes of each structure combined. We observed that patterns of correlations differed across structures,              
with accumbens and amygdala displaying less correlation than the other structures between their left and               
right parts. Correlation between volumes measured by either FIRST or FreeSurfer were different across              
structures, the lowest consistency being found for amygdala (r = 0.621).  

Figure S4. Pairs plot of the volumes of the left and right hemispheres of the subcortical structures measured using 
FreeSurfer (Acc : Accumbens, Amy : Amygdala, Cau : Caudate, Hip : Hippocampus, Pal : Pallidum, Put : Putamen, 
Th : Thalamus). 
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Figure S5. Scatter plots of total volumes (sum of left and right hemispheres) measured by FIRST (x-axis) and 
FreeSurfer (y-axis). 
 
4. Comparison of genetic variance estimates with those of previous studies of the UK Biobank 
and ADNI projects by Elliott et al (2018) and Zhao et al (2018). 
 
Several recent studies have used the UK Biobank data to estimate genetic variance of regional brain 
volumes. The reported estimates vary across studies, with subcortical volumes, in particular the volume of 
the amygdala, showing the largest differences. We compared our genetic variance estimates with those 
obtained by two recent studies (Elliott et al. 2018; Zhao et al. 2018). Zhao et al. (2018) used GCTA to 
compute VG/VP estimates of the left and right volumes of various subcortical structures on a smaller 
sample of 9,031 subjects from the UK Biobank project. Regional brain volumes were quantified using 
ANTs (Advanced Normalization Tools software (Avants et al. 2014) together with the MindBoggle-101 
atlas (Klein and Tourville 2012). Elliott et al. (2018) reported genetic variance estimates for thousands of 
phenotypes on 8,411 subjects, using SBAT (Sparse Bayesian Association Test (Elliott et al. 2018)). 
These phenotypes included the volumes of subcortical structures that we report here. Elliott et al. (2018) 
provide VG/VP estimates obtained from measurements of subcortical structures performed using FSL’s 
FIRST (FMRIB’s Integrated Registration and Segmentation Tool (Patenaude et al. 2011)) and FreeSurfer. 
In previous study of the IMAGEN data we reported only total volumes (left plus right) computed using 
FIRST. For the sake of comparison, we computed VG/VP estimates in the UK Biobank data for the left and 
right volumes separately, using both FIRST and FreeSurfer (Table S2). 
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The largest difference of hemispheric variance estimates was observed for the amygdala and the nucleus               
accumbens (Fig. S6a), which were the smallest structures of those we studied. These structures also               
displayed the lowest correlation between right and left volumes (Fig. S4) and between FIRST and               
FreeSurfer measurements (Fig. S5), which suggests that their measurement may be less precise than for               
larger structures. A similar discrepancy between left and right amygdala volume was observed by both               
Zhao et al. (2018) and Elliott et al. (2018) (Fig. S6a). Discrepancies between VG/VP estimates were more                 
important when comparing different methods to estimate subcortical volumes (FreeSurfer, FIRST, or            
MindBoggle/ANTs) than when comparing different methods to estimate genetic variance (GCTA or            
SBAT). The inclusion of the brain volume as a covariate did not change noticeably our variance estimates                 
and thus could not fully explain the differences observed with the study of Zhao et al. (2018) (Fig. S6b). In                    
all cases, however, 95% CIs built from the standard errors of each study contained the estimates of the                  
other studies. 

We also compared our VG/VP estimates for the ADNI project with those obtained by Zhao et al. (2018).                  
After filtering and merging of the non-imputed genotypes across the two ADNI sub-projects, we included               
982 subjects and 210,543 SNPs; Zhao et al. (2018) included 1,023 subjects and 7,368,446 SNPs (after                
imputation). Despite both analyses using the same covariates, the VG/VP estimates showed differences             
ranging from 7% to 99%. These differences are not surprising, however, given the small sample size, and                 
thus the large standard errors of the estimates (Fig. S6b). 

