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Coronavirus disease 2019 (COVID-19) is characterized by distinct patterns of disease progression
suggesting diverse host immune responses. We performed an integrated immune analysis on a cohort of 50
COVID-19 patients with various disease severity. A unique phenotype was observed in severe and critical
patients, consisting of a highly impaired interferon (IFN) type | response (characterized by no IFN-p and low
IFN-a production and activity), associated with a persistent blood viral load and an exacerbated
inflammatory response. Inflammation was partially driven by the transcriptional factor NF-xB and
characterized by increased tumor necrosis factor (TNF)-a and interleukin (IL)-6 production and signaling.
These data suggest that type-I IFN deficiency in the blood could be a hallmark of severe COVID-19 and
provide a rationale for combined therapeutic approaches.

Early clinical descriptions of the first SARS-CoV-2 corona-
virus disease (COVID-19) cases at the end of 2019 rapidly
highlighted distinct patterns of disease progression (7). Alt-
hough most patients experience mild-to-moderate disease, 5-
10% progress to severe or critical disease, including pneumo-
nia and acute respiratory failure (2, 3). Based on data from
patients with laboratory-confirmed COVID-19 from mainland
China, admission to intensive care unit (ICU), invasive me-
chanical ventilation or death occurred in 6.1% of cases (I),
and the death rate from recent current French data was
0.70% (3). This proportion of critical cases is higher than that
estimated for seasonal Influenza (4). Additionally, relatively
high rates of respiratory failure were reported in young
adults (aged 50 years and lower) with previously mild comor-
bidities (e.g., hypertension, diabetes mellitus, overweight) (5).
Severe cases can occur early in the disease course but clinical
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observations typically describe a two-step disease progres-
sion, starting with a mild-to-moderate presentation, followed
by a secondary respiratory worsening 9-12 days after the first
onset of symptoms (2, 6, 7). Respiratory deterioration is con-
comitant with extension of ground-glass lung opacities on
chest computed tomography (CT) scans, lymphocytopenia,
high prothrombin time and D-dimer levels (2). This biphasic
evolution marked by a dramatic increase of acute phase reac-
tants in the blood suggests a dysregulated inflammatory host
response resulting in an imbalance between pro- and anti-
inflammatory mediators. This leads to the subsequent re-
cruitment and accumulation of leukocytes in tissues causing
acute respiratory distress syndrome (ARDS) (8). However, lit-
tle is known about the immunological features and the mo-
lecular mechanisms involved in COVID-19 severity.
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To test the hypothesis of a virally-driven hyperinflamma-
tion leading to severe disease, we employed an integrative ap-
proach based on clinical and biological data, in-depth
phenotypical analysis of immune cells, standardized whole-
blood transcriptomic analysis and cytokine measurements on
a group of fifty COVID-19 patients with variable severity from
mild to critical.

COVID-19 patients (n = 50) and healthy controls (n = 18)
were included. Patients’ characteristics are detailed in the
supplementary materials and depicted in table S1 and fig. S1.
Patients were analyzed after a median duration of 10 days
(interquartile range, 9 -11 days) after disease onset. On admis-
sion, the degree of severity of COVID-19 was categorized as
mild-to-moderate (n = 15 patients), severe (n = 17 patients)
and critical (n = 18 patients).

As reported in previous studies (7, 2, 8), lymphocytopenia
correlates with disease severity (Fig. 1A). To further charac-
terize this, we used mass cytometry and performed Visualiza-
tion of t-Distributed Stochastic Neighbor Embedding (viSNE)
(9) to compare cell population densities according to disease
severity (Fig. 1B). viSNE representation and differentiated
cell counts showed a decrease in the density of NK cells and
CD3* T cells, including all T cell subsets, that was more pro-
nounced for CD8" T cells. This phenotype was more promi-
nent in severe and critical patients, contrasting with an
increase in the density of B cells and monocytes (Fig. 1, C to
F). No major imbalance in CD4* and CD8" T cell na-
ive/memory subsets was observed (fig. S2). Data on T cell po-
larization and other minor T cell subsets are shown in fig. S3.
Plasmablasts were enriched in all infected patients (Fig. 1F),
as supported by the increase in genes associated with B cell
activation and plasmablast differentiation, such as IL4R,
TNESFI13B and XBPI (fig. S4) but without any significant in-
crease of serum immunoglobulin levels (fig. S5).

