C. S. Leblond, C. Nava, A. Polge, J. Gauthier, G. Huguet et al., Metaanalysis of SHANK mutations in autism Spectrum disorders: a gradient of severity in cognitive impairments, PLoS Genet, vol.10, p.1004580, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01061498

G. Huguet, M. Benabou, and T. Bourgeron, The genetics of autism spectrum disorders, pp.101-130, 2016.

A. T. Ferhat, S. Halbedl, M. J. Schmeisser, M. J. Kas, T. Bourgeron et al., Behavioural phenotypes and neural circuit dysfunctions in mouse models of autism Spectrum disorder, Adv Anat Embryol Cell Biol, vol.224, pp.85-101, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01577848

H. K. Lee, V. Sanchez, C. Chen, M. Morin, P. J. Wells et al., Three dimensional human neuro-spheroid model of Alzheimer's disease based on differentiated induced pluripotent stem cells, PLoS One, vol.11, p.163072, 2016.

R. Fernandez-santiago, I. Carballo-carbajal, G. Castellano, R. Torrent, Y. Richaud et al., Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients, EMBO Mol Med, vol.7, pp.1529-1575, 2015.

J. M. Parent and S. A. Anderson, Reprogramming patient-derived cells to study the epilepsies, Nat Neurosci, vol.18, issue.3, pp.360-66, 2015.

Z. Wen, H. N. Nguyen, Z. Guo, M. A. Lalli, X. Wang et al., Synaptic dysregulation in a human iPS cell model of mental disorders, Nature, vol.515, pp.414-422, 2015.

R. Wright, J. M. Réthelyi, and F. H. Gage, Enhancing induced pluripotent stem cell models of schizophrenia, JAMA Psychiatry, vol.71, pp.334-339, 2014.

M. K. Jaiswal, Therapeutic opportunities and challenges of induced pluripotent stem cells-derived motor neurons for treatment of amyotrophic lateral sclerosis and motor neuron disease. Neural Regeneration Research, vol.12, pp.723-736, 2017.

M. Yoo, C. Carromeu, O. Kwon, A. Muotri, and M. Schachner, Biochemical and biophysical research communications the L1 adhesion molecule normalizes neuritogenesis in Rett syndrome-derived neural precursor cells, Biochem Biophys Res Commun, vol.494, pp.504-514, 2017.

M. Marchetto, C. Carromeu, A. Acab, D. Yu, G. Yeo et al., A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells, Cell, vol.143, pp.527-566, 2010.

T. Patriarchi, S. Amabile, E. Frullanti, E. Landucci, L. Rizzo et al., Imbalance of excitatory/inhibitory synaptic protein expression in iPSCderived neurons from FOXG1 patients and in foxg1 mice, Eur J Hum Genet, vol.24, pp.871-80, 2016.

Y. Tian, I. Voineagu, S. P. Pa?ca, H. Won, V. Chandran et al., Alteration in basal and depolarization induced transcriptional network in iPSC derived neurons from Timothy syndrome, Genome Med, vol.6, pp.1-16, 2014.

J. F. Krey, S. P. Pa?ca, A. Shcheglovitov, M. Yazawa, R. Schwemberger et al., Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons, Nat Neurosci, vol.16, pp.201-210, 2013.

S. P. Pa?ca, T. Portmann, I. Voineagu, M. Yazawa, A. Shcheglovitov et al., Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome, Nat Med, vol.17, pp.1657-62, 2011.

D. P. Leone, W. E. Heavner, E. A. Ferenczi, G. Dobreva, J. R. Huguenard et al., Satb2 regulates the differentiation of both callosal and subcerebral projection neurons in the developing cerebral cortex, Cereb Cortex, vol.25, pp.3406-3425, 2015.

A. Shcheglovitov, O. Shcheglovitova, M. Yazawa, T. Portmann, R. Shu et al., SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients, Nature, vol.503, pp.267-71, 2013.

M. E. Doers, M. T. Musser, R. Nichol, E. R. Berndt, M. Baker et al., iPSCderived forebrain neurons from FXS individuals show defects in initial neurite outgrowth, Stem Cells Dev, vol.23, pp.1777-87, 2014.