 
In conclusion, when comparing heritability estimates reported by different studies, the method used to              
measure volumes had a larger impact on the estimation of genetic variance than the method used for the                  
estimation of heritability. The smallest subcortical structures such as the nucleus accumbens, the             
amygdala and the pallidum seemed to be the most difficult to segment accurately. Large volume               
differences both between manual and automated segmentation and between FreeSurfer and FIRST            
segmentations have been previously reported, in particular for the amygdala (Morey et al. 2009;              
Schoemaker et al. 2016). 
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a. 

 
b. 

 
Figure S6. (a) Comparison of our estimates of genetic variance (VG/VP) in the UK Biobank project with two recent                   
studies: Elliot et al. (2018) and Zhao et al. (2018). VG/VP estimates were computed for brain, intracranial volume                  
(ICV), and subcortical volumes of the right and left hemispheres measured using different methods (FreeSurfer, or                
MindBoggle/ANTs, FIRST) represented by the shapes of the dots. In yellow are represented the estimates of VG/VP                 
we computed using GCTA REML unconstrained method, the other VG/VP estimates were published by Elliott et al.                 
2018 (green) and Zhao et al. 2018 (orange). Age, sex, center, and the top 10 principal components were included as                    
covariates. The error bars show the standard errors of the VG/VP estimates. (b) Fraction of phenotypic variance (VP)                  
accounted for by genetic variance (VG), computed from all genotyped SNPs for the volumes of six subcortical                 
structures in the ADNI dataset. We observed that the sample size was too small to get reliable estimations. Estimates                   
published by Zhao et al., 2018 are shown in violet, estimates we obtained using GCTA REML constrained method                  
with covariates similar to the ones used by Zhao et al. (age, sex, center, 10 top principal components, brain volume,                    
ADNI phase) are shown in yellow. 
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5. Comparison of phenotypic and genetic correlations 

 
We computed matrices of phenotypic correlations (rP in Fig. S7, left panel) and genetic correlations (rG in                 
Fig. S7, right panel). The correlations among pairs of phenotypes were computed using GCTA. We used                
Ward hierarchical clustering based on euclidean distance to cluster the phenotypes. 
 
Additionally, we computed environmental correlations which are the environmental counterpart of genetic            
correlations (Fig. S8, left panel). They represent the correlation between the environmental effects of two               
traits. They were computed using the environmental variances of each trait and the environmental              
covariance between the two traits output by GCTA ( ). Standard errors were computed        rE = Cov(E , E )tr1 tr2

√V ar(E )·V ar(E )tr1 tr2
     

with the delta method. The concordance between genetic and environmental correlation was medium (R2              
= 0.47) (Fig S8, right panel). 
 
Correlations were overall strong and significant, especially between the left and right parts of the same                
structure. Figure S9 shows the values of the differences between genetic and environmental correlations              
(rG - rE, left panel) and genetic and phenotypic (rG - rP, right panel) are shown in the lower triangular part                     
of the matrix. Differences between genetic and environmental correlations were larger than the             
differences between genetic and phenotypic correlations. Statistical significance was assessed using a            
Z-test to determine whether the differences were non null (Benjamini Yekutieli FDR adjusted *P<0.05,              
**P<0.01, ***P<0.001). Table S5 provides the values of the genetic, phenotypic, and environmental             
correlations and the results of their comparison.  
 