We then assessed the functional status of specific T cell
subsets and NK cells using markers of activation (CD25,
CD38, HLA-DR) and exhaustion (PD-1, Tim-3) (fig. S6A). The
CD4* and CD8* T cell populations were characterized by an
increase in CD38* HLA-DR" activated T cells in all infected
patients, with an expression of PD-1 moderately increasing
with disease severity (Fig. 1G and fig. S6B). A similar increase
in activated NK cells was found in all infected patients, espe-
cially critical patients, and NK cells displayed a significant
increase in Tim-3 expression (Fig. 1G). Furthermore, expres-
sion of exhaustion-related genes, such as BATF, IRF4 and
CD274, significantly increased with disease severity (fig. S6C).
High annexin-V expression (by flow cytometry) and up-regu-
lation of apoptosis-related genes in the blood from severe and
critical patients supported the notion that lymphocytopenia
could be partly explained by exacerbated T cell apoptosis (fig.
S7).
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To investigate the immunological transcriptional signa-
tures that characterize disease severity, we quantified the ex-
pression of immune-related genes in peripheral white blood
cells (Fig. 2A). We identified differentially expressed genes as
a function of severity grades (Fig. 2B). Unsupervised principal
component analysis (PCA) separated patients with high dis-
ease severity on principal component 1 (PC1), driven by in-
flammatory and innate immune response encoding genes
(GSEA enrichment score with g-value <0.2) (Fig. 2C). PC2,
that was enriched in genes encoding proteins involved in
both type I and type II interferon (IFN) responses, distin-
guished mild-to-moderate patients from the other groups.
Collectively, these data suggested a severity grade-dependent
increase in activation of innate and inflammatory pathways;
in contrast, the IFN response was high in mild-to-moderate
patients while it was reduced in more severe patients.

Type I IFNs are essential for antiviral immunity (0). Mul-
tiplex gene expression analysis showed an up-regulation of
genes involved in type I IFN signaling (such as IFNARI, JAKI,
TYK?2) contrasting with a striking down-regulation of inter-
feron-stimulated genes (ISGs) (such as MX1, IFITM]1, IFIT2)
in critical SARS-CoV-2 patients (Fig. 3A). Accordingly, a vali-
dated ISG score, based on the mean of expression of 6 ISGs
defining a type I IFN signature (1), was significantly reduced
in critical patients compared with patients that had mild-to-
moderate infection (Fig. 3B and fig. S8A). IFN-3 mRNA was
undetectable in all infected patients (fig. S8B) as well as IFN-
B protein (fig. S8C). Consistent with ISG scores, plasma levels
of IFN-o2 protein measured by Simoa digital ELISA (12) were
significantly lower in critical than in mild-to-moderate pa-
tients (Fig. 3C) and correlated with ISG (R?= 0.30; P < 0.0001)
(fig. S8D). This result apparently contrasted with the in-
creased detection of IFNA2 mRNA in most severe patients,
albeit at levels just above the limit of detection (fig. SSE). To
assess the global type I IFN activity, an in vitro cytopathic
assay was used (13). IFN activity in serum was significantly
lower in severe or critical patients as compared to mild-to-
moderate patients (Fig. 3D). ISG score and plasma levels of
IFN-o2 from blood collected prior to respiratory failure re-
quiring mechanical ventilation revealed that the low type I
IFN response preceded clinical deterioration to critical status
(Fig. 3E). Furthermore, low plasma levels of IFN-o2 was sig-
nificantly associated with an increased risk of evolution to
critical status (OR 12, 95% CI 1.21-118, P = 0.03). Interestingly,
analysis in patients where multiple time points were availa-
ble showed distinct patterns of IFN-o production with sus-
tained high response in mild-to-moderate patients, high but
short response in severe patients, and low or no response in
critical patients (Fig. 3F). Of note, the proportion of
plasmacytoid dendritic cells, the main source of IFN-o (14),
was reduced in infected patients compared to healthy con-
trols, possibly due to migration to sites of infection (15), but
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without any difference between groups (Fig. 3G). We next
evaluated the response of whole blood cells to IFN-o stimu-
lation (7I) and observed a comparable increase in ISG score
upon IFN-o stimulation between groups of any severity and
controls (Fig. 3H), suggesting that the potential for response
to type I IFN was not impacted in COVID-19 patients. As a
possible consequence of impaired IFN-o production, we used
ultrasensitive droplet based digital PCR (ddPCR) and found
an increased plasma viral load in severe and critical patients,
a possible surrogate marker of uncontrolled lung infection,
while viral load in nasal swabs using classical RT-PCR was
comparable between groups (Fig. 3I). Overall, these data sug-
gest that infected patients had no detectable circulating IFN-
B and that an impaired IFN-o production characterized the
most severe COVID-19 cases.

