Skip to Main content Skip to Navigation
Journal articles

Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb

Abstract : In the mammalian brain, the anatomical structure of neural circuits changes little during adulthood. As a result, adult learning and memory are thought to result from specific changes in synaptic strength. A possible exception is the olfactory bulb (OB), where activity guides interneuron turnover throughout adulthood. These adult-born granule cell (GC) interneurons form new GABAergic synapses that have little synaptic strength plasticity. In the face of persistent neuronal and synaptic turnover, how does the OB balance flexibility, as is required for adapting to changing sensory environments, with perceptual stability? Here we show that high dendritic spine turnover is a universal feature of GCs, regardless of their developmental origin and age. We find matching dynamics among postsynaptic sites on the principal neurons receiving the new synaptic inputs. We further demonstrate in silico that this coordinated structural plasticity is consistent with stable, yet flexible, decorrelated sensory representations. Together, our study reveals that persistent, coordinated synaptic structural plasticity between interneurons and principal neurons is a major mode of functional plasticity in the OB.
Document type :
Journal articles
Complete list of metadatas

https://hal-pasteur.archives-ouvertes.fr/pasteur-02887384
Contributor : Kurt A Sailor <>
Submitted on : Thursday, July 2, 2020 - 11:06:10 AM
Last modification on : Tuesday, July 7, 2020 - 3:35:14 AM

Links full text

Identifiers

Collections

Citation

Kurt A Sailor, Matthew Valley, Martin Wiechert, Hermann Riecke, Gerald Sun, et al.. Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb. Neuron, Elsevier, 2016, 91 (2), pp.384-396. ⟨10.1016/j.neuron.2016.06.004⟩. ⟨pasteur-02887384⟩

Share

Metrics

Record views

32