 
Figure S7 . Heat maps of phenotypic correlations (rP, left panel) and genetic correlation (rG, right panel) values                 
computed with GCTA. The following phenotypes are represented: the left and right hemisphere volumes of               
accumbens (Acc_L and Acc_R), amygdala (Amy_L and Amy_R), caudate (Cau_L and Cau_R), hippocampus (Hip_L              
and Hip_R), pallidum (Pa_L and Pa_R), putamen (Pu_L and Pu_R), and thalamus (Th_L and Th_R) ; brain volume                  
(BV), intracranial volume (ICV), height and fluid intelligence (FI) are also represented. Ward hierarchical clustering               
based on euclidean distance was used to cluster the phenotypes. 
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Figure S8. Left: values of environmental correlations are shown in the lower triangular part of the matrix. Circles’s                  
diameter is proportional to the strength of the correlation, and a thickness proportional to the size of the confidence                   
interval. Right: scatter plot of environmental versus genetic correlations. Genetic and environmental correlations were              
adjusted for age, center, sex, and the top 10 principal components of the genetic relationship matrix. 

    
Figure S9 . Values of the differences between genetic and phenotypic correlations (rG - rP, left) and genetic and                  
environmental correlations (rG - rE, right) are shown in the lower triangular part of the matrix. Circles’ diameter is                   
proportional to the difference and a thickness proportional to the size of the confidence interval. Stars indicate                 
statistical significance from a Z-test testing if the differences are non null (Benjamini Yekutieli FDR adjusted *P<0.05,                 
**P <0.01, ***P<0.001). The following phenotypes are represented: the left and right hemisphere volumes of              
accumbens (Acc_L and Acc_R), amygdala (Amy_L and Amy_R), caudate (Cau_L and Cau_R), hippocampus (Hip_L              
and Hip_R), pallidum (Pa_L and Pa_R), putamen (Pu_L and Pu_R), and thalamus (Th_L and Th_R) ; brain volume                  
(BV), intracranial volume (ICV), height and fluid intelligence (FI) are also represented. 
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Accounting for the effect of phenotypic measurement error  
 
Let x and y be two measured phenotypes, they can be decomposed into their real values  and  andx′ y′  
their measurement errors  and :  and .εx εy  x = x′ + εx y = y′ + εy  
 
The correlation between the two measured phenotypes can be expressed like this: 
rx,y = cov(x, y)

√var(x) var(y)
= cov(x+ε , y +ε )′ x ′ y

√var(x+ε ) var(y +ε )′ x ′ y
(Eq. 3) 

 
Considering that there is no correlation between measurement errors and the real values, one can 
develop the following formula: 
rx,y = cov(x , y )+cov(ε , ε )′ ′ x y

√(var(x )+var(ε ))(var(y )+var(ε ))′ x ′ y
 

. . .  = cov(x , y )′ ′

√var(x )var(y )′ ′ cov(x , y )′ ′
cov(x , y )+cov(ε , ε )′ ′ x y √ var(x )′

var(x )+var(ε )′ x √ var(y )′
(var(y )+var(ε ))′ y

            (Eq. 4) 

 
 and  can be estimated as being the intraclass correlation coefficient (ICC)var(x )′

var(x )+var(ε )′ x

var(y )′
var(y )+var(ε )′ y

 
respectively for x and y (called rx  and ry ).  
 
We used a generalised version of the intraclass correlation coefficient to estimate  (calledcov(x , y )′ ′

cov(x , y )+cov(ε , ε )′ ′ x y
 

rc): When x and y are measured for N different subjects with k repeated measurements, 

where  and  are the respective means for all x and y(x )(y )rc = 1
k(k−1)Nc ∑

k

i=1
∑
k

j=1,j=i/
∑
N

n=1
n,i − x n,j − y x y  

measurements,  and .(x )(y )c = 1
kN ∑

k

i=1
∑
N

n=1
n,i − x n,i − y  

 
We were thus able to obtain an estimation of the phenotypic correlation adjusted for measurement errors: 
rx , y′ ′ = rx, y

rc
√r  rx y

 (Eq. 5). 