Severe COVID-19 was reported to be associated with hy-
percytokinaemia (8, 16). Cytokine and chemokine-related
genes were found to be increasingly expressed as a function
of disease severity in the study cohort (Fig. 4A and fig. SOA).
Interestingly, cytokine whole blood RNA levels did not always
correlate with protein plasma levels. IL-6, a key player of the
exacerbated inflammatory response in COVID-19 (17), was
not detected in peripheral blood at the transcriptional level
(fig. S9B), contrasting with high levels of IL-6 protein (Fig.
4B). Expression of IL-6-induced genes, such as IL6R, SOCS3
and STAT3 were significantly increased (fig. S9B) reflecting
the activation of the IL-6 signaling pathway. TNF-o, a key
driver of inflammation, was only moderately up-regulated at
the transcriptional level (fig. S9C), whereas circulating TNF-
o was significantly increased (Fig. 4C). Accordingly, TNF
pathway-related genes were also up-regulated, including
TNFSFIO0 (fig. S9, D and E), supporting an important role for
TNF-a in the induction of inflammation. The discrepancy be-
tween RNA quantification and protein measurement sug-
gests that cellular sources of TNF-o and IL-6 may be the
injured lungs and/or endothelial cells. Conversely, while IL1B
transcripts were significantly up-regulated (fig. SOF), the ac-
tive form of IL-1B protein was low (Fig. 4D), suggesting that
pro-IL-1B was poorly cleaved and secreted, but does not ex-
clude a local production in the lung (15). Circulating IL-1o
was also not detected (fig. SOF). These findings contrasted
with the detection of high levels of circulating IL-1 receptor
antagonist (IL-1IRA) and up-regulation of ILIRI transcripts,
indicating an active antagonism of IL-1 in critically ill pa-
tients (fig. SOF). We also detected IL10 transcripts and IL-10
protein in both severe or critical patients (Fig. 4E and fig.
S9G). IFN-y was increased in mild-to-moderate patients and
at a lesser extent in severe patients, but not in critical pa-
tients. In contrast, no increase in IL-17A levels was detected
in all infected patients’ groups (fig. S10).

We next explored the expression of transcription factors
that may drive this exacerbated inflammation and found that
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genes specifically up-regulated in severe or critical patients
mainly belonged to the NF-xB pathway (Fig. 4F and fig. S11,
A and B). Among several triggering pathways, aberrant NF-
kB activation can result, from excessive innate immune sen-
sor activation by pathogen-associated molecular patterns
(PAMPs) (e.g., viral RNA) and/or damage-associated molecu-
lar patterns (DAMPs) (e.g., released by necrotic cells and tis-
sue damage). Interestingly, LDH, a marker of necrosis and
cellular injury, correlated with disease severity (fig. S1C), and
receptor-interacting protein kinase (RIPK)-3, a key kinase in-
volved in programmed necrosis and inflammatory cell death,
was also significantly elevated in severe or critical patients
(Fig. 4G) and correlated with LDH (R?= 0.47; P < 0.0001).

