B. Lemaitre and J. Hoffmann, The host defense of Drosophila 570 melanogaster, Annu Rev Immunol, vol.25, pp.697-743, 2007.

J. A. Hoffmann, Phylogenetic perspectives in innate immunity, Science, vol.572, issue.5418, pp.1313-1321, 1999.

H. G. Boman, Inducible antibacterial defence system in Drosophila, Nature, vol.574, issue.5352, pp.232-237, 1972.

B. Lemaitre, The dorsoventral regulatory gene cassette 576 sp? §tzle/Toll/cactus controls the potent antifungal response in Drosophila adults, Cell, vol.577, issue.6, pp.973-83, 1996.

N. Buchon, Immunity in Drosophila melanogaster -from microbial 579 recognition to whole-organism physiology, Nature Reviews Immunology, vol.14, p.580, 2014.

S. H. Merkling and R. P. Van-rij, Beyond RNAi: antiviral defense strategies 581 in Drosophila and mosquito, J Insect Physiol, vol.59, issue.2, pp.159-70, 2013.

H. Myllymäki and M. Rämet, JAK/STAT Pathway in Drosophila Immunity, 2014.

, Scand J Immunol, vol.79, issue.6, pp.377-385

M. O. Fauvarque and M. J. Williams, Drosophila cellular immunity: a story of 585 migration and adhesion, J Cell Sci, vol.124, pp.1373-82, 2011.

A. Hiroyasu, Extraction of Hemocytes from Drosophila melanogaster 587 Larvae for Microbial Infection and Analysis, J Vis Exp, issue.135, 2018.

L. Horn, Phagocytic ability declines with age in adult Drosophila 589 hemocytes, Aging Cell, vol.13, issue.4, pp.719-747, 2014.

W. B. Bryant and K. Michel, Blood feeding induces hemocyte proliferation 591 and activation in the African malaria mosquito, Anopheles gambiae Giles, J Exp Biol, vol.592, pp.1238-1283, 2014.

H. Yang and D. Hultmark, Tissue communication in a systemic immune 594 response of Drosophila, Fly (Austin), vol.10, issue.3, pp.115-137, 2016.

M. R. Schmid, Control of Drosophila blood cell activation via Toll 596 signaling in the fat body, PLoS ONE, vol.9, issue.8, p.102568, 2014.

B. J. Matthews, Improved reference genome of Aedes aegypti 598 informs arbovirus vector control, Nature, vol.563, issue.7732, pp.501-507, 2018.

D. E. Neafsey, Mosquito genomics. Highly evolvable malaria vectors: 600 the genomes of 16 Anopheles mosquitoes, Science, vol.347, issue.6217, p.1258522, 2015.

K. E. Kistler, Genome engineering with CRISPR-Cas9 in the 602 mosquito Aedes aegypti, Cell Rep, vol.11, issue.1, pp.51-60, 2015.

R. M. Waterhouse, Evolutionary dynamics of immune-related genes 604 and pathways in disease-vector mosquitoes, Science, vol.316, issue.5832, pp.1738-1781, 2007.

G. K. Christophides, Immunity-related genes and gene families in 606 Anopheles gambiae, Science, vol.298, issue.5591, pp.159-65, 2002.

S. J. Clark, High-throughput single-cell proteomics quantifies the 610 emergence of macrophage heterogeneity. bioRxiv, 665307. 611 21, Genome Biol, vol.17, issue.1, pp.96-613, 2009.

, Nat Methods, vol.6, p.377

M. B. Elowitz, Stochastic gene expression in a single cell, Science, vol.616, issue.5584, pp.1183-1189, 2002.

P. O. Lawrence, Hemocytes of Insects: Their Morphology and Function, 618 Encyclopedia of Entomology (Capinera, J.L. ed), pp.1787-1790, 2008.

M. Demerec and M. S. Severo, Unbiased classification of mosquito blood cells by 622 single-cell genomics and high-content imaging, Proc Natl Acad Sci U S A, vol.621, issue.26, pp.623-7568, 1994.

N. Buchon, Drosophila Intestinal Response to Bacterial Infection: 625 Activation of Host Defense and Stem Cell Proliferation, Cell Host Microbe, vol.5, issue.2, pp.200-626, 2009.

J. L. Ramirez, A mosquito lipoxin/lipocalin complex mediates innate 628 immune priming in Anopheles gambiae, Nat Commun, vol.6, p.7403, 2015.

J. Rodrigues, Hemocyte differentiation mediates innate immune 630 memory in Anopheles gambiae mosquitoes, Science, vol.329, issue.5997, pp.1353-1358, 2010.

S. H. Lye and S. Chtarbanova, Drosophila as a Model to Study Brain 632 Innate Immunity in Health and Disease, Int J Mol Sci, vol.19, issue.12, 2018.

Y. Liu, Inflammation-Induced, STING-Dependent Autophagy 634, 2018.

, Restricts Zika Virus Infection in the Drosophila Brain, Cell Host Microbe, vol.24, issue.1, pp.57-68

A. B. Russell, Extreme heterogeneity of influenza virus infection in 637 single cells, 2018.

F. Zanini, Single-cell transcriptional dynamics of flavivirus infection, 2018.

Y. Steuerman, Dissection of Influenza Infection In Vivo by Single-Cell 641 RNA Sequencing, Cell Syst, vol.6, issue.6, pp.679-691, 2018.