D. C. Rojas, The role of glutamate and its receptors in autism and the use of glutamate receptor antagonists in treatment, J Neural Transm, vol.121, pp.891-905, 2014.

S. Khan, A. Gramfort, N. R. Shetty, M. G. Kitzbichler, S. Ganesan et al., Local and long-range functional connectivity is reduced in concert in autism spectrum disorders, Proc Natl Acad Sci U S A, vol.110, pp.3107-3119, 2013.

A. J. Khan, A. Nair, C. L. Keown, M. C. Datko, A. J. Lincoln et al., Cerebrocerebellar resting-state functional connectivity in children and adolescents with autism spectrum disorder, Biol Psychiatry, vol.78, pp.625-659, 2015.

O. Mercati, A. Danckaert, G. Andre-leroux, M. Bellinzoni, L. Gouder et al., Contactin 4, ?5 and ?6 differentially regulate neuritogenesis while they display identical PTPRG binding sites, Biol Open, vol.2, pp.324-358, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01517024

O. Mercati, G. Huguet, A. Danckaert, G. André-leroux, A. Maruani et al., CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders, Mol Psychiatry, vol.22, pp.625-658, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02104163

T. Bourgeron, Current knowledge on the genetics of autism and propositions for future research, C R Biol, vol.339, pp.300-307, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01578113

H. Harony-nicolas, D. Rubeis, S. Buxbaum, and J. D. , Phelan McDermid syndrome: from genetic discoveries to animal models and treatments, J Child Neurol, vol.30, pp.1861-70, 2015.

A. C. Tabet, T. Rolland, M. Ducloy, J. Lévy, J. Buratti et al., A framework to identify contributing genes in patients with Phelan-McDermid syndrome, NPJ Genomic Med, vol.2, p.32, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01738521

A. Kathuria, P. Nowosiad, R. Jagasia, S. Aigner, R. D. Taylor et al., Stem cell-derived neurons from autistic individuals with SHANK3 mutation show morphogenetic abnormalities during early development, Mol Psychiatry, vol.23, pp.735-781, 2017.

C. Boissart, A. Poulet, P. Georges, H. Darville, J. E. Delorme et al., Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and highthroughput drug screening, Transl Psychiatry, vol.3, p.294, 2013.

H. Darville, A. Poulet, F. Rodet-amsellem, L. Chatrousse, J. Pernelle et al., Human pluripotent stem cell-derived cortical neurons for high throughput medication screening in autism: a proof of concept study in SHANK3 Haploinsufficiency syndrome, EBioMedicine, vol.9, pp.293-305, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01326262

Y. Lee, H. Kang, B. Lee, Y. Zhang, Y. Kim et al., Integrative analysis of brain region-specific Shank3 Interactomes for understanding the heterogeneity of neuronal pathophysiology related to SHANK3 mutations, Front Mol Neurosci, vol.10, pp.1-13, 2017.

T. Sarowar and A. M. Grabrucker, Actin-dependent alterations of dendritic spine morphology in Shankopathies, Neural Plast, p.8051861, 2016.

L. Gouder, J. Tinevez, H. Goubran-botros, A. Benchoua, T. Bourgeron et al., Three-dimensional quantification of dendritic spines from pyramidal neurons derived from human induced pluripotent stem cells, J Vis Exp, issue.104, pp.1-8, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01578128

C. M. Nefzger, F. J. Rossello, J. Chen, X. Liu, A. S. Knaupp et al., Cell type of origin dictates the route to pluripotency, Cell Rep, vol.21, pp.2649-60, 2017.

T. W. Theunissen and R. Jaenisch, Molecular control of induced pluripotency, Cell Stem Cell, vol.14, pp.720-754, 2014.

L. L. Liu, J. Brumbaugh, O. Bar-nur, Z. Smith, M. Stadtfeld et al., Probabilistic modeling of reprogramming to induced pluripotent stem cells, Cell Rep, vol.25, pp.3395-406, 2016.