 
Values of are available in the second sheet of Table S5, values of , , and are available in the  rx , y′ ′             rx  ry   rc     
third sheet of Table S5. The estimates of VG/VP adjusted for measurement errors using the ICC values of                  
each phenotype are shown in Figure S10. 
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Figure S10.  Adjusted proportion of variance captured by common genotyped variants (VG/VP) for brain regions, 
height and intelligence score. 
 

           rG - rP’     rG - rE’ 

   
Figure S11 . Values of the differences between genetic and corrected phenotypic correlations (rG - rP’, left panel), and                  
between genetic and corrected environmental correlations (rG - rE’, right panel) are shown in the lower triangular part                  
of the matrix. Circles’ diameter is proportional to the difference and a thickness proportional to the size of the                   
confidence interval. Stars indicate statistical significance from a Z-test testing if the differences are non null                
(Benjamini Yekutieli FDR adjusted *P<0.05, **P<0.01, ***P<0.001). The following phenotypes are represented: the             
left and right hemisphere volumes of accumbens (Acc_L and Acc_R), amygdala (Amy_L and Amy_R), caudate               
(Cau_L and Cau_R), hippocampus (Hip_L and Hip_R), pallidum (Pa_L and Pa_R), putamen (Pu_L and Pu_R), and                
thalamus (Th_L and Th_R) ; brain volume (BV), intracranial volume (ICV), height and fluid intelligence (FI) are also                  
represented. 
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6. Distribution of VG/VP estimates for simulated phenotypes for different sample sizes 
 
We studied how the distribution of heritability estimates differed from their theoretical distribution as a               
function of sample size. VG/VP estimates were obtained from 1,000 simulated phenotypes with a heritability               
of VG/VP = 50% for sub-samples of N = 800, N = 400, N = 200 and N = 100 subjects.  
Figure S12 show simulations based on the ADNI project and Figure S13 show simulations based on the                 
UK Biobank project.  
 

  
Figure S12. Distribution of estimated values for VG/VP of simulated phenotypes for different sub-sample sizes in ADNI                 
dataset, compared with the expected (theoretical) distribution. 

 Figure 
S13. Distribution of estimated values for VG/VP of simulated phenotypes for different sub-sample sizes in UK Biobank 
dataset, compared with the expected (theoretical) distribution. 
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7. Comparison between meta-analysis and mega-analysis 

 
Fig. S14 shows the difference in standard errors obtained when a single group is analysed (labelled as                 
“merging”) versus a meta-analytic approach combining several small groups (labelled as “meta-analysis”).            
The plot represents the change in standard error after including an additional dataset for GREML               
analysis. 

    
Figure S14. Resulting standard error after addition of another dataset for GREML analysis. The x-axis represents                
relative size of the added dataset compared with the initial dataset. The y-axis represents relative standard error of                  
the combinated estimate compared with the standard error obtained only with the first dataset. Meta-analysis:               
resulting standard error computed as . Merging: resulting standard error computed as . 1

√1+f raction2
1

1+f raction  
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8. Genome-wide polygenic scores 

Figure S15. Variance captured by genome-wide polygenic scores (coefficient of determination R2) for each              
phenotype. The analyses were performed on the residuals of the linear regression including the effects of age, sex,                  
imaging centre, and the 10 first principal components of the GRM as covariates. Error bars represent the 95%                  
confidence intervals. 
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Figure S16. For each phenotype, two plots are shown: a scatter plot of the phenotype residuals (after covarying by                   
age, sex, imaging centre and genetic principal components) as a function of the genome-wide polygenic scores                
(GPS), and boxplots showing the distribution of the phenotype residuals of the individuals located more than minus                 
(low_gps) or plus (high_gps) two standard deviations away from the average GPS. Units are cm3 for volumes and cm                   
for height. The variance captured by genome-wide polygenic scores (coefficient of determination R2) and the p-value                
of the Fisher test testing whether R2 is different from zero are given for the scatter plots. The t-value and p-value of                      
the Student test comparing the individuals with low and high GPS are given for the boxplots. 
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Figure S17. Comparison of the prediction of height with genome-wide polygenic scores using as base dataset the                 
MRI cohort of UK Biobank (n = 13,086, top panel) and the whole UK Biobank cohort without subjects included in the                     
target dataset (n = 277,756, bottom panel). The additional MRI cohort of UK Biobank (n = 6,189) was used as target                     
dataset. 
 
