L. Gouder, Altered spinogenesis in iPSC-derived cortical neurons from patients with autism carrying de novo SHANK3 mutations, Sci. Rep, vol.9, p.94, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02010139

C. M. Durand, Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders, Nat. Genet, vol.39, pp.25-27, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00126175

C. S. Leblond, Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments, PLoS Genet, vol.10, p.1004580, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01061498

M. C. Phelan, 22Q13 deletion syndrome, Am. J. Med. Genet, vol.101, pp.91-99, 2001.

A. Tabet, A framework to identify contributing genes in patients with Phelan-McDermid syndrome, NPJ Genom. Med, vol.2, p.32, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01738521

P. N. Alexandrov, Y. Zhao, V. Jaber, L. Cong, and W. J. Lukiw, Deficits in the proline-rich synapse-associated Shank3 protein in multiple neuropsychiatric disorders, Front. Neurol, vol.8, pp.1-7, 2017.

O. Bozdagi, Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication, Mol. Autism, vol.1, p.15, 2010.

J. Peça, Shank3 mutant mice display autistic-like behaviours and striatal dysfunction, Nature, vol.472, pp.437-442, 2011.

Y. H. Jiang and M. D. Ehlers, Modeling autism by SHANK gene mutations in mice, Neuron, vol.78, pp.8-27, 2013.

C. M. Durand, SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actindependent mechanism, Mol. Psychiatry, vol.17, pp.71-84, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00644264

A. Shcheglovitov, SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients, Nature, vol.503, pp.267-271, 2013.

M. Bidinosti, CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency, Science, vol.351, pp.1-8, 2016.

H. Darville, Human pluripotent stem cell-derived cortical neurons for high throughput medication screening in autism: a proof of concept study in SHANK3 haploinsufficiency syndrome, vol.9, pp.293-305, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01326262

F. Yi, Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons, Science, vol.352, p.2669, 2016.

S. Pfaender, Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3, Sci. Rep, vol.7, pp.1-15, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01578003

C. Boissart, Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening, Transl. Psychiatry, vol.3, p.294, 2013.

M. Pagani, Deletion of autism risk gene Shank3 disrupts prefrontal connectivity, J. Neurosci, vol.39, pp.5299-5310, 2019.

D. A. Nagode, Abnormal development of the earliest cortical circuits in a mouse model of autism spectrum disorder, Cell Rep, vol.18, pp.1100-1108, 2017.

S. T. Schafer, Pathological priming causes developmental gene network heterochronicity in autistic subject-derived neurons, Nat. Neurosci, vol.22, pp.243-255, 2019.

I. Espuny-camacho, Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo, Neuron, vol.77, pp.440-456, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02559538

N. Ballout, Development and maturation of embryonic cortical neurons grafted into the damaged adult motor cortex, Front. Neural Circuits, vol.10, pp.1-12, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02559492

K. A. Michelsen, Area-specific reestablishment of damaged circuits in the adult cerebral cortex by cortical neurons derived from mouse embryonic stem cells, Neuron, vol.85, pp.982-997, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02559505

R. D'-alessio, Long-term development of human iPSC-derived pyramidal neurons quantified after transplantation into the neonatal mouse cortex, Dev. Biol, vol.461, pp.86-95, 2020.

J. Urban-ciecko and A. L. Barth, Somatostatin-expressing neurons in cortical networks, Nat. Rev. Neurosci, vol.17, pp.401-409, 2016.

J. I. Arenallo, R. Benavides-piccione, J. Defelipe, and R. Yuste, Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies, Front. Neurosci, vol.1, pp.131-143, 2007.

A. Vitrac and I. Cloëz-tayarani, Induced pluripotent stem cells as a tool to study brain circuits in autism-related disorders, Stem Cell Res. Ther, vol.9, pp.1-7, 2018.

J. Wegiel, Brain-region-specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism, Acta Neuropathol. Commun, vol.2, p.28, 2014.

A. J. Lingley, J. C. Bowdridge, R. Farivar, and K. R. Duffy, Mapping of neuron soma size as an effective approach to delineate differences between neural populations, J. Neurosci. Methods, vol.304, pp.126-135, 2018.

A. Kathuria, Stem cell-derived neurons from autistic individuals with SHANK3 mutation show morphogenetic abnormalities during early development, Mol. Psychiatry, vol.23, pp.735-746, 2018.

G. Huang, Uncovering the functional link between SHANK3 deletions and deficiency in neurodevelopment using iPSCderived human neurons, Front. Neuroanat, vol.13, p.23, 2019.

N. Daviaud, R. H. Friedel, and H. Zou, Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex, vol.5, pp.1-18, 2018.

C. Jin, Unexpected compensatory increase in Shank3 transcripts in Shank3 knock-out mice having partial deletions of exons, Front. Mol. Neurosci, vol.12, p.228, 2019.

L. Wang, An autism-linked missense mutation in SHANK3 reveals the modularity of Shank3 function, 2019.

X. Wang, Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism, Nat. Commun, vol.7, p.11459, 2016.

E. Drapeau, N. P. Dorr, G. A. Elder, and J. D. Buxbaum, Absence of strong strain effects in behavioral analyses of Shank3-deficient mice, Dis. Model. Mech, vol.7, pp.667-681, 2014.

M. E. Avale, Interplay of ?2* nicotinic receptors and dopamine pathways in the control of spontaneous locomotion, Proc. Natl. Acad. Sci. USA 105, pp.15991-15996, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00408804

L. Gouder, Three-dimensional quantification of dendritic spines from pyramidal neurons derived from human induced pluripotent stem cells, J. Vis. Exp, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01578128

, Scientific RepoRtS |, vol.10, p.13315, 2020.