J. T. Neal, West Nile Virus-Inclusive Single-Cell RNA Sequencing 643, 2019.

, Reveals Heterogeneity in the Type I Interferon Response within Single Cells, J Virol, vol.644, issue.6, p.93

V. Raquin, Individual co-variation between viral RNA load and gene 646 expression reveals novel host factors during early dengue virus infection of the 647 Aedes aegypti midgut, PLoS Negl Trop Dis, vol.11, issue.12, p.6152, 2017.

F. Zanini, Virus-inclusive single-cell RNA sequencing reveals the 649 molecular signature of progression to severe dengue, Proc Natl Acad Sci U S A, vol.115, issue.52, pp.12363-12369, 2018.

W. Razzell, Calcium flashes orchestrate the wound inflammatory 652 response through DUOX activation and hydrogen peroxide release, Curr Biol, vol.23, issue.5, pp.653-424, 2013.

S. Cristinelli and A. Ciuffi, The use of single-cell RNA-Seq to understand 655 virus-host interactions, Current Opinion in Virology, vol.29, pp.39-50, 2018.

S. Lequime, Genetic Drift, Purifying Selection and Vector Genotype 657, 2016.

, Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes, PLoS Genet, vol.12, issue.6, p.1006111

N. D. Grubaugh, Genetic Drift during Systemic Arbovirus Infection of 660 Mosquito Vectors Leads to Decreased Relative Fitness during Host Switching, Cell 661 Host Microbe, vol.19, issue.4, pp.481-92, 2016.

A. J. Reid, Single-cell RNA-seq reveals hidden transcriptional 663 variation in malaria parasites, 2018.

V. M. Howick, The Malaria Cell Atlas: Single parasite transcriptomes 665 across the complete <em>Plasmodium</em> life cycle, Science, vol.365, issue.6455, p.2619, 2019.

M. Attar, A practical solution for preserving single cells for RNA 668 sequencing, Scientific Reports, vol.8, issue.1, p.2151, 2018.

J. Alles, A genetic framework controlling the differentiation of 674 intestinal stem cells during regeneration in Drosophila, Nat Methods, vol.15, issue.1, p.1006854, 2017.

K. Davie, A Single-Cell Transcriptome Atlas of the Aging Drosophila 677 Brain, Cell, vol.174, issue.4, p.20, 2018.

V. Croset, Cellular diversity in the Drosophila midbrain revealed by 679 single-cell transcriptomics, 2018.

S. Herculano-houzel, The human brain in numbers: a linearly scaled-up 681 primate brain, Front Hum Neurosci, vol.3, p.31, 2009.

C. Ruckert and G. D. Ebel, How Do Virus-Mosquito Interactions Lead to 683 Viral Emergence?, Trends Parasitol, vol.34, issue.4, pp.310-321, 2018.

D. J. Burgess, Spatial transcriptomics coming of age, Nature Reviews, vol.685, issue.6, pp.317-317, 2019.

P. L. Ståhl, Visualization and analysis of gene expression in tissue 687 sections by spatial transcriptomics, Science, vol.353, pp.78-82, 2016.

I. M. Campbell, Somatic mosaicism: implications for disease and 689 transmission genetics, Trends Genet, vol.31, issue.7, pp.382-92, 2015.

M. J. Petit and P. S. Shah, Mapping Arbovirus-Vector Interactions Using 691, Systems Biology Techniques. Front Cell Infect Microbiol, vol.8, p.440, 2018.

N. Karaiskos, The Drosophila embryo at single-cell transcriptome 693 resolution, Science, vol.358, issue.6360, pp.194-199, 2017.

H. Li, Classifying Drosophila Olfactory Projection Neuron Subtypes 695 by Single-Cell RNA Sequencing, Cell, vol.171, issue.5, pp.1206-1220, 2017.

M. M. Ariss, Single cell RNA-sequencing identifies a metabolic 697 aspect of apoptosis in Rbf mutant, Nat Commun, vol.9, issue.1, pp.195-197, 2018.

S. Zakovic and E. A. Levashina, NF-kappaB-Like Signaling Pathway REL2 701 in Immune Defenses of the Malaria Vector Anopheles gambiae, Front Cell Infect 702 Microbiol, vol.7, p.258, 2017.

W. J. Palmer and F. M. Jiggins, Comparative Genomics Reveals the 704 Origins and Diversity of Arthropod Immune Systems, Mol Biol Evol, vol.32, issue.8, pp.2111-2140, 2015.

R. D. Rosa, Exploring the immune signalling pathway-related genes 706 of the cattle tick Rhipicephalus microplus: From molecular characterization to 707 transcriptional profile upon microbial challenge, Dev Comp Immunol, vol.59, issue.11, p.40, 2013.

O. Chavez and A. S. , Tick Humoral Responses: Marching to the Beat 712 of a Different Drummer, Front Microbiol, vol.8, p.223, 2017.

J. B. Benoit, Symbiont-induced odorant binding proteins mediate 714 insect host hematopoiesis, 2017.