For each base dataset, two plots are shown: a scatter plot of the phenotype residuals (after covarying by                  
age, sex, imaging centre and genetic principal components) as a function of the genome-wide polygenic               
scores (GPS), and boxplots showing the distribution of the phenotype residuals of the individuals located               
more than minus (low_gps) or plus (high_gps) two standard deviations away from the average GPS. Units                
are cm3 for volumes and cm for height. The variance captured by genome-wide polygenic scores               
(coefficient of determination R2) are given for the scatter plots. The t-value and p-value of the Student test                  
comparing the individuals with low and high GPS are given for the boxplots. 
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9. Supplementary Table Legends 

 
Table S1: SNP-heritability results.  
Sheet1: SNP-heritability computed with the GCTA GREML method (including age, sex, centre and the top               
10 PCs of the GRM as covariates) for each of the studied phenotypes in UK Biobank and five ENIGMA                   
cohorts. 
Sheet2: SNP-heritability estimates obtained by averaging across the six cohorts using the inverse 
variance-weighted average method. 
 
 
Table S2: SNP-heritability computed with GCTA GREML for UK Biobank (including age, sex, centre),              
with (Table S2.1) and without (Table S2.2) including the top 10 principal components of the GRM matrix                 
as covariates. 
 
Table S3: SNP-heritability and enrichment results for several partitions using the UK Biobank 
project data.  
Table S3.1 provides data on four partitions based on genic status. The first set includes all SNPs within                  
the 66,632 RefSeq gene boundaries of the hg19 assembly (“genic-margin0”), the two further sets include               
also SNPs 0 to 20 kbp (“updown-margin20“) and 20kbp to 50 kbp upstream and downstream of each                 
gene (“updown-margin20-50”), and a last set includes the SNPs not located in regions less than 50 kbp                 
upstream or downstream of genes (nongenic-margin50).  
Table S3.2 provides data on four partitions based on minimum allele frequency (MAF): from 0.1 to 5%,                 
from 5 to 20%, from 20 to 35% and from 35 to 50%.  
Table S3.3 provides data on three partitions (genic in gene set region, genic not in gene set region,                  
non-genic) based on preferential central nervous system (CNS) gene expression (Raychaudhuri et al.             
2010; Lee, DeCandia, et al. 2012) using ± 50 kbp as gene boundaries. 
Table S3.4 provides data on three partitions (genic in gene set region, genic not in gene set region,                  
non-genic) based on markers of brain cell types from the scRNA-Seq study of Skene et al. (2018) (PMID:                  
29785013). We used the specificity metric, provided by the authors in R datafiles at              
http://www.hjerling-leffler-lab.org/data/scz_singlecell/, for each gene across 24 brain cell types. In order to            
obtain a partition with a sufficient number of SNPs, we built a gene set (using ± 20 kbp as gene                    
boundaries) of brain cell types markers by taking the union of the genes with the top 1% specificity scores                   
for each cell type.  
Table S3.5 provides data on three partitions (genic in gene set region, genic not in gene set region,                  
non-genic) based on markers of brain cell types from the scRNA-Seq study of Li et al. (2018) (PMID:                  
30545854). The union of the genes in the Table S6 of the manuscript were used to build the gene set                    
(using ± 20 kbp as gene boundaries). 
Table S3.6 provides data on three partitions (genic in gene set region, genic not in gene set region,                  
non-genic) based on markers of different time periods of human brain development from the scRNA-Seq               
study of Li et al. (2018) (PMID: 30545854). The union of the genes in the Table S7 of the manuscript were                     
used to build the gene set (using ± 20 kbp as gene boundaries). 
For each partition i, enrichment was computed using a Z-score comparing the estimated genetic variance               
VGi of the SNP set i to the SNP-set genetic variance fi*VGi expected under no enrichment, the                 
corresponding enrichment p-value comparing this Z-score to zero with a Z-test, the number of individuals,               
the p-value of the likelihood ratio test output by GCTA. 
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Table S4. Meta-Analysis of the genetic partitioning of SNP-heritability  across the six datasets. 
The partitioning of SNP-heritability estimates were averaged across the six datasets using the inverse              
variance-weighted average method.  
Table S4.1 provides four partitions based on genic status. 
Table S4.2 provides four partitions based on minimum allele frequency (MAF).  
Table S4.3 provides two partitions based on preferential central nervous system (CNS) gene expression              
(Raychaudhuri et al. 2010; Lee, DeCandia, et al. 2012) using ± 50 kbp as gene boundaries. 
For each partition i, the following results are provided: fi the average fraction of SNPs belonging to the                  
SNP set i, the average values of VGi/VP and VGi/VG/fi and the associated standard errors, the enrichment                 
p-value of the Z-test comparing VGi/VG/fi  to 1. 
 