L. Warren, P. D. Manos, T. Ahfeldt, Y. Loh, H. Li et al., Highly efficient reprogramming to pluripotency and directed differentiation of human cells using synthetic modified mRNA, Cell Stem Cell, vol.7, pp.618-648, 2010.

I. Kogut, S. M. Mccarthy, M. Pavlova, D. P. Astling, X. Chen et al., High-efficiency RNA-based reprogramming of human primary fibroblasts, Nat Commun, vol.9, p.745, 2018.

N. Gunhanlar, G. Shpak, M. Van-der-kroeg, L. A. Gouty-colomer, S. T. Munshi et al., A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells, Mol Psychiatry, vol.23, pp.1336-1380, 2018.

F. B. Russo, B. C. Freitas, G. C. Pignatari, I. R. Fernandes, J. Sebat et al., Modeling the interplay between neurons and astrocytes in autism using human induced pluripotent stem cells, Biol Psychiatry, vol.83, pp.569-78, 2017.

K. Imaizumi, T. Sone, K. Ibata, K. Fujimori, M. Yuzaki et al., Controlling the regional identity of hPSC-derived neurons to uncover neuronal subtype specificity of neurological disease phenotypes, Stem Cell Rep, vol.5, pp.1010-1032, 2015.

J. Park, I. Wetzel, I. Marriott, D. Dréau, D. 'avanzo et al., A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer's disease, Nat Neurosci, vol.21, pp.941-51, 2018.

A. M. Pa?ca, S. A. Sloan, L. E. Clarke, Y. Tian, C. D. Makinson et al., Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture, Nat Methods, vol.12, pp.671-679, 2015.

F. Birey, J. Andersen, C. D. Makinson, S. Islam, W. Wei et al., Assembly of functional forebrain spheroids from human pluripotent cells, Nature, vol.545, pp.54-63, 2017.

M. Heide, W. B. Huttner, and F. Mora-bermúdez, Brain organoids as models to study human neocortex development and evolution, Curr Opin Cell Biol, vol.55, pp.8-16, 2018.

H. Wang, Modeling neurological diseases with human brain organoids, Front Synaptic Neurosci, vol.10, pp.1-14, 2018.

T. Chailangkarn and A. R. Muotri, Modeling Williams syndrome with induced pluripotent stem cells, Neurogenesis, vol.4, p.1283187, 2017.

J. Piven, J. T. Elison, and M. J. Zylka, Toward a conceptual framework for early brain and behavior development in autism, Mol Psychiatry, vol.22, pp.1385-94, 2017.

I. Espuny-camacho, . Michelsen-k-a, D. Gall, D. Linaro, A. Hasche et al., Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits, In Vivo Neuron, vol.77, pp.440-56, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02559538

K. A. Michelsen, S. Acosta-verdugo, M. Benoit-marand, I. Espuny-camacho, N. Gaspard et al., Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells, Neuron, vol.85, pp.982-97, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02559505

F. Nagashima, I. K. Suzuki, A. Shitamukai, H. Sakaguchi, M. Iwashita et al., Novel and robust transplantation reveals the acquisition of polarized processes by cortical cells derived from mouse and human pluripotent stem cells, Stem Cells Dev, vol.23, pp.2129-2171, 2014.

S. Falkner, S. Grade, L. Dimou, K. K. Conzelmann, T. Bonhoeffer et al., Transplanted embryonic neurons integrate into adult neocortical circuits, Nature, vol.539, pp.248-53, 2016.

T. V. Wuttke, F. Markopoulos, H. Padmanabhan, and A. P. Wheeler, Developmentally primed cortical neurons maintain fidelity of differentiation and establish appropriate functional connectivity after transplantation, Nat Neurosci, vol.21, pp.517-546, 2018.

C. Y. Park, T. Halevy, D. R. Lee, J. J. Sung, J. S. Lee et al., Reversion of FMR1 methylation and silencing by editing the triplet repeats in fragile X iPSC-derived neurons, Cell Rep, vol.13, pp.234-275, 2015.

A. A. Mansour, J. T. Goncalves, C. W. Bloyd, H. Li, S. Fernandes et al., An in vivo model of functional and vascularized human brain organoids, Nature Biotechnology, vol.36, pp.432-441, 2018.