The exacerbated inflammatory response has been associ-
ated with a massive influx of innate immune cells, namely
neutrophils and monocytes, which may aggravate lung injury
and precipitate ARDS (15). We therefore analyzed expression
of chemokines and chemokine receptors involved in the traf-
ficking of innate immune cells (Fig. 4A). While the neutrophil
chemokine CXCL2 was detected in the serum but with no dif-
ference between groups, its receptor CXCR2 was significantly
up-regulated in severe and critical patients (Fig. 4H). Consist-
ently, severe disease was accompanied with higher neutro-
philia (Fig. 4H). Of note, the inflammatory response pattern
remained elevated even after normalization of transcrip-
tional data with neutrophil counts (fig. S12). Monocyte chem-
otactic factor CCL2 was increased in the blood of infected
patients, as well as the transcripts of its receptor CCR2; this
was associated with low circulating inflammatory monocytes
counts (Fig. 4I), suggesting a role for the CCL2/CCR2 axis in
the monocyte chemoattraction into the inflamed lungs. These
observations are in accordance with published studies in
bronchoalveolar fluids from COVID-19 patients, describing
the key role of monocytes (15). Overall, these results support
a framework whereby an ongoing inflammatory cascade, in
the setting of impaired type I IFN production and high viral
load may be fueled by both PAMPs and DAMPs.

In this study, we identified an impaired type I IFN re-
sponse in severe and critical COVID-19 patients, accompa-
nied by high blood viral load and an excessive NF-kB-driven
inflammatory response associated with increased TNF-o and
IL-6. Innate immune sensors, such as TLRs and RIG-I-like re-
ceptors, play a key role in controlling RNA virus by sensing
viral replication and by alerting the immune system through
the expression of a diverse set of antiviral genes (I18). Type I
IFNs, which include IFN-o, B and w, are hence rapidly in-
duced and orchestrate a coordinated antiviral program via
the JAK-STAT signaling pathway and expression of ISGs (19).
We observed that SARS-CoV-2 infection was characterized by
an absence of circulating IFN-B in COVID-19 patients with all
disease-severity grades. In addition, most severe COVID-19
patients displayed impaired IFN-o production that was
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associated with lower viral clearance. Interestingly, this low
type I IFN signature was similar to that observed in young
children with severe, but not mild, respiratory syncytial virus
infection (20), but was remarkably different from the tran-
scriptional response induced by other respiratory viruses
such as human parainfluenza virus 3 or influenza A virus,
both characterized by a stronger type I IFN response in in
vitro experiments (2I). Importantly, although our study was
not designed for longitudinal analyses, we observed that low
IFN-a plasma levels preceded clinical deterioration and
transfer to ICU and that distinct patterns of circulating IFN-
o characterized each disease-grade. Formal longitudinal
studies will be necessary to dissect type I IFN dynamics dur-
ing SARS-CoV-2 infection. It will be important to assess in
severe and critical COVID-19 patients whether this reduced
type I IFN production is present at the onset of infection,
whether the production is delayed, or whether IFN produc-
tion is exhausted after an initial peak. Recent data confirmed
in cellular and animal models that SARS-CoV-2 inhibited type
I and III induction (21). These results suggest that SARS-CoV-
2 has developed efficient mechanisms to shut down host IFN
production.

Conversely on the host side, several hypotheses may be
proposed to explain variability in type I IFN responses to in-
fection. Comorbidities are risk factors for severe COVID-19
that could negatively impact IFN production, and in contrast
exacerbate inflammatory responses (22, 23). Genetic suscep-
tibility can be also suspected since monogenic disorders in
children (24) or susceptibility variants in adults (25), each in-
volving the type I IFN pathway, have been associated with
life-threatening influenza infections. Identification of pa-
tients with insufficient IFN production, but preserved cellu-
lar response to type I IFN could define a high-risk population
who might benefit from IFN-o or -3 treatment. Benefit and
risk as well as the best time window for efficacy of IFN ad-
ministration require to be nevertheless weighed. Alterna-
tively, IFN-A (Type III IFN) could be tested as recently
proposed (26), as the receptor is localized on epithelial cells,
which may avoid potential adverse effects caused by type I
IFN.

