L. Craig, K. T. Forest, and B. Maier, Type IV pili: dynamics, biophysics and functional consequences, Nat. Rev. Microbiol, vol.17, pp.429-440, 2019.

C. L. Giltner, Y. Nguyen, and L. L. Burrows, Type IV pilin proteins: versatile molecular modules. Microbiol, Mol. Biol. Rev.: MMBR, vol.76, pp.740-772, 2012.

S. Lu, Nanoscale pulling of type IV pili reveals their flexibility and adhesion to surfaces over extended lengths of the pili, Biophys. J, vol.108, pp.2865-2875, 2015.

L. Craig, M. E. Pique, and J. A. Tainer, Type IV pilus structure and bacterial pathogenicity, Nat. Rev. Microbiol, vol.2, pp.363-378, 2004.

B. Daum and V. Gold, Twitch or swim: towards the understanding of prokaryotic motion based on the type IV pilus blueprint, Biol. Chem, vol.399, pp.799-808, 2018.

C. Y. Chang, Surface sensing for biofilm formation in Pseudomonas aeruginosa, Front Microbiol, vol.8, p.2671, 2017.

K. H. Piepenbrink, DNA uptake by type IV filaments, Front Mol. Biosci, vol.6, p.1, 2019.

D. P. Bayley and K. F. Jarrell, Further evidence to suggest that archaeal flagella are related to bacterial type IV pili, J. Mol. Evol, vol.46, pp.370-373, 1998.

D. M. Faguy, K. F. Jarrell, J. Kuzio, and M. L. Kalmokoff, Molecular analysis of archael flagellins: similarity to the type IV pilin-transport superfamily widespread in bacteria, Can. J. Microbiol, vol.40, pp.67-71, 1994.

S. V. Albers and M. Pohlschroder, Diversity of archaeal type IV pilin-like structures, Extremophiles, vol.13, pp.403-410, 2009.

S. V. Albers, Z. Szabo, and A. J. Driessen, Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity, J. Bacteriol, vol.185, pp.3918-3925, 2003.

S. V. Albers and K. F. Jarrell, The archaellum: an update on the unique archaeal motility structure, Trends Microbiol, vol.26, pp.351-362, 2018.

K. S. Makarova, E. V. Koonin, and S. V. Albers, Diversity and evolution of type IV pili systems in archaea, Front Microbiol, vol.7, p.667, 2016.

M. Pohlschroder and R. N. Esquivel, Archaeal type IV pili and their involvement in biofilm formation, Front Microbiol, vol.6, p.190, 2015.

P. Chaudhury, T. E. Quax, and S. V. Albers, Versatile cell surface structures of archaea, Mol. Microbiol, vol.107, pp.298-311, 2018.

E. R. Quemin, First insights into the entry process of hyperthermophilic archaeal viruses, J. Virol, vol.87, pp.13379-13385, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00932216

E. F. Rowland, M. A. Bautista, C. Zhang, and R. J. Whitaker, Surface resistance to SSVs and SIRVs in pilin deletions of Sulfolobus islandicus, Mol. Microbiol, 2019.

R. Hartman, The molecular mechanism of cellular attachment for an archaeal virus, Structure, vol.27, pp.1634-1646, 2019.

F. Wang, Cryoelectron microscopy reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae type IV pili at sub-nanometer resolution, Structure, vol.25, pp.1423-1435, 2017.

S. Kolappan, Structure of the Neisseria meningitidis Type IV pilus, Nat. Commun, vol.7, p.13015, 2016.

A. Neuhaus, Cryo-electron microscopy reveals two distinct type IV pili assembled by the same bacterium, Nat. Commun, vol.11, p.2231, 2020.

N. Poweleit, CryoEM structure of the Methanospirillum hungatei archaellum reveals structural features distinct from the bacterial flagellum and type IV pili, Nat. Microbiol, vol.2, p.16222, 2016.

B. Daum, Structure and in situ organisation of the Pyrococcus furiosus archaellum machinery, vol.6, p.27470, 2017.

V. A. Meshcheryakov, High-resolution archaellum structure reveals a conserved metal-binding site, EMBO reports, vol.20, 2019.

T. Braun, Archaeal flagellin combines a bacterial type IV pilin domain with an Ig-like domain, Proc. Natl Acad. Sci. USA, vol.113, pp.10352-10357, 2016.

F. Wang, An extensively glycosylated archaeal pilus survives extreme conditions, Nat. Microbiol, vol.4, pp.1401-1410, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02557186

D. P. Baquero, New virus isolates from Italian hydrothermal environments underscore the biogeographic pattern in archaeal virus communities, ISME J, vol.14, pp.1821-1833, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02557115

F. B. Wang, Structure of a filamentous virus uncovers familial ties within the archaeal virosphere, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02568496

E. H. Egelman, Ambiguities in helical reconstruction, vol.3, p.4969, 2014.

P. V. Afonine, New tools for the analysis and validation of cryo-EM maps and atomic models, Acta Crystallogr D. Struct. Biol, vol.74, pp.814-840, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02409756

E. H. Egelman, Cryo-EM of bacterial pili and archaeal flagellar filaments, Curr. Opin. Struct. Biol, vol.46, pp.31-37, 2017.

L. Holm and P. Rosenstrom, Dali server: conservation mapping in 3D, Nucleic Acids Res, vol.38, pp.545-549, 2010.

P. N. Reardon and K. T. Mueller, Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens, J. Biol. Chem, vol.288, pp.29260-29266, 2013.

J. Xu and Y. Zhang, How significant is a protein structure similarity with TMscore = 0.5?, Bioinformatics, vol.26, pp.889-895, 2010.