Table S5: Genetic, phenotypic, and environmental correlations in UK Biobank.  
Table S5.1 provides the values of the genetic, phenotypic, and environmental correlations, together with              
their standard errors. Differences between rG and rE (column dr_rGrE), and rG and rP (column dr_rGrP) were                 
computed and their associated standard errors (column dr_rGrE_SE and column dr_rGrP_SE) was            
estimated using the delta method using the output of the GCTA REML bivariate method. A Z-test was                 
used to compare these differences to zero, the p-values are available in columns p.dr_rGrE and p.dr_rGrP.                
The column nind contains the number of individuals available with both annotated phenotypes.  
Table S5.2 provides the same values as for Table S5.1 but for phenotypic and environmental correlations                
values that were corrected for measurement error (as described in the 5. of this supplementary               
document). 
Table S5.3 provides the values used to correct the phenotypic correlations for measurement errors (see               
equation Eq. 5  of this supplementary document). 
 
Table S6: Distribution of estimated values for VG/VP of simulated phenotypes for different sub-sample              
sizes in ADNI dataset. For four sample sizes, 1000 sub-sampling were performed without replacement.              
nb_ind: number of sub-sampled individuals, nb_conv: number of times GREML converged and an             
estimate was given, th_mean: theoretical mean for estimates (equal to the simulated VG/VP), obs_mean,              
obs_mean_se: observed mean of estimates and standard error, p_mean: p value for difference between              
theoretical and observed mean (z-test), th_sd: theoretical standard deviation of estimates (computed as             
the mean of standard errors reported by GCTA), obs_sd, obs_sd_se: observed standard deviation of              
estimates and standard error, p_sd: p value for difference between theoretical and observed standard              
deviation (z-test), D_ks, p_ks: effect size and p-value of Kolmogorov-Smirnov test of concordance             
between theoretical normal distribution and observed distribution. 
 
Table S7: Distribution of estimated values for VG/VP of simulated phenotypes for different sub-sample              
sizes in UK Biobank dataset. 
 
Table S8: Proportion of captured phenotypic variance by genome-wide polygenic scores and covariates.             
mean_pheno: mean value of the raw phenotype, sd_pheno: standard deviation of the raw phenotype,              
Rsq_age_only: proportion of the raw phenotype captured by age, Rsq_pca_only: proportion of the raw              
phenotype captured by genetic principal components, Rsq_sex_only: proportion of the raw phenotype            
captured by sex, Rsq_centre_only: proportion of the raw phenotype captured by imaging centre,             
Rsq_gps_only: proportion of the raw phenotype captured by genome-wide polygenic score, sd_resid:            
standard deviation of residual phenotype after covarying by age, pca, sex and centre, Rsq: proportion of                
residual phenotype captured by polygenic score, SErsq: standard error of R2, LCL: lower 95% confidence               
interval limit, UCL: upper 95% confidence interval limit. 
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