Viral replication within the lungs in conjunction with an
increased influx of innate immune cells mediates tissue dam-
age and may fuel an auto-amplification inflammatory loop,
including targetable production of IL-6 (27) and TNF-a (28),
potentially driven by NF-xB. Our study provides a case for the
inhibition of the TNF-o axis. Indeed, TNF-o is highly ex-
pressed in alveolar macrophages and anti-TNF-a does not
block immune responses in animal models of viral infection
28).

Our study has some limitations. First, the study was de-
signed as a cross-sectional analysis, although sequential time
points were available for some patients. Second, data
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provided are mainly derived from the blood and do not allow
the assessment of immune responses within the lung. In this
respect, data from Bost et al. describe a reduced type I IFN
signature in BAL macrophages from severe COVID-19 pa-
tients, supporting the validity of our analysis (29).

Based on our study, we propose that type I IFN deficiency
is a hallmark of severe COVID-19 and infer that severe
COVID-19 patients might be potentially relieved from the IFN
deficiency by IFN administration and from exacerbated in-
flammation by adapted anti-inflammatory therapies target-
ing IL-6 or TNF-o, a hypothesis worth cautious testing.
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Fig. 1. Phenotyping of peripheral blood leukocytes in patients with SARS-CoV-2 infection. (A) Lymphocyte
counts in whole blood from COVID-19 patients were analyzed between days 8 and 12 after onset of first
symptoms, according to disease severity. (B) viSNE map of blood leukocytes after exclusion of granulocytes,
stained with 30 markers and measured with mass cytometry. Cells are automatically separated into spatially
distinct subsets based on the combination of markers that they express. (C) viSNE map colored by cell density
across disease severity (classified as healthy controls, mild-to-moderate, severe and critical). Red represents
the highest density of cells. (D) Absolute number of CD3* T cells, CD8* T cells and CD3- CD56" natural killer
(NK) cells in peripheral blood from COVID-19 patients, according to disease severity. (E and F) Proportions
(frequencies) of lymphocyte subsets from COVID-19 patients. Shown are (E) proportions of CD3" T cells
among lymphocytes, CD8* T cells among CD3* T cells and NK cells among lymphocytes; (F) proportions of
CD19* B cells among lymphocytes and CD38hi CD27hi plasmablasts among CD19* B cells. (G) Analysis of the
functional status of specific T cell subsets and NK cells based on the expression of activation (CD38, HLA-DR)
and exhaustion (PD-1, Tim-3) markers. In (D) to (G), data indicate median. Each dot represents a single
patient. P values were determined by the Kruskal-Wallis test, followed by Dunn's post-test for multiple group
comparisons with median reported; *P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 2. Immunological transcriptional signature of SARS-CoV-2 infection. RNA extracted from patient whole
blood and RNA counts of 574 genes were determined by direct probe hybridization using the Nanostring
nCounter Human Immunology_v2 kit. (A) Heatmap representation of all genes, ordered by hierarchical
clustering. Healthy controls (n = 13), mild-to-moderate (n = 11), severe (n = 10) and critical (n = 11). Up-
regulated genes are shown in red and down-regulated genes in blue. (B) Volcano plots depicting loglO (P-
value) and log? (fold change), as well as z-value for each group comparison (see Methods). Gene expression
comparisons allowed the identification of significantly differentially expressed genes between severity grades
(heathy controls vs mild-moderate, 216 genes; moderate vs severe, 43 genes; severe vs critical, O genes). (C)
Principal component analysis (PCA) of the transcriptional data (left). Kinetic plots showing mean normalized
values for each gene and severity grade where each grey line corresponds to one gene (middle and right).
Median values over genes for each severity grade are plotted in black. Gene set enrichment analysis of