W. Kuhlbrandt, Biochemistry The resolution revolution, Science, vol.343, pp.1443-1444, 2014.

E. H. Egelman, The current revolution in Cryo-EM, Biophys. J, vol.110, pp.1008-1012, 2016.

X. C. Bai, G. Mcmullan, and S. H. Scheres, How cryo-EM is revolutionizing structural biology, Trends Biochem. Sci, vol.40, pp.49-57, 2015.

S. Yuan, Cryo-EM structure of a herpesvirus capsid at 3.1 A, Science, vol.360, 2018.

Q. Fang, Near-atomic structure of a giant virus, Nat. Commun, vol.10, p.388, 2019.

F. Wang, A packing for A-form DNA in an icosahedral virus, Proc. Natl Acad. Sci. USA, vol.116, pp.22591-22597, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02559906

D. Veesler, Atomic structure of the 75 MDa extremophile Sulfolobus turreted icosahedral virus determined by CryoEM and X-ray crystallography, Proc. Natl Acad. Sci. USA, vol.110, pp.5504-5509, 2013.

L. Kandiba and J. Eichler, Archaeal S-layer glycoproteins: post-translational modification in the face of extremes, Front Microbiol, vol.5, p.661, 2014.

A. Klingl, C. Pickl, and J. Flechsler, Archaeal cell walls, Subcell. Biochem, vol.92, pp.471-493, 2019.

C. K. Ellison, Obstruction of pilus retraction stimulates bacterial surface sensing, Science, vol.358, pp.535-538, 2017.

Z. Zeng, X. L. Liu, J. H. Wei, R. E. Summons, and P. V. Welander, Calditollinked membrane lipids are required for acid tolerance in Sulfolobus acidocaldarius, Proc. Natl Acad. Sci. USA, vol.115, pp.12932-12937, 2018.

M. Beeby, The genomics of disulfide bonding and protein stabilization in thermophiles, PLoS Biol, vol.3, p.309, 2005.

M. Krupovic, M. F. White, P. Forterre, and D. Prangishvili, Postcards from the edge: structural genomics of archaeal viruses, Adv. virus Res, vol.82, pp.33-62, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00680430

S. K. Menon, Cysteine usage in Sulfolobus spindle-shaped virus 1 and extension to hyperthermophilic viruses in general, Virology, vol.376, pp.270-278, 2008.

S. Hartung, Ultrahigh resolution and full-length pilin structures with insights for filament assembly, pathogenic functions, and vaccine potential, J. Biol. Chem, vol.286, pp.44254-44265, 2011.

D. Sheppard, The major subunit of widespread competence (pseudo)pili exhibits a novel and conserved type IV pilin fold, 2020.

P. Bork, L. Holm, and C. Sander, The immunoglobulin fold. Structural classification, sequence patterns and common core, J. Mol. Biol, vol.242, pp.309-320, 1994.

E. Dohmen, S. Klasberg, E. Bornberg-bauer, S. Perrey, and C. Kemena, The modular nature of protein evolution: domain rearrangement rates across eukaryotic life, BMC Evol. Biol, vol.20, p.30, 2020.

A. D. Moore, A. K. Bjorklund, D. Ekman, E. Bornberg-bauer, and A. Elofsson, Arrangements in the modular evolution of proteins, Trends Biochem. Sci, vol.33, pp.444-451, 2008.

E. I. Rensen, A virus of hyperthermophilic archaea with a unique architecture among DNA viruses, Proc. Natl Acad. Sci. USA, vol.113, pp.2478-2483, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01375493

E. R. Quemin, Sulfolobus spindle-shaped virus 1 contains glycosylated capsid proteins, a cellular chromatin protein, and host-derived lipids, J. Virol, vol.89, pp.11681-11691, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01430608

C. S. Chin, Phased diploid genome assembly with single-molecule realtime sequencing, Nat. Methods, vol.13, pp.1050-1054, 2016.

R. Li, Y. Li, K. Kristiansen, and J. Wang, SOAP: short oligonucleotide alignment program, Bioinformatics, vol.24, pp.713-714, 2008.

J. Besemer, A. Lomsadze, and M. Borodovsky, GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions, Nucleic Acids Res, vol.29, pp.2607-2618, 2001.

J. Frank, SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields, J. Struct. Biol, vol.116, pp.190-199, 1996.

G. Tang, EMAN2: an extensible image processing suite for electron microscopy, J. Struct. Biol, vol.157, pp.38-46, 2007.

E. H. Egelman, A robust algorithm for the reconstruction of helical filaments using single-particle methods, Ultramicroscopy, vol.85, pp.225-234, 2000.

S. He and S. H. Scheres, Helical reconstruction in RELION, J. Struct. Biol, vol.198, pp.163-176, 2017.

E. F. Pettersen, UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

P. D. Adams, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. Sect. D., Biol. Crystallogr, vol.66, pp.213-221, 2010.

C. J. Williams, MolProbity: more and better reference data for improved all-atom structure validation, Protein Sci, vol.27, pp.293-315, 2018.

Y. Song, High-resolution comparative modeling with RosettaCM, Structure, vol.21, pp.1735-1742, 2013.

O. Poirot, E. O'toole, and C. Notredame, Tcoffee@igs: a web server for computing, evaluating and combining multiple sequence alignments, Nucleic Acids Res, vol.31, pp.3503-3506, 2003.

M. Clamp, J. Cuff, S. M. Searle, and G. J. Barton, The Jalview Java alignment editor, Bioinformatics, vol.20, pp.426-427, 2004.