pathways enriched in PC1 and PC2 are depicted under corresponding kinetic plot.
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Fig. 3. Impaired type | IFN response in patients with severe SARS-CoV-2 infection. (A) Heatmap showing
expression of type | IFN-related genes using the reverse transcription- and PCR-free Nanostring nCounter
technology in patients with mild-to-moderate (n = 11), severe (n = 10) and critical (n = 11) SARS-CoV?2 infection,
and healthy controls (n = 13). Up-regulated genes are shown in red and down-regulated genes in blue. (B) IFN
stimulated gene (ISG) score based on expression of 6 genes (IFI44L, IFI27, RSAD2, SIGLECI, IFIT1, and IS15)
measured by g-RT-PCR in whole blood cells from mild-to-moderate (n = 14), severe (n = 15) and critical (n =17)
patients, and healthy controls (n = 18). (C) IFN-o2 (fg/mL) concentration evaluated by Simoa and (D) IFN
activity in plasma according to clinical severity. (E) Mild-to-moderate (n = 14) and severe patients (n = 16) were
separated in two groups depending on the clinical outcome, namely critical worsening requiring mechanical
ventilation (to denote severe status). ISG score (left) and IFN-o2 plasma concentration (right) are shown. (F)
Time-dependent IFN-o2 concentrations are shown according to severity group. (G) Quantification of
plasmacytoid dendritic cells (pDC) as a percentage of PBMCs and as cells/mL according to severity group. (H)
ISG score before and after stimulation of whole blood cells by IFN-o (103Ul/mL for 3 hours). (1) Viral loads in
nasal swabs estimated by RT-PCR and expressed in cycle threshold (Ct) and blood viral load evaluated by digital
PCR. In (B) and (E), ISG score results represent the fold-increased expression compared to the mean of
unstimulated controls and are normalized to GAPDH. In (B) to (l), Data indicate median. Each dot represents a
single patient. P-values were determined by the Kruskal-Wallis test, followed by Dunn's post-test for multiple
group comparisons and by the Mann-Whitney test for two group comparisons with median reported; *P < 0.05;
**P < (0.01; ***P < 0.001.
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Fig. 4. Immune profiling in patients with severe and critical SARS-CoV-2 infection. (A) Heatmap showing the
expression of cytokines and chemokines that are significantly different in severe and critical patients, and ordered
by hierarchical clustering. Healthy controls (n = 13), mild-to-moderate (n = 11), severe (n = 10) and critical (n =11)
patients. Up-regulated genes are shown in red and down-regulated genes inblue. (B) Interleukin (IL)-6, (C) Tumor
necrosis factor (TNF)-a, (D) IL-18 and (E) IL-10 proteins were quantified in the plasma of patients using Simoa
technology or a clinical grade ELISA assay (see methods). Each group includes n = 10-18 patients. Dashed line
depicts the limit of detection (LOD). (F) Kinetic plots showing mean normalized value for each gene and severity
grade (each grey line corresponds to one gene belonging to the NF-xB pathway). Median values over genes for
each severity grade were plotted in black. (G) Plasma quantification of receptor-interacting protein kinase (RIPK)-
3. Each group included n = 10 patients. (H) Absolute RNA count for CXCR2 (left); CXCL2 protein plasma
concentration measured by Luminex technology (middle); blood neutrophil count depending on severity group
(right). Dashed line depicts the upper normal limit. Each group includes n = 10-13 patients (I) Absolute RNA count
for CCR2 (left); CCL2 protein plasma concentration measured by Luminex technology (middle left); blood
monocyte count depending on severity group (middle right). Dashed lines depict the normal range. (Right) The
percentage of non-classical monocytes depending on severity grade. Each group shows n = 10-18 patients. RNA
data are extracted from the Nanostring nCounter analysis (see methods). In (B) to (1), data indicate median. Each
dotrepresents a single patient. P-values were determined by the Kruskal-Wallis test, followed by Dunn’'s post-test
for multiple group comparisons with median reported; *P < 0.05; **P < 0.01; ***P < 0.001.
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